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Abstract: Whirl flutter of a tiltrotor aircraft is a complex aeroelastic phenomenon and it can result
in catastrophic consequences. The deflection of an aileron mounted on a wing has the potential to
solve this fatal problem. Whirl flutter suppression using an actively controlled aileron is studied in
this study. Firstly, a semi-span aeroelastic model is established for the whirl flutter problem using
the Hamilton principle. This model is composed of three parts: a rigid rotor, a rigid nacelle and a
flexible wing, and the effect of the aileron deflection on the aeroelastic responses is also taken into
consideration through a quasi-steady aerodynamic model. In addition, the accuracy of this aeroelastic
model is validated with the results of two different wind-tunnel tests. Then, an LQR controller is
developed to control the dynamic deflection of the aileron, and a full-dimensional state observer is
built to estimate the state of the time-invariant system of a tiltrotor aircraft. Finally, simulations are
carried out using the aeroelastic model and the LQR controller at different flight conditions to study
the influence of the aileron deflection on whirl flutter. The simulation results demonstrate that the
flutter boundary speed can be improved by 18.1% with the active deflection of the aileron, compared
with the uncontrolled condition.

Keywords: aeroelastic; tiltrotor; whirl flutter; aileron; LQR; state observer

1. Introduction

Tiltrotor aircraft combine the advantages of helicopters and fixed-wing propeller-
driven aircraft with hovering and high-speed forward flight. This type of aircraft, however,
suffers from dynamic instability problems resulting from aeroelastic coupling between
the rotor and flexible wing. In high-speed flight conditions, the in-plane aerodynamics
resulting from blade flap movement couple with the flapping and torsional deformation
of the flexible wing. This coupling causes the instability of whirl flutter and limit the
high-speed advantage of tiltrotor aircraft.

In general, there are two different ways to suppress the whirl flutter of tiltrotor aircraft,
namely active control and passive control. Typical passive control methods, such as blade
geometry optimization and aeroelastic tailoring [1–6], enable favorable coupling between
the rotor and the flexible wing to improve the stability boundary of whirl flutter. In recent
years, new concepts of passive control, including extensions and winglets, have received
increasing attention [7–9], and their principle is to generate a restoring force which is
opposite to the twist motion of the flexible wing, using these additional aerodynamic
surfaces, thus suppressing whirl flutter.

Active control has shown its peculiar advantages in vibration alleviation and aeroelas-
tic stability augmentation, and its application in the whirl flutter suppression of tiltrotor
aircraft dates back to the 1970s. Depending on the technical implementation, active con-
trol methods for whirl flutter suppression can be generally divided into two categories,
including active control through the swashplate of the rotor and active control through
ailerons mounted on a flexible wing. In 1973, Boeing added feedback control to the Boeing
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Model 222 rotor [10], and the modal damping of the wing vertical bending mode, which
was critical for the whirl flutter phenomenon, was increased through the active control
of the collective and cyclic pitch angles of the rotors. In 1986, Nasu et al. at the NASA
Ames Research Center used APC (Active Pitch Control) to control the longitudinal cyclic
control of the rotor and selected the chord bending velocity as the feedback signal [11].
It was shown that this method was capable of improving the boundary velocity of whirl
flutter. In 2004, Mueller et al. of Eurocopter conducted an aeroelastic study by combining
multibody dynamics and a GPC (Generalized Predictive Control) algorithm, in which
the wing bending deformation was used as the feedback signal to control the input of
the swashplate, and the simulation results demonstrated that the GPC control was able
to extend the whirl flutter boundary by 21% [12]. In 2017, Matthew et al. carried out a
simulation study of the influence of active wing tips on whirl flutter stability [13]. The
deflection of the wing tips, which was controlled by a PID controller, was capable of in-
creasing the boundary velocity from 160 kts to over 200 kts, demonstrating that a movable
aerodynamic surface had the potential to improve the boundary velocity of whirl flutter.
Paik et al. examined the effectiveness of two different methods of active stability augmenta-
tion, including wing-flaperon and swashplate actuation, and feedback control based on the
wing states was used instead of full-state control for simplicity [14]. A new wind-tunnel
test model named Tiltrotor Aeroelastic Stability Testbed (TRAST) was developed by the
US Army and NASA, and an active stability augmentation test was conducted with this
testbed [15,16]. Ivanco et al. performed a simulation of active stability augmentation and
vibration reduction on a tiltrotor model; in this study, an aeroelastic model was established
for the TRAST model using the Rotorcraft Comprehensive Analysis System (RCAS), and a
GPC algorithm was used for the blade pitch [17].

The aforementioned studies have proven the effectiveness of active stability aug-
mentation methods. In order to further improve the performance of active whirl flutter
suppression, an active control method based on an LQR algorithm and full-order state
observer was built and tested through simulation. A comprehensive aeroelastic model com-
posed of a rigid rotor, a flexible wing and a rigid nacelle was established. Aerodynamics
generated by the aileron were calculated using a quasi-steady model. The experiment re-
sults of two different wind-tunnel tests were used to validate the accuracy of this aeroelastic
model. An active controller was designed based on an LQR (Linear Quadratic Regulator)
algorithm to control the deflection movement of the aileron. A full-order state observer
was built to obtain the unmeasurable variables of the flexible wing, which were used as
the feedback signals in the active control. The simulations were conducted at different
flight conditions to suppress whirl flutter using the established aeroelastic model combined
with the LQR controller. Based on the simulation results, a semi-span model equipped
with an actively controlled aileron will be designed and tested in a wind tunnel for further
validation of the active stability augmentation method.

2. Aeroelastic Model
2.1. Definition of Coordinate Systems

According to numerical research results, the symmetric modal coupling between
the rotor and flexible wing of a tiltrotor aircraft is more prone to whirl flutter than the
antisymmetric modal coupling [18], making a semi-span model sufficient for whirl flutter
simulation. In addition, this type of model can dramatically reduce the computational cost.
Therefore, a semi-span aeroelastic model was built in this study.

A series of coordinate systems were established to describe the motion and deforma-
tion of the semi-span model. The flexible wing and the coordinate systems defined on the
rotor are shown in Figure 1.
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As shown in Figure 1, the origin of the inertial coordinate system
{

Ii Ji Ki
}T is

defined at the root of the wing elastic axis. The origin of the undeformed coordinate system{
Id Jd Kd

}T is located at the wing elastic axis. Three twist angles are generated between

the deformed coordinate system
{

Iw Jw Kw
}T and the undeformed coordinate system{

Id Jd Kd
}T of the flexible wing due to its elastic deformation. The nacelle coordinate

system
{

Ip Jp Kp
}T is used to describe the movement of the rigid nacelle, with the origin

defined on the tilt hinge, and
{

xpw ypw zpw
}T are the biases of the origin with respect to

the wing elastic axis. αp is the tilt angle of the nacelle, with the angle corresponding to the

helicopter mode defined as 0◦.
{

Ih Jh Kh
}T is the rotor hub coordinate system, with its

origin defined at the center of the hub, and
{

xh yh zh
}T are the biases of the origin with

respect to the tilt hinge. The rotor rotating coordinate system
{

Ir Jr Kr
}T is generated

by rotating the rotor hub coordinate system an azimuth of Ψ around the Kh axis. The blade
rigid flap coordinate system

{
Ig Jg Kg

}T is established by rotating the
{

Ir Jr Kr
}T

an angle of βi
G + βp around the Ir axis, with βi

G being the flap angle of the ith blade, and βp

being the precone angle of the rotor hub. The blade pitch coordinate system
{

Ib Jb Kb
}T ,

which is used to describe the rigid flapping and pitching motion of the rotor blades, is
attached to the pitching hinge.

2.2. Hamilton Principle

The aeroelastic dynamic equations of the semi-span model are derived using the
Hamilton principle [19–22] as expressed in Equation (1):

δΠ =

t2∫
t1

(δU − δT − δW)dt = 0 (1)

In Equation (1), δU is the virtual elastic potential energy of the model, including the
elastic wing and the rotor hub, given by:

δU = δUwing + δUhub (2)
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δT is the virtual kinetic energy, which combines the virtual kinetic energy of the elastic
wing, the nacelle and the rotor blades, and δT is calculated by:

δT = δTwing + δTnacelle +
Nb

∑
i=1

δTbi
(3)

δW is the virtual work of the aerodynamics. In this study, the aerodynamics of the
wing and the rotor blades are taken into consideration. δW is estimated as:

δW = δWwing +
Nb

∑
i=1

δWbi
(4)

2.3. Flexible Wing Model

The flexible wing is one of the most fundamental parts of the semi-span model, and
its elastic deformation is taken into consideration, while the movement of the fuselage is
ignored. Therefore, the wing can be modeled as a cantilever beam as shown in Figure 2.
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The motion modes of the flexible wing include the flap bending mode q1, chordwise
bending mode q2 and torsional mode p, and mode shape functions are used to describe
the elastic deformation of the wing of these three modes. Since the whirl flutter boundary
of the tiltrotor aircraft is primarily determined by the lower modes of the flexible wing,
only the lowest order of the motion modes is retained, so that the elastic deformation of the
wing can be described as:

zw(yw, t) = q1(t)η1(yw) (5)

xw(yw, t) = q2(t)η2(yw) (6)

θw(yw, t) = p(t)ε(yw) (7)

where zw, xw and θw are the flap bending displacement, the chordwise bending displace-
ment and the twist angle of the wing, respectively.

After defining the deformation of the flexible wing, its elastic potential energy can be
calculated by:

Uwing =
1
2

∫ yTW

0

[
EIX

(
∂2zw

∂2yw

)2

+ EIZ

(
∂2xw

∂2yw

)2

+ GJ
(

∂2θw

∂2yw

)2]
dyw (8)

Then, the stiffness matrix related to the elastic potential energy can be determined using:

Kwij =
∂2δUwing

∂δqiδqj
(9)



Aerospace 2022, 9, 795 5 of 15

The kinetic energy of the wing is given as:

Twing =
1
2

∫ yTW

0

[
mz

(
∂zw

∂t

)2
+ mx

(
∂xw

∂t

)2
+ Iθw

(
∂θw

∂t

)2
]

dyw (10)

The virtual kinetic energy of the wing can be described as generalized forces as:

δTwing =
i

∑
1

∂
(
δTwing

)
∂qi

δqi (11)

The mass matrix related to the kinetic energy of the wing can be evaluated by:

Mwij =
∂2(−δTwing

)
∂δqiδ

..
qj

(12)

The work of the aerodynamics acting on the wing is expressed as:

Wwing =
∫ yTW

0

[
FZ·zw + FX ·xw +

(
MP·θw − FZ·

(
XA·cw·θw

))]
dyw (13)

In Equation (13), XA is the non-dimensioned bias of the aerodynamic center with
respect to the elastic axis. The virtual work of the wing related to the aerodynamics can be
described as generalized forces as:

δWwing =
i

∑
1

∂
(
δWwing

)
∂qi

δqi (14)

The damping matrix and stiffness matrix related to the aerodynamic work are as follows:

Cwij =
∂2(−δWwing

)
∂δqiδ

.
qj

(15)

Kwij =
∂2(−δWwing

)
∂δqiδqj

(16)

The structural damping of the flexible wing can be expressed as:

C = 2ζ
√

MwKw (17)

where C is the modal damping, Mw is the modal mass, Kw is the modal stiffness and ζ is
the modal damping ratio.

2.4. Nacelle Model

The nacelle is mainly composed of several large components, such as the engine and
rotor shaft. The elastic deformation of these components is not strongly related to whirl
flutter; hence, the nacelle can be described by a rigid model. Any point on the nacelle can
be expressed as:

Rpi =


utip
vtip
wtip

+ (TdwTwi)
T


xpw
ypw
zpw

+
(
TpTpwTwdTdi

)T


xp
yp
zp

 (18)

where
{

xpw ypw zpw
}T is the bias of the nacelle connection point with respect to the

elastic axis of the wing,
{

xp yp zp
}T is the coordinate of any point located in the nacelle
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coordinate system and
{

utip vtip wtip
}T is the displacement vector of the wing tip. The

velocity of any point related to the nacelle can be calculated by:

Vpi =
dRpi

dt
(19)

Then, yields the virtual kinetic energy of the nacelle:

δTnacelle =
∫ ∫ ∫

ρpδVT
piVpidV (20)

The degrees of freedom (dof) of the nacelle are identical to those of the wing, and
q =

{
q1 q2 p

}T . Hence, the linearized mass matrix of the nacelle can be expressed as:

MPij =
∂2(−δTnacelle)

∂δqiδ
..
qj

(21)

2.5. Rotor Model

In this aeroelastic model, the flap bending stiffness of the rotor hub with a universal
joint is taken into consideration, while each rotor blade is treated as a rigid body. Then, the
virtual elastic potential energy of the ith rotor blade resulting from the flap motion can be
expressed as:

δUi = δβi
G(t)kβGβi

G(t) (22)

where kβG is the flap bending stiffness of the rotor hub. The flapping angle of the ith rotor
blade βi

G(t), which is related to the rigid flapping dof of the rotor hub, can be expressed in
terms of the flapping dof of the rotor hub and the azimuth Ψi(t) of the ith rotor blade:

βi
G(t) = [cosΨi(t)− sinΨi(t)]

[
βGC(t)
βGS(t)

]
(23)

Adding the virtual elastic potential energy of each blade together yields the virtual
elastic potential energy of the rotor:

δUhub =
Nb

∑
i=1

δUi =
[
δβGC(t) δβGS(t)

][NbkβG
2 0

0
NbkβG

2

][
βGC(t)
βGS(t)

]
(24)

The dof of the rigid rotor blade, which combines the convected motion resulting
from the wing elastic deformation and the blade’s rotating dof βi

G(t), is expressed as

q =
{

q1 q2 p βi
G
}T . The position vector of any point in the blade coordinate system

can be expressed in the inertial coordinate system as:

RRi =


utip
vtip
wtip

+ (TdwTwi)
T


xpw
ypw
zpw

+
(
TxTpTT

wiTdwTwi
)T


xh
yh
zh


+
(

TbgTgrTrpThpTpTpwTwdTdi

)T


xb
yb
zb


(25)

The velocity of this point is calculated by:

VRi =
dRRi

dt
(26)
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Then, the virtual kinetic energy of each blade is given by:

δTblade =
∫ ∫ ∫

ρbδVT
RiVRidV (27)

Using the zero-time end condition and exchanging the order of integration, we can obtain:

δTblade =
∫ ∫ ∫

ρbδRT
Ri

..
RRidV (28)

The virtual kinetic energy of each blade can be described as generalized forces as:

δTblade =
i

∑
1

∂(δTblade)

∂qi
δqi (29)

The linearized mass matrix of the rotating blade can be represented as:

Mbij
=

∂2(−δTblade)

∂δqiδ
..
qj

(30)

Then, the stiffness matrix and damping matrix related to the blade virtual kinetic
energy are given by:

Kbij
=

∂2(−δTblade)

∂δqiδqj
(31)

Cbij
=

∂2(−δTblade)

∂δqiδ
.
qj

(32)

The transformation from the rotating frame to the non-rotating frame is expressed by:


q1(t)
q2(t)
p(t)

βi
G(t)

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cosΨi(t) −sinΨi(t)




q1(t)
q2(t)
p(t)

βGC(t)
βGS(t)

 (33)

The sectional aerodynamic loads acting on the rotor blade are given by:

FL =
1
2

ρ
(

V2
T + V2

P

)
ccl (34)

FD =
1
2

ρ
(

V2
T + V2

P

)
ccd (35)

Decomposing these loads into components perpendicular and parallel to the rotor
disk, we will obtain:

Fx = 0
Fy = −FLsinφ− FDcosφ
Fz = FLcosφ− FDsinφ

(36)

The sectional aerodynamic loads of the rotor blade are denoted as:

Fcb =
{

Fx Fy Fz
}T (37)

They can be expressed in the inertial coordinate system as:

Fci =
(

TgrTrpThpTpTpwTwdTdi

)T
·Fcb (38)
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Then, the virtual aerodynamic work of each blade can be calculated by:

− δWblade = −
∫ R

0

(
TgrTrpThpTpTpwTwdTdi

)T
·Fcb·δRRidr (39)

The virtual work of each blade related to the aerodynamics can be described as
generalized forces as:

δWblade =
i

∑
1

∂(δWblade)

∂qi
δqi (40)

Finally, the stiffness matrix and damping matrix related to the aerodynamic loads can
be determined as:

Kbij
=

∂2(−δWblade)

∂δqiδqj
(41)

Cbij
=

∂2(−δWblade)

∂δqiδ
.
qj

(42)

2.6. Aerodynamics of the Aileron

According to quasi-steady aerodynamic theory [23,24], the additional aerodynamic
loads generated by the aileron, including lift ∆L and moment ∆M, can be calculated using
the pitch angle δ f , angular velocity

.
δ f and angular acceleration

..
δ f of the aileron as follows:

∆L = 1
2 ρc
[

clδ f
δ f U2

t + c
l

.
δ f

.
δ f U2

t + c
l
..
δ f

..
δ f

]
∆M = 1

2 ρc
[

cmδ f δ f U2
t + c

m
.
δ f

.
δ f U2

t + c
m

..
δ f

..
δ f

] (43)

These loads are denoted as:

Fa = [D2]
..
δ + [D1]

.
δ + [D0]δ (44)

In this study, the deflection motion of the aileron is selected as the control input. Therefore,
the linearized governing equation of the semi-span model is given in the following form:

[M]
..
q + [C]

.
q + [K]q = [D2]

..
δ + [D1]

.
δ + [D0]δ (45)

where q =
{

q1 q2 p βGC βGS
}T . q1, q2 and q2 represent the flap bending mode,

chordwise bending mode and twisting mode of the flexible wing, respectively. βGC and
βGS are the flapping angles of the rotor hub described in the non-rotating coordinate system
of the rotor hub.

2.7. Model Validation I

Firstly, the wind-tunnel test, which was conducted by Bell Helicopter with a full-
scaled semi-span tiltrotor model [25], was chosen to validate the accuracy of the established
model in this study. This test was performed at the 40-by-80-foot wind tunnel at the Ames
Research Center, and the fundamental parameters of this test model are listed in Table 1.

The modal damping and the modal frequencies of this semi-span model at different
flight speeds were calculated by the aeroelastic model built in this study. As shown in
Figure 3, the calculated values are in good agreement with the experiment results given in
reference, indicating that the established aerodynamic model is of high accuracy.
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Table 1. Fundamental parameters of the Bell test model [25].

Parameters Value

Number of blades Nb 3
Rotor radius R 3.81 m
Rotor solidity σ 0.089

Rotor blade pitch/flap coupling Kp −0.268
Lift curve slope a 5.7

Rotor rotational speed in hover Ωh 565 r/min
Rotor rotational speed in cruise Ωc 458 r/min

Blade flap inertia Iβ 142 kg/m2

Wing length (semi-span) Lw 1.333 R
Wing chord length c 0.413 R
Rotor mast height h 0.261 R

Pylon center of gravity location hp 0.05 R
Pylon mass 655 kg

Pylon pitch moment of inertia Iy 257 kg/m2

Pylon yaw moment of inertia Ix 231 kg/m2

Wing sweep angle δw −6.5◦
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2.8. Model Validation II

In order to study the aeroelastic characteristics of the tiltrotor aircraft and to validate
the accuracy of the numerical methods, we performed a wind-tunnel test with a scaled
semi-span model, as shown in Figure 4. The basic parameters of this model are listed in
Table 2, and more detail about the wind-tunnel test can be found in [26].
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In the wind-tunnel tests, the nacelle vibrations were measured at different wind speeds
using accelerometers, which were fixed on the nacelle. The vibration responses at wind speeds
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of 15 m/s and 20.5 m/s are shown in Figure 5. It can be seen that, at a wind speed of 20.5 m/s,
the nacelle vibration increased dramatically, and whirl flutter phenomenon appeared.

Table 2. Fundamental parameters of the scaled semi-span model.

Parameters Value

Number of blades Nb 3
Rotor blade chord length cb 31 mm

Rotor rotational speed in cruise Ωc 1200–1800 r/min
Wing length (semi-span) Lw 690 mm

Wing chord length c 240 mm
Airfoil of wing NACA0024

Number of wing sections Ns 7
Span length of wing section Ls 80 mm

Wing dihedral angle δd 0◦

Wing sweep angle δs 0◦

Wing preinstall angle δpre 0◦

Rotor mast height h 150 mm
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Figure 5. Nacelle vibrations at different wind speeds.

Numerical simulations were carried out with the established aeroelastic model, in
which a transient response analysis method was employed. The torsion responses at about
20 m/s are demonstrated in Figure 6. The wing torsion response converges slowly at a
wind speed of 20 m/s; however, if the wind speed increases to 21 m/s, the response cannot
converge, illustrating that the whirl flutter boundary of this semi-span model is around
21 m/s, which is in good agreement with the test results.
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3. Active Controller and State Observer
3.1. Active Controller Based on LQR Algorithm

For the time-invariant system of the semi-span tiltrotor model, its state equation and
output equation can be expressed as:

.
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(46)

where x =
{

.
q1

.
q2

.
p

.
βGC

.
βGS q1 q2 p βGC βGS

}T
, y =

{ ..
q1

..
q2

..
p δ

}T .
The objective function is defined as:

J =
1
2

∫ ∞

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt (47)

In Equation (47), Q and R are the weight matrices. In performing the Laplace transfor-
mation on Equation (46), the following is obtained:

sX(s) = AX(s) + BU(s) + x0 (48)

Then:
X(s) = (sI − A)−1x0 + (sI − A)−1BU(s) (49)

Applying the inverse Laplace transformation to Equation (49) yields:

x(t) = L−1[X(s)] = eAtx0(t) +
∫ t

0
eA(t−τ)Bu(τ)dτ (50)

Given that the feedback control signal satisfies the following relationship:

u(t) = −Kx(t) (51)

Here, the state feedback control is defined, as represented by K in Figure 7.
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Substituting Equation (51) into Equation (46) yields:

.
x(t) = Acx(t) (52)

where
Ac = A− BK (53)

With the state feedback control, the natural vibration characteristics of the semi-span
model are determined by matrix Ac. The solution of Equation (52) has the following form:

x(t) = eActx0 (54)
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Then, the objective function defined by Equation (47) becomes:

J = xT
0

[∫ ∞

0
eAT

c t
(

Q + KT RK
)

eAT
c tdt

]
x0 = xT

0 Xx0 (55)

According to the optimal control theory, the optimal controller can be obtained as:

K = R−1BTX (56)

X should satisfy the following Riccati equation:

ATX + XA− XBR−1BTX + Q = 0 (57)

According to Equation (51), the controller output is determined by state variable x(t);
however, it is not practically measurable. Therefore, a state observer is needed which will
be described in the following section.

3.2. State Observer

Since it is convenient to measure the acceleration responses of the semi-span model
in wind-tunnel tests, the accelerations are selected in this study to reconstruct the state
variable x(t) using a state observer. The dynamic equations of a full-order state observer
can be expressed as: { .

x̂(t) = Ax̂(t) + Bu(t)− H[ŷ(t)− y(t)]
ŷ(t) = Cx̂(t) + Du(t)

(58)

Then, .
x̂(t) = Ax̂(t) + Bu(t)− H[ŷ(t)− y(t)]

= (A− HC)x̂(t) + Bu(t) + Hy(t)
(59)

In Equation (59), (A− HC) is defined as the system matrix of the state observation,
and H is an n-by-q matrix.

The estimation error of the state observer can be given by combining Equation (46)
and Equation (59):

x(t)− x̂(t) = e(A−HC)(t−t0)[x(t0)− x̂(t0)] (60)

The convergence of the estimation error relies on the configuration of matrix A− HC.
Provided that the real parts of its eigenvalues are negative, the estimation error will
converge rapidly, and the convergence rate depends on the pole configuration of the
observer. The observer designed in this study is shown in Figure 8.
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4. Simulation Results
4.1. Model Configuration

A simulation model was established by adding an actively controlled aileron to the
Bell semi-span model as shown in Figure 9. The distance between the pitching axis of the
aileron and the aerodynamic center of the airfoil is l2 = 0.5c, while the distance between the
wing root and the inner end of the aileron is l3 = 0.5R. The maximum deflection amplitude
of the aileron is limited to ±6◦. Other characteristics of the simulation model, such as the
stiffness and inertia configuration, are identical to the Bell model.
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Figure 9. Schematic of the simulation model: (a) Aileron mounted on the wing; (b) Cross section of
wing with aileron.

4.2. Whirl Flutter Suppression

A root locus was applied to evaluate the stability of the semi-span model. As shown
in Figure 10a, if the LQR controller is turned off, the root locus, which corresponds to the
wing flapping mode, crosses the imaginary axis and moves into the right half of the s-plane
at a forward flight speed of 828 km/h, meaning whirl flutter occurs.
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Figure 10. Root locus of the semi-span model: (a) with controller off; (b) with controller on.

Figure 10b demonstrates the root locus of the semi-span model with the LQR con-
troller turned on. In this condition, the root locus remains in the left half of the s-plane,
illustrating that the system is stable and the actively controlled aileron combined with the
LQR controller is effective in improving the whirl flutter stability of the tiltrotor aircraft.

Transient response analyses were performed at forward flight speeds of 920 km/h,
970 km/h and 990 km/h. At the 10th second, an acceleration disturbance was applied at the
end of the wing to stimulate its whirl flutter, and the deflection angle of the aileron is shown
in Figure 11. It could be seen that the aileron responded rapidly to suppress whirl flutter,
demonstrating the effectiveness of the aileron as well as the established active controller.
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5. Conclusions

In this study, a semi-span aeroelastic model was established for a tiltrotor aircraft to
evaluate the influence of an aileron on whirl flutter phenomenon. In this model, the elastic
deformation of the wing and rotor hub was taken into consideration, while the rotor blades
and nacelle were treated as a rigid body. An active controller combined with a full-order
state observer was built to control the deflection of the aileron. Numerical simulations were
carried out at different forward flight speeds. The principal conclusions are as follows:

Firstly, the established aeroelastic model is capable of predicting the whirl flutter
boundary of a tiltrotor aircraft. Secondly, a wing-mounted aileron, which was controlled
by a controller based on an LQR algorithm and full-order state observer, is effective in
increasing the whirl flutter stability. For the simulation model in this study, its boundary
speed of whirl flutter was increased from 828 km/h to above 978 km/h.

Future works will focus on experimental research on whirl flutter suppression using an
actively controlled aileron. A scaled model equipped with an aileron driven by piezoelectric
actuators was proposed and wind-tunnel tests were scheduled in the following years.

Author Contributions: Methodology, L.D.; software, L.D.; data processing, Q.L.; validation, L.D.;
writing—original draft preparation, L.D.; writing—review and editing, L.D.; supervision, L.D.; project
administration, L.D.; funding acquisition, L.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
11402110) and Priority Academic Program Development of Jiangsu Higher Education (PAPD).
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