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Abstract: Deep space missions are recently gaining increasing interest from space agencies and
industry, their maximum exponent being the establishment of a permanent station in cis-lunar orbit
within this decade. To that end, autonomous rendezvous and docking in multi-body dynamical
environments have been defined as crucial technologies to expand and maintain human space
activities beyond near Earth orbit. Based on analytical and numerical formulations of the relative
dynamics in the Circular Restricted Three Body Problem (CR3BP), a family of optimal, linear and
nonlinear, continuous and impulsive, guidance and control techniques are developed for the design
of end-to-end rendezvous trajectories between co-orbiting spacecraft in this multi-body dynamical
environment. To this end, several modern control techniques are effectively designed and adapted to
this problem, with particular emphasis on the design of low cost rendezvous manoeuvres. Finally, the
designed hybrid rendezvous strategies, combining both discrete and continuous control techniques,
are effectively tested and validated under several start-to-end deep space testbench mission scenarios,
where their performance is compared and quantitatively assessed with a set of performance indices.

Keywords: optimal control; cr3bp; rendezvous; libration point orbits; relative dynamics; nonlinear
control; robust control

1. Introduction

The recent proliferation of private and commercial ventures providing affordable
access to low-Earth orbit and new crewed space vehicles [1], along with a renewed and in-
creasing interest for deep space missions, not only from space agencies, but from the space
industry and other actors, as highlighted in the Global Exploration Roadmap elaborated
by the International Space Exploration Coordination Group [2,3], shows the necessity of
advancing on new technologies to continue with this momentum and solve the challenges
of the upcoming space missions currently being proposed. Visual inspection and extrave-
hicular repair activities, spacecraft refueling and lifetime extension, active space debris
removal, and resupply and other general on-orbit servicing missions are but a few of the
most immediate applications requiring an increasing degree of autonomy and automation,
with even more relevance in deep space missions. Along this line, the upcoming establish-
ment of new crewed outposts in cislunar space within the next years, such as the Lunar
Gateway, will require a continued service of resupply and regular crew transportation mis-
sions, that would benefit from autonomous capabilities for automated rendezvous, docking
and other proximity operations in cislunar space, which have never been attempted to
date, and thus still remain a major challenge for space exploration programs and missions
beyond Earth orbit. Therefore, autonomous guidance, navigation and control capabilities
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have been defined as key enabling technologies to be developed in the coming years to
support the expansion of human space activity beyond Earth orbit.

Libration Point Orbits (LPO) have been identified as ideal locations for the Lunar
Gateway and other lunar and deep space exploration related activities. LPOs include
periodic and quasi-periodic orbits, which posses highly interesting features due to their
ability to maintain continuous communication with the Earth and their lesser station-
keeping requirements. However, their inherent orbital instability yields relatively short
time scales for divergence if the spacecraft abandons the nominal LPO or is subjected to
perturbational acceleration sources, such as third body perturbations or solar radiation
pressure. Therefore, a lot of effort has been devoted over the last three decades to the
problem of trajectory control and station-keeping of LPO, initiated by the pioneer work of
Farquhar [4,5]. Dynamical systems theory has been a fundamental role in the development
of such control strategies. In this sense, early attempts exploited the periodic nature of
these orbits, allowing for an approach based on Floquet’s theory, which led to the ‘Floquet
Mode’ station-keeping strategy for LPOs, first proposed by Wiesel and Shelton [6] and
Simo et al. [7], and later applied to the station-keeping of translunar LPOs [8]. Howell and
Pernicka [9,10] proposed a new LPO station-keeping by adapting Dwivedi’s approach [11]
to the LPO problem, leading to a strategy known as ‘Target Point’. Bai and Junkins [12]
proposed a gradient-free computational approach based on a Modified Chebyshev-Picard
Iteration method, which provided a simple and lightweight control structure. Hou et al. [13]
proposed impulsive control strategies similar to the Floquet approach, which allowed to
extend its applicability to the real Earth–Moon system by relying on quasi-periodic orbits
referred to as dynamical substitutes. Folta et al. [14] extended the concept of the Target
Point strategy to include optimality considerations by combination with a global search
method and an orbit continuation method, resulting in a discrete control strategy which was
successfully used for operational station-keeping in the ARTEMIS mission [15]. Recently
Jin and Xu [16] proposed a modified strategy for selecting target points for LPO station-
keeping to reduce manoeuvre costs in the real Earth-Moon system. Extensions to more
complicated multi-body contexts have also been accomplished; Carletta et al. exploited the
Hamiltonian formalism to develop a linear feedback compact station-keeping law in the
Sun-Mars elliptic restricted four-body problem LPOs [17].

The aforementioned works proposed effective control strategies that relied heavily on
dynamical systems theory and exploited the properties of intrinsic structures of the CR3BP,
resulting in impulsive strategies; in contrast, they overlooked the plethora of techniques
readily available in both classical and modern control theory, which can be effectively
borrowed and adapted to the problem at hand. Along this line, Breakwell et al. [18]
were the first to approach the LPO trajectory control problem from a classical control
viewpoint by proposing a linear quadratic regulator for station-keeping of a translunar
halo orbit. Control schemes of increasing complexity followed. Jones and Bishop [19]
developed an output feedback guidance law using H2 control theory. Scheeres and Vinh [20]
developed a feedback control law based on the local eigenstructure of the LPO, which
allowed for oscillatory motions in the center manifold. Luquette and Sanner [21] proposed
an adaptive, nonlinear control for orbit maintenance in the vicinity of LPOs. Gurfil and
Kasdin proposed a time-varying, continuous, linear quadratic control law, along with an
internal disturbance model that rendered a robust disturbance rejection performance [22],
and also investigated the early use of neural networks for tracking control and disturbance
rejection in this context [23]. Marchand and Howell also developed continuous control
strategies of increasing complexity based on linear and non-linear quadratic regulators
and input/output feedback linearization [24], as well as through numerical solutions
to the optimal control problem [25]. Infeld et al. [26] used Legendre pseudo-spectral
methods to numerically solve the fuel-optimal, constrained, non-linear control problem.
Kulkarni et al. [27] successfully adapted an H∞ approach to station-keeping control of LPOs.
Nazari et al. [28] proposed three control strategies combining continuous LQR control and
Floquet theory using periodic control gains; these relied, respectively, on an time-periodic
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infinite horizon LQR, a backstepping technique with time- invariant LQR, and a dead-band
periodic-gain controller. Lian et al. [29] investigated the use of discrete-time sliding mode
control and a discrete time linear quadratic regulator for station-keeping of real Earth–Moon
LPO (i.e., with a complete Solar System model under a real ephemerides model), resulting
in a discrete control suitable for impulsive manoeuvres. Ulybyshev [30] approached the
station-keeping problem as an optimization problem, considering pseudoimpulses for
discretized orbital segments, thus transforming the station-keeping problem into a large-
scale linear programming form, resulting in a long-term station-keeping strategy for quasi-
periodic LOPs in the full ephemerides model. Using a simple linear extended state observer,
Narula and Biggs [31] extended an LQR control scheme to enable continued tracking in
the event of thruster failure and the presence of disturbances; they also demonstrated that
in combination with a sliding mode or an adaptive control, asymptotic tracking could be
achieved. Peng et al. [32] demonstrated the robust maintenance of multi-revolution halo
orbits in an elliptic restricted three-body problem using a receding horizon control strategy
solved by an indirect Radau pseudo-spectral method. Qi and de Ruiter [33] extended the
use of backstepping controllers for station-keeping of LPOs under practical navigational
and executional constraints, a real ephemerides model and solar radiation pressure.

Héritier and Howell [34] looked into harnessing the natural, multi-body dynamics
to minimize the drift of the unstable relative dynamics. Along this line, Xu, Liang and
Fu [35] proposed a Hamiltonian structure-preserving control for LPO, which they suc-
cessfully extended to the bi-circular four-body problem (i.e., time-periodic dynamics),
and later to time-dependent dynamics, such as the relative orbital motion along low-
energy transfer trajectories in the CR3BP [36], a path also investigated by Cheng et al. [37].
Jung and Kim [38] also proposed a switching Hamiltonian structure-preserving control.
Other currently ongoing research includes Elliott and Bosanac [39,40], who are looking
into LPO station-keeping controllers based on an alternative set of geometric coordinates,
Bonasera, Bosanac et al. [41,42], who are looking into machine learning approaches to the
LPO station-keeping problem, in particular with reinforcement learning, and Gao et al. [43],
who are investigating high-order dynamical systems approaches for low-thrust station-
keeping of LPOs. A thorough and extensive survey on LPO station-keeping strategies was
presented by Shirobokov et al. [44], although it is unfortunately already outdated given the
continued developments carried out in these research lines in recent years. Also, despite all
these publications have focused on the trajectory control around LPOs, it is worth noting
that a few publications have also looked into the general problem of relative orbital motion
in the CR3BP, not necessarily bound to the vicinity of equilibrium points [45,46].

Traditional techniques for stability analysis and classical control build on linearization
about a reference trajectory, which by extension leads to the problem of close proximity
relative orbital motion and formation flight around a LPO. This immediately drew attention
to multi-spacecraft formations and applications to interferometry missions and other
distributed spacecraft architectures; in fact, many of the aforementioned bibliographic
references revolve around such applications. In contrast, the problem of orbital rendezvous
between two co-orbital spacecraft within the CR3BP framework seems to have drawn very
little attention until recent years. Gerding [47] was the first to consider rendezvous in a
CR3BP environment, by proposing a simple, two-impulse rendezvous strategy based on
the linearized motion around a LPO. Jones and Bishop [48,49] derived a targeting law
for the terminal phase rendezvous, loosely equivalent to the rendezvous application of
Hill’s equations in the two-body problem, and constructed a Kalman-based rendezvous
navigation filter to supply the targeting law with the chaser vehicle state information.
Canalias and Masdemont [50] developed a methodology for the rendezvous of satellites on
a Lissajous orbit using the effective phases plane together with a linear approach. However,
it was not until well within the last decade that rendezvous in non-Keplerian environments
become a topic of renewed interest upon studies related to the Lunar Gateway placement
on a LPO. Mand [51] investigated simple, impulsive close-rendezvous targeting strategies
adapting the line-of-sight corridor and the line-of-sight glide notions, of common use in
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Keplerian rendezvous. Ueda and Murakami [52] investigated into optimum guidance
strategies based on free-drift dynamics, by following safe approach trajectories along
invariant manifolds and into safe injection points for rendezvous in an Earth-Moon Halo
orbit. Along this line, Sato et al. [53] proposed two different strategies for rendezvous on
an Earth-Moon L2 halo orbit by phasing along the orbit: one where the chaser approaches
the target from behind along the orbit, similarly to a rendezvous in a low Earth orbit, and a
second one utilizing an homoclinic intersection between an unstable manifold that departs
from the halo orbit towards the Moon, where it connects to a stable manifold returning to
the halo orbit, thus allowing an increased launch window and flexibility for mission design,
and the capability to adjust the time of arrival to the halo orbit with a lower propellant
usage. A similar approach, based on finding connecting manifolds on Poincaré maps, was
proposed by Lizy-Destrez [54]. Murakami et al. [55] further investigated into the problems
and requirements regarding guidance, navigation, and control for a rendezvous scenario in
an Earth–Moon L2 halo.

From 2015 onward, the spotlight was put into other types of LPO, such as Direct
Retrograde Orbits (DRO) and Near-Rectilinear Halo Orbits (NRHO), once these were
pointed out to be potentially better locations for the Lunar Gateway. Thus, Murakami
and Yamanaka [56] proposed a three-impulse transfer from LEO to various phase points
in a certain DRO, including a retrograde, powered lunar gravity assist. Ueda et al. [57]
used standard, impulsive strategies to target an arbitrary relative position in halo, DRO
and NRHO. Lizy-Destrez [58] provided a safety analysis for close approach rendezvous
into a NRHO, and Davis et al. [59] looked into navigation accuracies and noise effects
applied to various station-keeping strategies for NRHO, as well as examining the ability
to absorb missed burns, construct phasing manoeuvres and conduct rendezvous and
proximity operations. On a follow up work, Lizy-Destrez et al. [60] presented methods
and results related to strategies for far and close rendezvous, and compared different
linear and nonlinear models for cislunar relative motion; in particular, three- and four-
impulse strategies are reviewed for the far-range rendezvous, and for the close-range
renzdezvous, key concepts and several impulsive, targeting strategies available in the
literature are reviewed. Blazquez et al. [61] looked at the far rendezvous approaches for
NRHO and passively safe drift trajectories under a real ephemerides model, employing
multiple-shooting and adaptive receding-horizon targeting algorithms, and more recently,
Khoury and Howell [62] also looked into solutions to rendezvous and space loitering
problems on NRHO and DRO type orbits. Bucchioni, in a series of works, focused on GNC
for phasing and rendezvous under 6 DoF models [63–65].

It is a staggering realization though, that all the aforementioned rendezvous strategies
and targeting methods are either impulsive strategies based on exploiting invariant mani-
folds or impulsive strategies for the close-range based on different flavours of linearized
motion. Despite the vast literature dedicated to continuous-thrust station-keeping and
formation flight control around LPOs, our literature review only revealed a handful of pub-
lications that proposed a continuous control for rendezvous under non-Keplerian dynamics;
in particular, Ulybyshev et al. [66] presented an optimal method for the low-thrust ren-
dezvous trajectory design in the vicinity of a lunar L2 orbit under full ephemerides model
by adapting their LPO station-keeping strategy based on pseudoimpulses distributed along
discretized orbital segments, yielding a fully numerical, linear programming problem [30].
Sanchez et al. have successfully proposed both, impulsive and continuous MPC schemes
for constrained, robust close-range docking in NHRO scenarios [67], while using a costly
dynamics formulation based on a Local Vertical Local Horizontal reference frame. Another
interesting contribution is the work by Colagrossi et al. [68], who studied the rendezvous
and coupling in non-Keplerian orbits accounting for the orbit-attitude coupling and flexible
modes of the structure of a very large space station, and more recently have also employed
vision-based state navigation techniques for complete attitude-orbital state estimation
and control [69]. Therefore, we found it surprising that, despite the wealth of literature
devoted to the investigation of continuous-thrust LPO station-keeping and formation flight
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strategies built upon the classical and modern control theory, with the only exceptions of
Refs. [66–69], to the best of our knowledge, none of the reviewed continuous controllers
has been investigated nor adapted for analysis of rendezvous trajectories at LPOs. It was
precisely this realization that served as motivation for the present work. Therefore, the main
contributions of this manuscript are summarized in the following paragraph.

This work firstly revisits both analytical and numerical approaches to the problem of
relative motion in the CR3BP; in particular: (1) the analytical linearization of motion around
LPO is approached distinctively from other literature sources, exploiting the natural dy-
namics for near-libration points scenarios; resulting in a linear time-invariant (LTI) relative
motion model to be exploited for GNC; and (2) a highly accurate numerical calculation
scheme is presented for the relative motion in the CR3BP based on Encke’s method. Based
on the developed analytical framework, a family of optimal, linear and nonlinear, impulsive
and continuous set of control and guidance techniques are reviewed and developed to
exploit the multi-body context and its intrinsic structures for far-range rendezvous and prox-
imity operations in the CR3BP. Firstly, the optimal constrained rendezvous problem in the
form of Bolza is introduced, and several guidance techniques are developed for successful
optimal relative trajectory design. Both classical impulsive and continuous strategies, such
as the LQR/SDRE or the two-impulse rendezvous scheme, are reviewed and compared in
LPO missions. However, our work introduces the possibility of exploiting the presented
low-cost LTI relative motion models for direct linear control synthesis, independent of
the target motion. Secondly, two novel rendezvous techniques are presented: a numerical
impulsive planning algorithm is designed based on classical launcher staging theory, yield-
ing a recursive solution for the optimal thrusting directions. Moreover, the Augmented
Lagrangian Iterative LQR (AL-iLQR) is formulated for our CR3BP rendezvous problem,
for both continuous and impulsive missions. Thirdly, all presented guidance techniques are
hybridized with inner compensator loops, implemented through Model Predictive Control
and first-order Sliding Mode Control, to provide robust performance against uncertainties
and unmodelled dynamics. Finally, the validation of the proposed dynamical models and
the developed rendezvous techniques are exhibited in two realistic simulation scenarios for
the James Webb Telescope and the future Lunar Gateway.

The remainder of this manuscript is organized as follows. In Section 2, both the
absolute and relative dynamics in the CR3BP are briefly revisited, and novel approaches
to both the precise numerical integration of the relative dynamics and the linearization of
relative motion are introduced. Some preliminaries on Control Theory are also highlighted.
Sections 3 and 4 poses the general optimal rendezvous problem and comprises the design
of several guidance techniques for general rendezvous trajectory planning between space-
craft in co-orbital motion. Both continuous and impulsive guidance algorithms are either
revisited or presented, and a comparison between these techniques is also provided using
specific performance indices. Section 5 effectively combines the proposed guidance cores
with several modern, robust, continuous and impulsive controllers for general reference
tracking of optimal rendezvous trajectories and again, performance analysis is accom-
plished for the overall guidance and control loop. In Section 6 all the trajectory design
and control techniques presented in this paper are tested and validated upon two real-case
mission scenarios, where these techniques are effectively employed and combined. Finally,
Section 7 summarizes the main conclusions of this work.

2. Relative Dynamics in the Circular Restricted Three-Body Problem
2.1. Definitions and Governing Equations

The governing equations of motion considered in this study are framed within the
Circular Restricted Three-Body Problem (CR3BP), where two celestial bodies of masses
Mi are considered, hereafter referred to as primaries, which revolve around their common
barycenter under their mutual gravitation, thus describing a circular motion; a third body,
i.e., a spacecraft, is considered with a comparatively negligeable mass m� Mi, such that its
motion is driven by the gravitational interaction with the primaries, whereas the primaries
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are not affected by the presence of the spacecraft. The motion of the spacecraft is naturally
studied in a rotating, synodic frame S , such that the primaries occupy fixed positions in
the xS axis, the zS axis is set perpendicular to the orbital plane of the primaries (along the
angular momentum of the system), and the yS axis completes a dextral frame. The unit
vectors {i, j, k} are defined, respectively, along each of the coordinate axes of the synodic
frame. This is illustrated in Figure 1, which depicts the definition of the synodic frame with
respect to the inertial frame I . The latter is arbitrarily defined to be aligned with S at the
reference epoch t0 = 0, while other options are obviously available.

Figure 1. Relative orbital motion in the CR3BP.

It is customary to use dimensionless coordinates, such that the distance between the
primaries is used as characteristic length, the orbital period of the primaries around their
common barycenter is taken as characteristic time, and the masses of the primaries are
referred to the total mass of the system. In these dimensionless coordinates, the primaries
revolve at one radian per unit of dimensionless time, the reduced mass of M2 can be
defined as

µ =
M2

M1 + M2

and the primaries are set at a unit length apart from each other, so their positions vectors
(which are constant in synodic frame coordinates) can be conveniently written as

R1 = −µ i, R2 = (1− µ) i. (1)

Under the aforementioned assumptions, the motion of the spacecraft is governed by
the following second-order ordinal differential equation

r̈ + 2ω× ṙ +ω× (ω× r) = −(1− µ)
r− R1

‖r− R1‖3 − µ
r− R2

‖r− R2‖3 ,

where ω is the dimensionless angular velocity vector of the synodic frame S with respect
to the inertial frame I , r is the dimensionless spacecraft position vector as measured by an
observer in the synodic frame, and the overhead dot (�̇) indicates derivatives with respect
to the non-dimensional time.

In the following, the relative motion between two spacecraft, termed as target and chaser
(following the usual nomenclature), will be addressed in the CR3BP framework. To this
end, let us consider not one, but two spacecraft modeled as point masses, whose mutual
gravity interaction is neglected. The target spacecraft is assumed to be cooperative and
passive (i.e., with no orbital manoeuvring capabilities), and its orbit to be accurately known.

Let vectors rt and rc denote the position of the target and chaser spacecraft, respectively,
so their relative position vector is defined as ρ = rc − rt. Differentiating twice with respect
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to time and including the appropriate inertial terms, the following governing equations
are obtained:

ẍ− 2ẏ− x = (1− µ)

(
ξ + µ

‖rt − R1‖3 −
x + ξ + µ

‖ρ + rt − R1‖3

)
+ µ

(
ξ − 1 + µ

‖rt − R2‖3 −
x + ξ − 1 + µ

‖ρ + rt − R2‖3

)
+ ux,

ÿ + 2ẋ− y = (1− µ)

(
η

‖rt − R1‖3 −
y + η

‖ρ + rt − R1‖3

)
+ µ

(
η

‖rt − R2‖3 −
y + η

‖ρ + rt − R2‖3

)
+ uy,

z̈ = (1− µ)

(
ζ

‖rt − R1‖3 −
z + ζ

‖ρ + rt − R1‖3

)
+ µ

(
ζ

‖rt − R2‖3 −
z + ζ

‖ρ + rt − R2‖3

)
+ uz. (2)

where (x, y, z) are the synodic frame coordinates of the relative position vector ρ, (ξ, η, ζ)
are the synodic frame coordinates of the target spacecraft position vector rt, and the control
acceleration u = ux i + uy j + uz k has been introduced for future concerns. Equation (2)
can be compactly referred to as the following first-order, control-affine nonlinear system

ṡ = f(µ, s, rt) + u.

The relative motion model is closed assuming the target spacecraft ephemerides
are known.

The State Transition Matrix (STM), Φ(t, t0), can also be computed from the variational
equations stemming from Equation (2). Both the flow’s stability and stroboscopic map
are available from the propagation of the STM of the system along a reference trajectory,
which satisfies

d
dt

Φ(t, t0) = JΦ(t, t0)

Φ(t0, t0) = I

with J the Jacobian of the general dynamics vector field f(µ, s, rt). For LTI dynamical
systems, f(µ, s, rt) = A, the STM is explicitly given by

Φ(t, t0) = eA(t−t0)

where the exp operator denotes matrix exponential.

2.2. Encke’s Formulation of the CR3BP Relative Dynamics

The lack of an analytical solution to the CR3BP enforces the necessity of numerical
propagation. However, Equation (2) require some caution when evaluating their right-hand
side: the order of magnitude difference between ρ and rt − Ri yields a truncation error
which quickly demises the integration process, specially in close proximity operations
scenarios. Following [70,71], an Encke’s formulation [72] of the dynamics vector field
can be derived and introduced for multi-body dynamics, which is better suited from the
numerical viewpoint:

ρ̈ + 2ω× ρ̇ +ω× (ω× ρ) =
2

∑
i=1

−µi
‖rt − Ri‖3

(
f (qi)(rt − Ri) + (1 + f (qi))ρ

)
(3)

with

qi = −
2
(
rt − Ri

)
· ρ + ρ · ρ

‖rt − Ri + ρ‖2 , f (qi) = qi
3
(
1 + qi

)
+ q2

i

1 +
(
1 + qi

)3/2 . (4)

Integrating the latter set of equations provides the synodic frame coordinates of the
relative position vector ρ. This approach is used as the backbone computational integration
algorithm in this work, yielding the same dynamics as Equation (2) while providing
enhanced numerical accuracy with respect to the true chaser motion solution. This form
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of the dynamics is also leveraged in the integration of the STM, which benefit from the
enhanced numerical properties of the scheme.

For demonstration purposes, a numerical test between the propagators (using either
Newton’s or Encke’s formulation) is presented in Figure 2 for a standard halo orbit of out-
of-plane amplitude of 20,000 km. The performance comparison between the two addresses
the l2-norm absolute error between the double-precision relative state vector, integrated
in use of Equations (2) and (3), with respect to a quadruple precision baseline, obtained
through integration of Equations (2) with maximum relative and absolute tolerances.
The enhanced numerical performance and stability of the novel Encke’s propagator is clear
when compared to the classical Newtonian results, showing an enhancement of an order of
magnitude in terms of numerical precision all over the considered integration span.

Figure 2. Integration error for the different relative dynamics formulations.

2.3. Linearized Models

In relative orbital motion it is customary to employ linearization techniques for ap-
proximating the dynamics in the neighborhood of the target spacecraft. Retaining up to
first order terms in Equation (2) yields the Rendezvous Linear Model (RLM) [45,52,62],
which can be compactly expressed in matrix form as:

ṡ = As + Bu =[
ρ̇
ρ̈

]
=

[
03×3 I3×3

Σ Ω

][
ρ
ρ̇

]
+

[
03×3
I3×3

]
u, (5)

where 03×3 and I3×3 denotes 3-dimensional null and identity matrices, respectively; the
Coriolis acceleration term Ω reads

Ω =

 0 2 0
−2 0 0
0 0 0


and the Hessian matrix Σ can be computed as

Σ = −(κ1 + κ2) I3×3 + 3 κ1 (e1 ⊗ e1) + 3 κ2 (e2 ⊗ e2),

where the operator ⊗ denotes the dyadic product, ei are unit vectors pointing from the i-th
primary to the target spacecraft

ei =
rt − Ri
‖rt − Ri‖

, i = 1, 2
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and κi are coefficients defined as

κi =
µi

‖rt − Ri‖3 , i = 1, 2.

Note that the Rendezvous Linear Model is time-dependent, since the matrix Σ depends
on the target spacecraft location rt. Consequently, the stability of the model cannot be
easily assessed, as the eigenvalues of the system matrix depend explicitly on the target
spacecraft ephemerides.

While the original RLM model was derived as a linearization of the true relative
dynamics around the target position vector, in this work we introduce the Relative Libration
Linear Model (RLLM), which considers relative motion near the collinear libration points,
assuming both the target and chaser spacecraft to be on an LPO. In such cases, Σ is expected
to become constant or (quasi-)periodic, respectively. In fact, after linearization, Σ can be
shown to read [73,74]

Σ =

1 + 2c2 0 0
0 1− c2 0
0 0 −c2

. (6)

The fundamental frequency c2 is recognized to be that introduced by Richardson,
which depends on the libration point both spacecraft orbit, as defined in [75]. As it can be
seen, the relative dynamics are therefore uncoupled from the exact chaser’s and target’s
trajectories while inheriting the absolute dynamics phase space solution structures [74],
providing an LTI relative dynamics model (RLLM-LTI), which may be useful in the design
of classical linear control schemes.

2.4. Discrete and Controlled Dynamics

In the design of the guidance and control schemes the following form of the state flow,
as given by Lagrange’s formula, will be usually leveraged

s(t) = Φ(t, t0)s0 +
∫ t

t0

Φ(t− τ, t0)Bu(τ)dτ. (7)

The first term of the right hand side is the homogeneous solution of the dynamics,
given by the discrete mapping of the initial conditions to the epoch of interest t. Such
discrete mapping is defined by the STM of the system, which can be numerically computed
by integrating the variational equations along with a reference phase space trajectory
φ(t; s0). The convolutional, integral term constitutes the effect of the control action u(t)
through the control input matrix B on the dynamics.

In astrodynamics applications, a discrete or impulsive manoeuvre sequence is usu-
ally conceived as a feasible, natural and straightforward control strategy. Particularising
Lagrange’s formula for such action plan u(t) = ∑i Uiδ(t− ti) yields the following result

s(t) = Φ(t, t0)s0 +
N

∑
i=1

Φ(t, ti)BUi, (8)

where the δ(t − ti) is Dirac’s delta generalized function. Introducing the time shifting
property of the STM, the above result can be further expanded as

s(t) = Φ(t, t0)s0 +
N

∑
i=1

Φ(t, t0)Φ(ti, t0)
−1BUi.

Some of the guidance techniques developed in Section 4 are founded on the premise
of discrete dynamics. The classical results just presented can be used to construct a discrete
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map s(ti+1) = F(s(ti)) for a given discrete time sequence 0, ti, ti+1 . . . , under the action of
both continuous and discrete control functions. For the latter case,

si+1 = Φ(ti+1, t0)Φ(ti, t0)
−1si + Φ(ti+1, t0)Φ(ti, t0)

−1BUi.

For continuous control inputs, some assumption shall be made with respect to the
control action between time steps ∆t = ti+1 − ti. This work employs a zero-order hold
between instants and a first order Euler quadrature for the STM exponential, giving

si+1 = Φ(ti+1, t0)Φ(ti, t0)
−1si +

∆t
2

[
I + Φ(ti+1, t0)Φ(ti, t0)

−1
]

Bui.

3. Optimal Impulsive Guidance

The following section introduces several impulsive optimal guidance schemes for
general proximity operations trajectory design. Moreover, the different techniques are
compared against each other under a homing and rendezvous mission scenario.

The use of the term guidance in this context applies to the computation of both a
reference state trajectory sref and control input uref. The guidance core will be then cascaded
with an inner control or compensator loop, whose techniques are described in Section 5.

All guidance laws presented in this work can be either used online, in feedback manner,
or computed offline and explicitly stored and regressed over an independent variable of
interest, such as time, for online GNC purposes.

3.1. The Rendezvous Problem

In practice, most proximity operations and regular orbital control activities can be
formulated as an optimal rendezvous problem, involving either two real spacecraft or the
relative dynamics of a given vehicle with respect to some virtual object. This treatment
motivates the formulation of the Rendezvous Problem.

The Rendezvous Problem is formally stated as a path-constrained two-boundary
value problem, where a finite control law u(t) is sought such that the chaser spacecraft
follows a relative motion that takes it to the origin of the relative phase space after some
finite time of flight t f , thus mathematically fulfilling the Rendezvous Condition, namely
ρ(t f ) = ρ̇(t f ) = 0. Hence, the Rendezvous Problem can be compactly stated as the
following optimal control problem in the form of Bolza:

arg min
u∈R3×R+

J = G(s(t f ), s(0), t f , t0) +
∫ t f

t0

l(s, u, t)dt

subject to ṡ = f(µ, s, St) + u,

s(t0) = s0,

s(t f ) = 0,

g(µ, s, St) = 0,

h(µ, s, St) < 0,

umin ≤ ‖u‖p ≤ umax

(9)

where umin, umax saturate the control function p-norm ‖u‖p and f(µ, s, St) is an appropriate
model of the relative dynamics.

3.2. Surrogate Optimization and Backward-Forward Sweep

The majority of the guidance techniques presented in this section benefit from surro-
gate relative motion models when addressing the Rendezvous Problem, mainly based on an
appropriate linearization of true nonlinear dynamics and the corresponding STM Φ(t, t0).
Moreover, the computation of Φ(t, t0) is at most, when not build upon an analytical model,
numerically integrated through the linear variational equations along the flow φ(t, s0, u).
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Therefore, any control policy Π(t) computed under such dynamics is not guaranteed
to rendezvous the relative state vector under the true nonlinear field. In general, some form
of feedback is needed to successively refined Π(t) and Φ(t, t0) to comply with the nonlinear
relative motion dynamics. This is achieved through iterating a backward-forward pass or
sweep structure until convergence:

1. Along the backward pass, the guidance control policy Π(t) is solved for under an
appropriate approximation of the true nonlinear dynamics, such as the discrete map
given by the current estimate of the STM Φ(t, t0).

2. In the forward pass or rollout, the converged input Π(t) is used to re-integrate to
higher accuracy and refine the state flow φ(t, s0, Π(t)), dictating the approximate
dynamics in the backward process (for example, the estimate of the STM).
For offline guidance, both direct iteration or Newton-Rhapson differential correc-
tors [76] are used to re-evaluate the STM Φ(t, t0) along the flow φ(t, s0, Π) and update
the nominal control sequence Π(t). Online guidance is based on the Model Predic-
tive Control (MPC) approach described in Section 5, in which the true nonlinearities
and uncertainties unmodelled in the surrogate guidance model are accommodated
through a time-receding horizon scheme under the true plant dynamics.

3.3. Two-Impulse Guidance

Given the linearized dynamics in Equation (8), proximity operations trajectory design
can be determined through planning the impulsive control sequence (Ui, ti) with respect to
some optimality policy, usually penalizing both integral loss functions of the control effort
and error to the desired state sd.

Although a single impulse suffices to nullify the relative range to target after some time
of flight t f , two impulses (N = 2) are mandatory to fully regulate the 6-dimensional relative
state s (rendezvous the two spacecraft). Thus, the linear two-impulse (TI) rendezvous
scheme, widely used within the context of Keplerian motion since the 60s [77] and suggested
in previous investigations [51], is here explicitly adapted to the context of the CR3BP for
comparison purposes against more complex strategies. Moreover, compared to previous
literature, our scheme can profit from direct LTI dynamics (lower computational cost in the
integration process) and a more numerically accurate integration process, as introduced in
Section 2.

The backward pass of the TI scheme is given by evaluating Equation (8) with a first
impulse at t0, ∆V1, and a second impulse at t f , ∆V2, which provides the final state vector.
Enforcing the Rendezvous Condition s(t f ) = 0 ∈ R6 and solving for the impulses yields
the following solution:

∆V1 = −Φ−1
ρρ̇

[
Φρρ Φρρ̇

]
s0 = −Φ−1

ρρ̇ ρ(t f ), (10)

∆V2 = −Φ−1
ρ̇ρ̇

[
Φρ̇ρ Φρ̇ρ̇

]
s0 = −Φ−1

ρ̇ρ̇ ρ̇(t f ) ; (11)

where the subscripts of Φ indicate the corresponding partitions of the STM following the
usual notation.

The forward pass may be implemented both using MPC or classical differential cor-
rectors. In the latter case, as already stated, these expressions are solved iteratively for the
current estimate of ∆V1 and its effect under the nonlinear vector field to re-estimate the
STM, which depends on the initial conditions, so it is an implicit function of ∆V1. Under the
MPC paradigm [78], for an N-horizon time span, N − 1 TI problems are solved, and the
problem’s true dynamics accommodated through the complete horizon.

3.4. Multi-Impulse Guidance

A multi-impulse (MI) rendezvous allows for greater flexibility in the design of the
relative trajectory, as accuracy-in-the-execution constraints may be relaxed and navigation
errors can be accommodated in any of the manoeuvres to be performed.
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For the MI backward pass, Equation (8) evaluated at t f can be compactly expressed in
matrix form as

s(t f ) = Φ(t f , t0) s0 + Σ œ,

with matrices Σ ∈ R6×6N and œ ∈ R6N×1 defined as

Σ = hor{Φ(t f , t0)Φ(ti, t0)
−1}, œ = ver

{[
03×1
∆Vi

]}
, ∀i = 1, 2, . . . , N,

with hor{·} and ver{·} denoting horizontal and vertical concatenation, respectively. For non-
LPO missions, a similar approach may be found in [46] exploiting the duality of linear
input-output systems.

Enforcing the Rendezvous Condition s(t f ) = 06×1 and solving for Σ yields

œ = −Σ†Φ(t, t0)s0 = −Σ†s(t f ), (12)

where the �† operator denotes the Moore-Penrose pseudoinverse [79]. This solution also
introduces an l2-norm penalty on the impulses vector œ as a general fuel consumption
metric [80]. Moreover, an appropriate decomposition of Σ provides the solution for less
general rendezvous problems, such as position waypoint targeting.

The overall performance and convergence of the associated differential corrector
is compromised by the initial conditions, the final time of flight, t f , and the selected
execution times for the burns, ti, triggering the effect of neglected nonlinearities in the
problem’s dynamics.

In any case, and as for the TI technique, Equation (12) needs to be solved iteratively in
the backward-forward structure. In this case, the most appropriate feedback formulation is
the Newton-Rhapson method due to the sparsity of the expected impulses.

3.5. Optimal Multi-Impulsive Guidance

Further developing the multi-impulsive scheme naturally leads into its optimal formu-
lation (Opt-MI), in which the N execution times ti and their associated burns are optimally
computed. The selected loss function to be minimized here is the total propellant consump-
tion or, equivalently, the aggregated ∆V of the N impulses, for which the l1-norm is most
fitting [80]. This yields a Linear Programming minimization problem in which, under a
linearized model of the dynamics, the component-wise constrained magnitude of the N
burns can be determined for a rendezvous with the target object at a prescribed time of
flight t f , namely:

arg min
∆V

‖∆V ‖1

subject to s(t0) = s0

s(t f ) = 0

s(t) = Φ(t, t0) s (t0) +
N

∑
i=1

Φ(t, ti)

[
0

∆Vi

]
∆Vmin ≤ ∆Vi ≤ ∆Vmax

(13)

The use of the synodic reference frame together with Encke’s formulation of the
dynamic vector field ensures a cheaper and numerically better-behaved STM propagation
when compared to previous work [67]; in addition, the use of the l1-norm as a proxy for
fuel consumption and its associated LP optimization problem allows the online use of the
algorithm without major computational expenses.

As already mentioned, the solver shall be embedded in some form of feedback loop to
converge the control impulses sequence under the true nonlinear dynamics, through an
iterative refinement of both the input ∆Vi and the STM Φ. In this case, the MPC paradigm
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in Section 5 may be used as forward pass, due to the lack of an exact form of an appropriate
differential corrector to solve the problem under iteration.

3.6. Multi-Impulsive Staging Guidance

Despite the benefits of multi-impulsive schemes, as already seen, additional criteria
or assumptions are needed to determine the impulses executions times ti, on which the
performance of the controller is totally dependent on. While the previous algorithm
develops an online cost-effective optimal rendezvous problem solver, its formulation
depends on the l1-norm proxy for fuel consumption, which, in some cases, may not be
representative of the true mass dynamics of the mission.

Inspired by classical launcher staging mass optimization, the novel Multi-Impulsive
Staging Guidance (MISG) core aims to solve the following constrained optimization prob-
lem during the backward pass:

arg min
∆V

N

∏
i

exp(αi‖∆Vi‖)

subject to s(t0) = s0

sd(t f ) = Φ(t f , t0) s (t0) +
N

∑
i=1

Φ(t f , ti)B∆Vi.

(14)

The cost function ∏N
i exp(αi‖∆V)i‖ = ∏N

i xi is selected as a proxy of control effort and
fuel consumption and to ease further algebra. As for the rest of this derivation, the relative
weights are assumed to be equal and unitary, αi = 1. sd(t f ) is the desired relative state
at the final time of flight t f . The complete impulse sequence can be determined consid-
ering discrete dynamics, therefore eliminating the impulse times as explicit optimization
variables. For a given time of flight t f and time grid ∆ti = ti+1 − ti, the problem is fully
determined, so that for every time node in the grid, a (possibly null) optimal impulse
is computed.

The necessary conditions for optimality are given by constructing an augmented
Lagrangian function and computing its stationary point with respect to (∆Vi, λ)

J =
N

∏
i

xi + λᵀ

(
sd(t f )−Φ(t f , t0) s (t0)−

N

∑
i=1

Φ(t f , ti)B∆Vi

)
=

=
N

∏
i

xi + λᵀ

(
e−

N

∑
i=1

Φ(t f , ti)B∆Vi

)

resulting in the following 3N + 6 equations for the 3N + 6 variables

N

∏
i

xi
∆Vi
‖∆Vi‖

− BᵀΦ(t f , ti)
ᵀλ = 0,

e−
N

∑
i=1

Φ(t f , ti)B∆Vi = 0 .

The Lagrange multiplier λ can be eliminated through the use of equations i and i + 1,
reading the following recursive system

∆Vi+1

‖∆Vi+1‖
=
(

BᵀΦ(t f , ti+1)
ᵀ
)(

BᵀΦ(t f , ti)
ᵀ
)† ∆Vi
‖∆Vi‖

.
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The final algebraic system to be explicitly solve is therefore

∆Vi+1

‖∆Vi+1‖
=
(

BᵀΦ(t f , ti+1)
ᵀ
)(

BᵀΦ(t f , ti)
ᵀ
)† ∆Vi
‖∆Vi‖

e−
N

∑
i=1

Φ(t f , ti)B∆Vi = 0 .
(15)

Equation (15) is suited for the MPC forward pass iteration, with applications in online
feedback guidance. However, for offline cases, and by noting that the complete sequence is
a function of the first impulse only ∆V0, a Newton-Rhapson differential corrector scheme
can be formulated to iteratively correct ∆V0 under each STM refinement iteration until
convergence. For the latter case, Equation (15) can be further simplified as

∆Vi+1

‖∆Vi+1‖
=
(

BᵀΦ(t f , ti+1)
ᵀ
)(

BᵀΦ(t f , ti)
ᵀ
)† ∆Vi
‖∆Vi‖

e−
[

N

∑
i=1
‖∆Vi‖Φ(t f , ti)BG

]
∆V0

‖∆V0‖
= 0 ,

(16)

where the sensitivity matrix G is defined as

G =
i−1

∏
j=1

(
BᵀΦ(t f , tj+1)

ᵀ
)(

BᵀΦ(t f , tj)
ᵀ
)†

.

G gives the Newton-Rhapson update step to ∆V0 through iterating the following result

∆V0,k+1 = ∆V0,k + G†

[
e−

[
N

∑
i=1
‖∆Vi‖Φ(t f , ti)BG

]
∆V0,k

‖∆V0,k‖

]
.

If the sequence needs to be control-input bounded or constrained in any other manner,
the associated inequality can be introduced in the cost function through additional slack
variables li, yielding

J =
N

∏
i

xi + λᵀ

(
e−

N

∑
i=1

Φ(t f , ti)B∆Vi

)
+ µᵀ

(
∆V2

max − ∆Vᵀi ∆Vi − l2
i

)
+ γᵀc(s).

3.7. Impulsive Iterative Linear Quadratic Regulator

The last impulsive guidance scheme presented in this investigation is a novel appli-
cation of the Augmented Lagrangian Iterative Linear Quadratic Regulator (AL-iLQR) for
spacecraft rendezvous under LPO dynamics. The motivation and detailed derivation of
the AL-iLQR may be found in Section 4, after presenting the classical Linear Quadratic
Regulator (LQR) policy for continuous dynamics.

Our AL-iLQR paradigm aims to solve the discrete constrained optimization problem

arg min
∆Vi

J =
1
2

sᵀNQNsN +
1
2

N−1

∑
i=0

(
sᵀi Qisi + ∆Vᵀi R∆Vi

)
subject to si+1 = f(µ, si, ∆Vi, ∆t),

s(t0) = s0,

∆Vᵀi ∆Vi ≤ ∆V2
max,

c(si) ≤ 0 .

(17)

where ∆Vmax is a control authority bound and the inequality/equality set given by c(si)
introduces general state constraints, such as Line-of-Sight restrictions [81]. The discrete
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dynamics given by the map f represent the relative motion dynamical system in any of
its forms.

The constrained problem is relaxed and solved as a series of unconstrained optimiza-
tions by appropriately augmenting J [82]

arg min
∆Vi ,λ

J∗ =
1
2

sᵀNQNsN +
1
2

N−1

∑
i=0

(
sᵀi Qisi + ∆Vᵀi R∆Vi

)
+ λᵀg +

1
2

gᵀ Iγ g

subject to si+1 = f(µ, si, ∆Vi, ∆t),

s(t0) = s0,

g =

[
∆Vᵀi ∆Vi − ∆V2

max
c(si)

]
∈ R(m+1)×N ,

Iγ
j,j =

{
γj gj > 0
0 gj < 0

.

The method achieves a low-cost optimization of a quadratic proxy of the control
effort and the final and integral rendezvous error in finite time, under discrete impulsive
manoeuvres. It generalizes the LQR solution to nonlinear systems by iterating on the
optimal control policy Π(t) during the backward pass and updating the flow Φ(s, Π) over
the forward pass, as described later on. The significance of the penalizing matrix sequence
Qi and R may also be found in Section 4. Finally, it is trivial to augment the relative state s
to incorporate an integral penalty term, as discussed also in Section 4.

3.8. Performance of Impulsive Control Rendezvous Manoeuvres

In the following, the different impulsive guidance algorithms presented in this section
are tested and compared using the complete nonlinear equations of relative motion in
the CR3BP. To that end, a long-range example scenario is proposed where the target
and chaser spacecraft are in two distinct northern halo orbits around the Earth-Moon L2,
as depicted in Figure 3. The target spacecraft is located in a halo orbit of an out-of-plane
amplitude of 20,140 km; the dimensionless time of flight to rendezvous was selected to
be 0.6, corresponding to 2.67 days (this value is found to be the critical time t∗ for the
given orbit ensuring the differential correction convergence). For the AL-iLQR, however,
this value was modified to π units or 14 days: despite seeming a relaxing constraint, it
does promote control cost, as the number of impulses increases drastically. Additionally,
and despite showing finite time convergence, the AL-iLQR benefits from longer time
of flights, in which the true nonlinear dynamics can be optimized; for short time scales,
the algorithms tends to overshoot the optimal solution. The dimensionless initial conditions
for the target and the chaser spacecraft are, respectively:

St(t0) =
[
1.10495 0.02160 −0.04313 0.00346 0.21380 0.02985

]ᵀ
s(t0) =

[
0.01262 −0.02160 0.02351 −0.00346 −0.02961 −0.02985

]ᵀ
corresponding to an initial relative range of 13,195 km.

Several considerations must be addressed regarding the configuration of the different
guidance schemes:

• The STM is integrated along the reference state trajectory s(t) through the linear
variational equations of Encke’s formulation of the relative dynamics, Equation (3).
Despite being the most accurate, they are also the most expensive in terms of compu-
tational cost, providing a worst-case scenario for performance analysis. For the sake of
demonstration and comparison, the TI algorithm is also employed in use of the RLLM
analytical STM.
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• For the sake of comparison, all state constraints are relaxed for all schemes, and the
upper control bound ∆Vmax is set to 1.025 m/s for the Opt-MI case (component-wise)
and 51.25 m/s for the AL-iLQR. However, to nullify the final relative velocity, such
bound is relaxed at the time of flight.

• For the multi-impulsive case, six burns were selected to be performed along the
trajectory; we chose a randomly distributed set of values (given in Table 1 for the sake
of reproducibility) to illustrate the intrinsic robustness of this algorithm, for which the
impulse sequence is critical.

• For the Opt-MI, MISG, impulses are planned every 1·10−2 time units. For the AL-iLQR,
5·10−2 nondimensional time units are used instead.

• All controllers are formulated as open-loop schemes, in which differential correctors
suit better as forward passes. However, to address the clear performance differ-
ence against MPC, both the Opt-MI and MISG techniques are formulated using also
the latter.

• Matrices Q and R in the AL-iLQR scheme are selected to be constant and

Q =

(
I3×3 03×3
03×3 1 · 10−6 I3×3

)
, R = I3×3 .

Moreover, the initial estimation of the optimal flow φ(t, s0, u) is given by the coasting
solution uref = 0.

• No uncertainty is considered in the simulation, and remains to be introduced under
the performance of the robust controllers in Section 5.

Table 1. Set of prescribed, randomly distributed ti values used for the MI algorithm.

t1 t2 t3 t4 t5 t6

0.0851 0.2531 0.2912 0.4802 0.5494 0.5743

To quantitatively analyze the performance differences between controllers, we use as
a proxy a series of performance indices related to the rendezvous error and the propellant
consumption of the manoeuvre; these indices are defined in Appendix B. The performance
indices for these techniques in the considered example are summarized in Table 2. Moreover,
the minimum and maximum impulses norms (for those distinct to 0) are also displayed to
quantitatively bound the feasibility of each algorithm.

Table 2. Performance comparison for the impulsive guidance schemes.

Controller ISE IAE ‖E1‖ ‖E2‖ ∆VT [m/s] ∆Vmin [m/s] ∆Vmax [m/s] Computational
Time [s]

TI 0.00253 0.03846 0.18441 0.00751 121.35 44.42 76.93 0.62
TI (RLLM) 0.00253 0.03846 0.18441 0.00751 121.35 44.42 76.93 1.77

MI 0.00282 0.04079 0.11385 0.00603 79.65 0.00 79.65 5.15
Opt-MI (MPC) 0.00297 0.04119 0.21257 0.00746 148.85 0.010 87.29 2.12

MISG (DC) 0.00238 0.03644 0.21802 0.00077 147.67 0.00 16.75 39.67
MISG (MPC) 0.00266 0.03769 0.23306 0.00060 157.63 0.08 8.89 64.61

AL-iLQR 0.00276 0.04662 0.24120 0.00149 163.02 0.001 17.85 3.49

All guidance schemes present really similar error performance, the MISG scheme
showing slightly better results. The majority of the presented techniques also show similar
computational cost, except precisely for the MISG algorithm, which, in both forms of the
forward sweep, solves the optimal problem one order of magnitude slower. Interestingly,
the use of the analytical RLLM STM rises the computational time of the TI algorithm when
compared to direct numerical integration of the variational equations. This is explained by
an increase in the number of iteration until convergence, from 4 to 15 in the RLLM case.
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However, provided that they show the same results, the analytical version of the algorithm
is particularly suited for online calculations when compared to its integrated counterpart.
Finally, regarding control cost, both the Opt-MI, MISG and AL-iLQR (despite showing
an increase of impulses by a factor of 10) show similar performance, as they all are both
optimally conceived and constructed. Interestingly, the TI and MI controllers show a much
smaller control effort, deviating 18% and 50% from the nominal values. This is attributed to
the sparsity of impulses in both algorithms, indicating that the selected number of impulses
are closer to the optimal value [83–85]. For the other 3 controllers, the number of impulses
is determined by the minimum time step considered in the discretization of the dynamics.
However, for both the TI, MI and Opt-MI algorithms, the final impulse nullifying the
relative velocity increases by a factor of nearly 5 when compared to the rest of controllers.
Again, this is explained by the lack of optimality considerations founding the algorithms.

Figure 3. Rendezvous trajectory in the absolute configuration space for the MI, MISG and AL-
iLQR schemes.

Figure 3 demonstrates the proposed rendezvous trajectories in the absolute configu-
ration space, while Figure 4 displays the relative state evolution in time under the action
of each controller. All of them are able to successfully drive the chaser to rendezvous
the target spacecraft located in a different periodic orbit with a convergence error below
1·10−10, and differential corrections requiring less than 50 iterations to converge in the
worst scenario. Finally, Figure 5 shows the evolution of the control impulse sequence for
the optimal multi-impulsive controllers. The MISG algorithm can be shown to maintain
bounded the control sequence all over the time span. Independently of the numerical solver
in use, the algorithm shows similar control trends: first, the relative range is targeted at
the initial stages, driving the sequence towards a coasting period, and then towards the
end of the transfer, the action plan nullifies the relative velocity progressively. On the other
hand, the AL-iLQR shows most control activity in the early stages of the transfer and then
a nearly coasting phase, exploiting natural transport dynamics.



Aerospace 2022, 9, 798 18 of 45

Figure 4. Relative state evolution for the TI (solid), AL-iLQR (dashed), Opt-MI (*), MI (barred), MISG
(triangled) strategies.

Figure 5. Impulse sequence in m/s for the Opt-MI/MPC (upper left), AL-iLQR (upper right),
MISG/DC (lower left) and MISG/MPC (lower right) strategies.

The terminal phase of the rendezvous trajectory (‖ρ‖ ≤ 100 km) is re-designed making
use of the full constrained AL-iLQR, in which the chaser shall approach the docking port
through a given safety corridor. Such constraint is introduced by l(s)

l(s) = −
(

p1 p2 p3 0 0 0
)
s + ‖ρ‖ cos β ≤ 0,

which models a cone-like constraint defined by the half-cone angle β, together with an
axial direction given by the unit vector p. In this simulation, β = 15◦ and the cone axis is
selected to be p = [1, 1, 1]ᵀ, which is assumed to be aligned with the docking axis at the
rendezvous time t f = π. Despite being nonlinear in the state s, the constraint need not any
redefinition and can be directly introduced in the AL-iLQR algorithm.
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Figure 6 depicts the evolution of the relative angle between p and ρ in time. Again,
convergence towards φ ≤ β is noticeable. Finally, Table 3 compiles the major performance
metrics of the algorithm, where no difference can be appreciated with respect to the uncon-
strained case, demonstrating the robustness and adaptability of the AL-iLQR technique
when compared to the rest of the presented guidance schemes.

Figure 6. Relative docking angle evolution for LOS-constrained and unconstrained rendezvous
using AL-iLQR.

Table 3. Performance metrics for the LOS-constrained AL-iLQR rendezvous.

Controller ISE IAE ‖E1‖ ‖E2‖ ∆VT [m/s] ∆Vmin [m/s] ∆Vmax [m/s] Computational
Time [s]

AL-iLQR 0.00276 0.04663 0.00079
0.24117 0.00149 163.00 0.002 17.85 6.11 s

4. Optimal Continuous Guidance

Continuous acceleration control schemes may also provide efficient rendezvous strate-
gies and are intrinsically interesting for low-thrust propelled missions, where control cost
and rendezvous efficiency constraints may be again imposed and emphasized. In this
section, three such continuous acceleration controllers are presented. Previous results on
the Linear Quadratic Regulator and State-Dependent Ricatti Equation (SDRE) guidance are
discussed and combined with the new linear dynamical models presented, before intro-
ducing a novel AL-iLQR methodology for spacecraft rendezvous. All three techniques are
suited for both online and offline guidance.

4.1. Linear Quadratic Regulator

Since the Rendezvous Condition is satisfied at the origin of the relative phase space
(namely, the equilibrium point in Equation (2)), a Proportional-Integral-Derivative (PID)
controller can be constructed to asymptotically drive the system to such state. Thus,
the control acceleration can be defined as

u = −
(

KPρ + KD ρ̇ + KI

∫ t

0
ρ dt

)
,
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where KP, KD and KI are, respectively, the proportional, derivative and integral gains.
To introduce an integral penalty term, the relative state vector and dynamics Equation (5)
are augmented as follows

ŝ = [ρ, ρ̇,
∫ t

0
ρdt]ᵀ (18)

d ŝ(t)
dt

=

[
A 06×3

I3×3 03×6

]
ŝ(t) +

[
B

03×3

]
u(t). (19)

Using the augmented state vector, an infinite horizon Linear Quadratic Regulator
(LQR) can now be proposed [21,73], which provides the optimal control law, u∗(t), by min-
imizing the following quadratic cost function

J =
1
2

lim
t→∞

∫ t

0
ŝᵀQ ŝ + uᵀR u , (20)

where matrices Q and R define the weights of the states and the control inputs, respectively.
The optimal solution is then obtained as

u∗(t) = −R−1BᵀP ŝ(t),

where P is the solution of the following Algebraic Ricatti Equation for the infinite hori-
zon case:

PA + AᵀP− PBR−1BᵀP + Q = 0,

provided that Q = MᵀM and R are positive semidefinite and definite matrices, respectively,
the pair {A, B} is controllable and {A, M} is observable. Once the Q and R matrices are
appropriately selected, the optimal control u∗(t) law may be found to rendezvous the two
spacecraft. Such selection may be addressed using pole placement arguments or using more
advanced techniques, such as Genetic Algorithms, to trade-off asymptotic convergence and
control expense. In general, the ratio Q to R defines the performance of the controller: the
cost function J is a relative trade-off between nominal state error and control effort, and Q
and R balance such compromise solution.

One important remark is that, since the LQR formulation relies on an LTI model,
an operating point needs be defined for the target spacecraft, so that the linear system of
Equation (19) is indeed time-invariant. In this sense, numerical experiments show that
optimal performance is obtained when the model is evaluated at the target’s orbital state at
the rendezvous time of flight. However, and compared to previous literature, this work
exploits the novel RLLM as a natural LTI formulation for the LQR method, rendering the
controller independent of the target’s motion from definition.

4.2. State Dependent Ricatti Equation Controller

Although the LQR controller formulation yields a successful scheme to rendezvous the
two vehicles, the requirement to fix a prescribed operating point for the target spacecraft
constrains its applicability and handicaps its performance. State Dependent Ricatti Equation
(SDRE) controllers overcome this shortcoming by providing a time-varying generalization
to the LQR formulation for general nonlinear vector fields of the type

ṡ = f(t, s) + g(t, s) u, (21)

in which a quadratic cost function analogue to Equation (20) can be defined, where matrices
Q(s) and R(s) no longer need to be constant, but can depend on the state vector, i.e., they
are allowed to vary in the relative state space.

Upon linearization, under certain conditions [86] the dynamical system can be reduced
to a state dependent linear model of the type

ṡ(t) = A(s) s(t) + B(s) u(t).
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where the pair {A(s), B(s)} is assumed to be point-wise stabilizable. For the relative
motion in the CR3BP, such a state dependent linear system arises from the point-wise
linearization around the target spacecraft’s orbit, i.e., for points along the trajectory of the
target spacecraft, as given by the RLM model in Equation (5). In that case, a SDRE controller
can be straightforwardly designed by defining an augmented linear model analogue to
Equation (19), only that A(ŝ) and B(ŝ) now depend on time implicitly through the target’s
time law. Therefore, for prescribed matrices Q(ŝ) and R(ŝ), an optimal control law u∗(t)
can be computed for the linearized problem upon solving the corresponding algebraic
Ricatti equation, resulting in the control law:

u∗(t) = −R−1BᵀP ŝ(t).

The suboptimal policy u∗(t) can be shown to be stable and asymptotically regulate
the relative augmneted state ŝ towards the Rendezvous Condition.

Detailed derivations and applications of the SDRE controller for optimal rendezvous
can be found in [65,73], including available extended formulations for state-constrained
rendezvous and proximity operations.

4.3. Iterative Linear Quadratic Regulator

The iterative Linear Quadratic Regulator (iLQR) is an optimal trajectory planning
algorithm widely applied in robotics applications, and a variant of the classical Differential
Dynamic Programming technique [87,88]. iLQR generalizes the classical optimal control
LQR solution to nonlinear system through iterative first-oder linearization of the dynam-
ics [89]. The main two formulations of the algorithm are found in [82,89]. The latter may
be conceived as more general (as it is based on Bellman’s Principle of Optimality) and
provides the framework to incorporate state constraints in the underlying optimization
problem, with the so-called Augmented Lagrangian paradigm (AL-iLQR).

The following discussion is focused on the application of AL-iLQR for continuously
controlled rendezvous trajectory planning, while it can be easily adapted to impulsive
missions, as already discussed in Section 3.

Our AL-iLQR paradigm aims to solve the discrete constrained optimization problem

arg min
u

J =
1
2

sᵀNQNsN +
1
2

N−1

∑
i=0

(
sᵀi Qisi + ∆t uᵀi Rui

)
subject to si+1 = f(µ, si, ui, ∆t),

s(t0) = s0,

uᵀi ui ≤ u2
max ,

l(si) ≤ 0 ,

(22)

where umax is a control authority bound and the inequality l(si) accommodates general
state constraints. Again, the relative motion dynamical system is represented by the discrete
vector field f. A discussion on the selection of the dynamical model within the AL-iLQR
method can be found at the end of this section. Finally, a zeroth-order hold is assumed for
the control action ui over time step ti, ti+1, resulting in a piecewise control solution.

The constrained optimization problem is relaxed into an unconstrained version, to be
solved iteratively until constraints are satisfied and the extremum control sequence u is
found. In the following, the set of p constraints are collapsed into the vector inequality
c(s) ≤ 0 , c(s) ∈ Rp.

Initially, an augmented Lagrangian cost function is constructed through appropriate
penalty Lagrange multipliers terms

J∗ =
1
2

sᵀNQNsN +
N−1

∑
i=0

1
2
(
sᵀi Qisi + ∆t uᵀi Rui

)
+

(
λi +

1
2

c(si)Iγ

)ᵀ
c(si)
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where λ ∈ Rp are the constraints Lagrange multipliers and the quadratic penalty term
1
2 cᵀ(si)Iγc(si) is constructed upon the weight matrix Iγ, defined as

Iγ
j,j =

{
γj cj > 0
0 cj < 0

;

γ ∈ Rp are user-defined hyperparameters to be optimized during the process. Therefore,
the constrained problem has been transformed into the following unconstrained one

arg min
u,λ

J∗ =
1
2

sᵀNQNsN +
N−1

∑
i=0

1
2
(
sᵀi Qisi + ∆t uᵀi Rui

)
+

(
λi +

1
2

c(si)Iγ

)ᵀ
c(si)

subject to si+1 = f(µ, si, ui, ∆t),

s(t0) = s0.

(23)

The solution to the original constrained problem is given by the iteration of the
following sequence of steps

1. Solve the unconstrained problem (23) using the iLQR technique, with λ, γ fixed.
2. Update the estimation of the Lagrange multipliers λ

λj = max
(
0, λj + γj cj(s)

)
.

3. Update the penalty weights γ through the schedule

γj ← κγj, ∀j, κ > 0.

If feasible, the problem is considered solved when constraints are satisfied to a given
tolerance and the unconstrained problem (23) is also optimally solved. Numerical details
and enhancements to the method can be found in [82,87]. The convergence of the algorithm
is also driven by an appropriate selection of the Q and R matrices: aside from determining
the final optimal trade-off between control cost and rendezvous error, as in the classical LQR
or SDRE, they also affect the positive definiteness of the action value Hessian, on which the
algorithm’s convergence totally depends on.

At each iteration, the control law is updated through the sequence control and state
deviation δu∗i , given by

δu∗i = Kiδsi + di

δsi+1 = Φ(ti+1, t0)Φ(ti, t0)
−1δsi +

∆t
2

[
I + Φ(ti+1, t0)Φ(ti, t0)

−1
]

Bδui, δs0 = 0.

where the feedforward term di is given by the Hessian and gradient of the cost function.
State estimation on δsi is achieved through the STM flow mapping, which can benefit from
analytical models, such as the RLLM. The exact derivation and solving of Step I may be
found in Appendix C [82], where the Hessian of the action value function can be seen to be
given by an appropriate Gauss-Newton approximation. This lower-accuracy expansion,
compared to its true 2-rank nature, is the main difference between iLQR and classical
Differential Dynamic Programming, and, while it makes the former require more iterations
to converge, it also diminishes the computation burden of the algorithm, making it suitable
for online processing.

An iteration over Step I is finished with the forward pass, given by flow solution
φ(s0, u, t) over the updated control action u← u + δu

ṡ = f(µ, s, u)
d
dt

Φ(t, t0) = JΦ(t, t0).
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J denotes the Jacobian of f. Step I is assumed to converge whenever the difference between
iterations in the cost function J∗ reaches some tolerance or a maximum number of iterations
is exceeded.

As it may be noted, linearized dynamics are used in the recursion for the optimal flow
variation δsi under the effect of δui. Depending on the selection of the dynamics vector
field f, the exact form of Φ(t, t0) will be distinct, either numerical or analytical, and the
associated computational burden of the method will also increase or decrease during the
forward pass. Moreover, the reached solution {s(t), u(t)} will be optimal for the model
in use: if f is the true CR3BP relative motion dynamics, the rendezvous trajectory design
will already account for the problem’s nonlinearities, while other surrogate models (see
Section 2) could also be used for further refinement within the inner robust control loop.

Finally, the method is in need of a first estimation of the optimal trajectory sref and
control uref. Given the trajectory initial conditions s0, both the natural coasting solution
(uref = 0) or any other guidance solution (such as that provided by the LQR) may be used
as such initial guess.

4.4. Performance of Continuous Control Rendezvous Manoeuvres

In this section the previously described continuous guidance schemes will be com-
pared upon each other in a test scenario based on an Earth-Moon L1 Lyapunov orbit of an
in-plane amplitude of Ax = 10,000 km, as depicted in Figure 7, for which the dimensionless
initial conditions for the target spacecraf and the relative state are, respectively:

St(t0) =
[
0.82446 0.01183 0 0.01629 0.01017 0.11743 0

]ᵀ
s(t0) =

[
−0.00051 −0.01183 0 −0.01017 0.00304 0

]ᵀ
yielding an initial range of 4550 km. The selected time of flight for the mission is t f = 2π
in nondimensional units, or 28 days. However, to exploit the finite time convergence of the
AL-iLQR scheme and show its superior performance, its final time of flight is restricted to
8.91 days in this latter case, t f = 2 in non-dimensional units.

Regarding the setup of the rendezvous example, the following considerations shall
be addressed:

• All guidance techniques make use of an augmented state vector ŝ, to include an
integral penalty term within the appropriate cost function.

• Again, no uncertainty or process noise is considered in the simulations.
• The LQR trajectory was designed in use of the LTI Relative Libration Linear Model

in Equation (6) instead of that in Equation (5) to exploit its intrinsic time-invariant
nature. A comparison against the RLM model is also addressed. SDRE guidance is
based on the RLM model, Equation (5), while the AL-iLQR outputs an optimal state
flow φ(t, s0, u) for the true nonlinear dynamics.

• For the AL-iLQR technique, a 1 · 10−2 nondimensional time units zeroth-order hold
was used, and numerical integration performed through MCPI, as described in
Appendix A. Discrete linearization of the true nonlinear relative dynamics is achieved
by numerical propagating the STM through Encke’s linear variational equations at
the forward pass, providing the worst-case scenario in terms of computational per-
formance. Finally, the initial estimation of the optimal flow φ(t, s0, u) is given by the
open loop LQR guidance solution.

• LQR and SDRE schemes are defined by the following constant, penalty weight matrices
Q and R

Q = 2I9×9, R = I3×3,

while for the AL-iLQR, after some trial and error, these are selected to be

Q = 1 · 103 I9×9, R = I3×3.
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Figure 8 shows the evolution of the chaser’s relative state vector as a function of
time for the three showcased controllers, and Table 4 summarizes for each controller
the performance indices as defined in Appendix B, including maximum and minimum
acceleration, ‖u‖min and ‖u‖max, respectively. Additionally, Figure 9 shows the evolution
in time of the norm of the control acceleration as a proxy to the real performance of the
aforementioned schemes.

Table 4. Performance comparison for the continuous guidance schemes.

Controller ISE IAE ‖E1‖ ‖E2‖ ∆VT [m/s] ∆Vmin [m/s] ∆Vmax [m/s] Computational
Time [s]

LQR (RLM) 0.00025 0.01840 0.04215 0.00064 33.55 0.00 0.07 2.98
LQR (RLLM-LTI) 0.00021 0.01707 0.04880 0.00082 37.56 0.00 0.08 2.85

SDRE 0.00023 0.01748 0.04334 0.00069 33.47 0.00 0.10 82.68
AL-iLQR 0.00035 0.01495 0.07454 0.00693 62.72 0.00 0.90 8.17

On the basis of such results, several conclusions may be drawn. First, little gain
is achieved by means of exploiting time-varying linearizations of the relative dynamics
when compared to trivial LTI models such as the RLLM (which, to best of our knowledge,
had not been explicitly used for rendezvous before). Difference between the LQR and
SDRE controllers are minimum in terms of both the state error and the associated control
cost. The only exception accounts for the inclusion of state domain constraints within the
optimal quadratic problem, in which the SDRE formulation is needed [65]. Secondly, the AL-
iLQR paradigm shows similar error performance to that of infinite horizon controllers
but in finite time (the time of flight is reduced by 70%) despite the increase in the total
control cost (as expected for a discrete horizon formulation). For the AL-iLQR case, this
increase is counterbalanced by the possibility of explicitly imposing control authority
bounds (and general constraints), a major concern within continuous control applications
when compared to total ∆V budgets. In this example, the resulting control acceleration
is in the order of mm s−2. However, the algorithm lacks numerical robustness, specially
when selecting both the Q and R matrices sequences, due to its sensitivity to the positive-
definiteness of the action value gradient and Hessian. In terms of the computational cost,
both the LQR and AL-iLQR provide similar performance (in the order of seconds) while
the SDRE and its need to solve the Ricatti equation over the state trajectory sref are much
more expensive (order of minutes).

Figure 7. Rendezvous trajectory in the absolute configuration space for the AL-iLQR and LQR
(RLLM) controllers.
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Figure 8. Relative state evolution for the LQR (solid), SDRE (*) and AL-iLQR (dashed) controllers.

Figure 9. Control acceleration in mm/s2 for the LQR, SDRE and AL-iLQR controllers.

A similar study was conducted on the rendezvous mission scenario presented in
Section 3 to confirm such conclusions, under the very same setup. Results are shown
in Table 5. First, in terms of computational cost, both the LQR and AL-iLQR algorithms
show the same order of magnitude as in the previous case, contrary to the SDRE controller,
whose performance augments. This may be explained by better numerical conditioning
of the optimal control when compared to the previous mission scenario, in which the
out-of-plane dynamics are numerically ill-behaved. Error metrics are similar for all three
controllers despite the different handled time scales. Cost performance shows the greatest
differences, remarkably for the LQR: in this scenario, in which dynamics play a greater
role, the selection of the LQR determines its performance, still profiting the use of LTI
models (on which its optimal solutions builds) when compared to the use of linearisation
points. Again, the AL-iLQR is the most expensive in average due to its discrete time
convergence properties and the initial control overshoot given by the selected Q-R matrices
ratio. Figures 10 and 11 show the relative state evolution of this second rendezvous test
and the associated control acceleration for the three guidance techniques, highlighting the
discrete/asymptotic capabilities of the three techniques.



Aerospace 2022, 9, 798 26 of 45

Table 5. Performance comparison for the continuous guidance schemes.

Controller ISE IAE ‖E1‖ ‖E2‖ ∆VT [m/s] ‖u‖min
[mm/s2]

‖u‖max
[mm/s2]

Computational
Time [s]

LQR (RLM) 0.00303 0.07229 0.31636 0.03401 218.26 0.00 1.3 3.88
LQR (RLLM-LTI) 0.00315 0.08307 0.24028 0.01325 167.60 0.00 0.47 3.39

SDRE 0.00225 0.05801 0.15826 0.00731 113.07 0.00 0.28 3.70
AL-iLQR 0.00295 0.04378 0.30071 0.06669 199.15 0.00 2.71 7.80

Figure 10. Relative state evolution for the SDRE (*) and AL-iLQR (dashed) controllers for the halo
transfer mission scenario.

Figure 11. Control acceleration in mm/s2 for the LQR, SDRE and AL-iLQR controllers for the halo
transfer mission scenario.

5. Modern Optimal Control

After discussing optimal trajectory planning and guidance, two controllers, for both
impulsive and continuous missions, are discussed for robust reference tracking, control and
disturbance rejection. Their cascaded combination with the presented optimal guidance
techniques is also first achieved now.
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Observe that in practice, all guidance techniques may be indeed employed as feedback
controllers (i.e., for reference tracking), if the designed of the reference trajectory sref
is achieved by any other mean. However, classical linear controllers, such as the LQR
or SDRE, usually lack the robustness and generality offered by the proposed modern
control approaches.

5.1. Model Predictive Control

Modern Predictive Control (MPC) is an optimal control technique based on iterative
optimization, introduced in the late 1980s [78,90], and since then abundant literature may
be found for rendezvous a proximity operations [81,91–94], while only recently has been
applied in multi-body scenarios [67,73].

In the MPC paradigm, an optimal guidance problem is solved for a given time
horizon ti = 0, 1, . . . , T under discrete dynamics, and as a result, both a state trajectory
{si(ti)} = s1, s2, . . . , sT and control action policy {Ui(ti)} = U1, U2, . . . , UT are returned.
The controller only executes the action at the initial time U1, and, after the plant natural
rollout one time step ahead, the optimization problem is run again with the time horizon
receded ti = 0, 1, . . . , T − 1. Such time prediction horizon is assumed in this work to be
externally constrained by, for example, mission analysis considerations.

As already, discussed, all presented impulsive guidance techniques are subject to be
adapted as the optimization core of an MPC-controlled process, where linear dynamics are
used as an optimization surrogate model. The true nonlinearities of the CR3BP relative
motion, uncertainty and process noise are compensated along the time receding horizon
through iterative optimization. Of particular relevance is to note the synergy between the
AL-iLQR technique and an MPC iterative process [87], which, as the rest of combinations
and to the best of our knowledge, has not been addressed before for rendezvous purposes.
In such scheme, at each time step, the former is used for motion planning in a fast and
robust way, while the upper MPC iteration accommodates non-modelled effects in the
optimization model. Not only the combination MPC/AL-iLQR is promoted for impulsive
guidance and control, but it can also be employed for low-thrust missions given the
piecewise nature of the continuous iLQR solution.

5.2. Sliding Mode Control

Sliding Mode Control (SMC) is one of the most widely used variable structure con-
trollers, developed by Emelyanov et al. in the late 1950s [95]. An SMC relies on discontinu-
ous piecewise functions to provide global Lyapunov stability properties to the controlled
plant by forcing the dynamical system to slide on a given state space manifold in which
first-order dynamics are imposed [96].

Consider the dynamical system of Equation (21), where f and g may not be exactly
known, but upper-bounded by continuous operators all over the state space. If the relative
error e(t) = s(t)− sref(t) is measured with respect to a given state space reference trajectory,
sd, then the sliding hypersurface is defined by

œ(e) =
K

∑
k=2

(
d
dt

+ λ

)k−1
e = 0,

where λ represents a Hurwitz scalar. In this work K = 2 is chosen, which yields a first-order
SMC control law.

Any tracking problem is therefore equivalent to stabilizing the system dynamics on
œ(e) = 0, which is also equivalent to imposing the Lyapunov’s Direct Method condition
œ̇ ·œ ≤ 0. Once the sliding manifold is defined, a global exponentially stabilizing behaviour
may be obtained from the following equivalent control law:

ueq(t) = g(t, s)−1[s̈d(t)− f(t, s)− λ ė(t)],
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provided g−1 exists. Also, the Lyapunov constraint is imposed outside the sliding surface
using the following discontinuous reaching control function:

ur(t) = −ε ‖œ‖α sat(œ, ∆)− ε œ,

where ‖ · ‖ denotes the Euclidean norm, ε is strictly positive, α ∈ [0, 1), and ∆ is the
boundary layer for the saturation operator sat(·), which prevents the system from chattering
across the sliding surface:

sat(y) =


1 if y > ∆
1
∆ y if −∆ ≤ y ≤ ∆
−1 if y < −∆

Hence, the final control law is given by u(t) = ueq(t) + ur(t).
For the rendezvous problem at hand and for a prescribed desired guidance trajectory

for the chaser to follow, ρd(t), the SMC control law simplifies to:

e(t) = ρ(t)− ρd(t)

œ(e) = ė + λe

u(t) = ρ̈d(t)− f(t, s)− λ ė(t)− ε[‖œ‖α sat(œ, ∆) + œ], (24)

where f is given by any appropriate model of the relative dynamics.
The parameters {λ, ε, α, ∆} completely define the controller’s performance, where:

• λ is the characteristic time of the reduced first order exponential dynamics on such
state subspace.

• ε and α determine the controller across the sliding surface, with direct implication on
chattering or weak attractive properties of the surface.

• The boundary layer ∆ defines the control bandwidth and the precision to which
saturation of the control law is necessary to reach the sliding surface.

This set of parameters can be optimized for the performance of the controller. However,
the non-smooth nature of the SMC prevents the use of gradient-descent based techniques.
In this work, Genetic Algorithms [97] have been used to heuristically explore this parameter
search space and select the optimal set minimizing the following convex multi-objective
cost function over a set of typical guidance trajectories s∗i (t) of interest

arg min
λ,ε,α,∆

J =
N

∑
i=1

[∫ t f

t0

‖u(t, s∗i )‖dt + Λ s∗i (t f )

]
,

where Λ is a constant gain to account for the rendezvous error in the minimization problem.

6. Applications and Testbench Mission Scenarios

This section presents two simulation scenarios to illustrate the use of the manoeuvre
design schemes introduced in the preceding sections, and for the purpose of validation
and benchmarking.

In the following test cases, all numerical integrations were performed by means of
Encke’s formulation for the relative dynamics using a variable-step, variable-order Adams-
Bashforth-Moulton predictor-corrector solver of orders 1 to 13 with absolute and relative
integration tolerances set to 10−22 and 2.25 · 10−14, respectively, as implemented in Matlab
2021b’s function ode113 [98].

The time discretization for the simulations output was set to 10−3 nondimensional
time units, which corresponds to 1.68 h in the Earth-Moon system and 8.76 days in the
Sun-Earth system; consecutive maneuvers were also constrained not to be executed in less
than such time interval.
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Navigation uncertainty in the state estimation was modeled as a zero-mean normal
multivariate distribution N ∼ (0, Σ), with diagonal covariance matrix Σ = 5 I3×3 m for the
relative position space and Σ = 0.5 I3×3 ms−1 for velocity. Moreover, impulsive control
actions ∆Vi are l2-bounded by ‖∆Vi‖ < 100 ms−1, which corresponds to 0.05 in the Earth-
Moon system and 0.003 for the Sun-Earth case. Continuous acceleration is restricted to
be smaller than ‖u‖ < 0.001 ms−2 unless otherwise specified. Finally, process noise p is
added as a white noise disturbance, where ‖p‖ ≤ 5 · 10−2 ‖u‖.

6.1. Servicing a Solar Observatory

Solar and telescope missions have played a fundamental role in both our understand-
ing of the Solar System and our surrounding space environment, as well as the development
of modern Orbital Mechanics. As a matter of fact, both the Solar and Heliospheric Obser-
vatory and Genesis spacecraft were the very first to demonstrate and use the Three-Body
Problem dynamical solutions as a basis for their missions. Libration points provide ideal
locations for celestial observation mission too, due to their illumination conditions and
uninterrupted communication with the Earth. Hence, for the James Webb Space Telescope
(JWST), launched in December 2021, a Sun-Earth L2 halo orbit with an orbital period of
6 months was selected as its nominal orbit. The JWST and its potential visual-inspection
and repair necessities throughout its mission lifetime provide the first validation scenario
for the proposed GNC techniques. A nominal L2 northern halo orbit has been selected to
be representative of that of the real mission.

The chaser spacecraft is intended to perform a formation flight around the target
spacecraft (JWST) and, if needed, rendezvous with it for repair or maintenance activities.
The mission will then finish with an exploration of the Sun-Earth interior realm.

The proposed mission timeline for this fictional JWST servicing spacecraft is sum-
marized in Table 6, and the different mission phases and their associated control cost
estimates are listed in Table 7. The spacecraft is assumed to be equipped with chemical
propulsion and an electric thruster for relative formation flying. Additionally, simulations
only reproduce proximity operations activities, while the transfer phase from a low-Earth
orbit to the L2 target halo orbit range is not considered here; it may be achieved by means
of the stable manifold of the orbit, just as the nominal transfer trajectory for the JWST was
planned, with potentially null associated control cost [99].

Table 6. Phases timeline for the JWST servicing mission.

Mission Time Phase

T + 0 Long-range rendezvous & homing
T + 177.18 days Low-thrust approach and formation flying
T + 420.51 days Rendezvous

The proximity operations mission starts after nominal loitering halo orbit insertion of
the chaser vehicle, into a distinct L2 halo orbit to that of the target. This initial long range
approach considers acquiring the ∼ 100km relative range for the start of the formation
flying. The initial conditions of the target and the chaser relative state at the halo insertion
time are

St(t0) =
[
1.00860 0.00416 −0.00047 0.00202 0.00474 0.00287

]ᵀ
s(t0) =

[
−0.00025 −0.00416 −0.00007 −0.00202 0.00513 −0.00287

]ᵀ ,

which corresponds to an initial relative range of 623, 520 km.
The guidance and control scheme used in this phase corresponds to the combination

of the MPC controller with an optimal iLQR technique. The time horizon considered is
N = 60, with impulses every ∆t = 0.05 nondimensional time units (corrections every
2.90 days). The time of flight of the phase is set therefore to t f = 3.05 units. Moreover,
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any state constraint is relaxed in this initial phase. Finally, after an heuristic trial and error
process, the discrete AL-iLQR algorithm is defined by the following penalty matrices

Q =

(
10 · I3×3 03×3

03×3 10−5 · I3×3

)
, R = I3×3.

The performance of the algorithm gives a reduction of 98% of the initial relative
range, as shown in Figure 12, where the relative state evolution of chaser spacecraft can be
analysed. Figure 13 depicts the control input evolution in time during this initial phase.

Figure 12. Evolution of the relative state vector components for the JWST servicing spacecraft during
the long-range homing.

Figure 13. Control input in m/s for the JWST servicing spacecraft during the long-range homing.

Once the relative formation flying range is acquired, offline LQR guidance (in use of
the integral-augmented RLLM) is combined with the SMC controller to position the chaser
at 500 m to the JWST and maintain such relative distance for two months, by converting the
relative formation flying problem into a virtual time-invariant rendezvous problem under
an appropriate change of variables. The total time of flight is t f = 2π/3, formation flying
starting at δt = π/2 from phase start. The initial conditions of this phase are given by
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St(t0) =
[
1.00850 0.00390 −0.00061 0.00174 0.00563 0.00275

]ᵀ
s(t0) = 1 · 10−4 ·

[
0.4 0.3 0.1 1.6 0.4 0.3

]ᵀ.
The LQR is defined by the weight matrices

Q = 100 · I9×9 , R = I3×3,

while the SMC, after tuning, is defined by the parameter set

λ = 1, ε = 0.98560, α = 0.00601, ∆ = 0.01323.

Offline guidance refers to the regression of the LQR reference state trajectory sref as a
function of time, in this case through an appropriate low-order projection in Chebyshev
polynomials T(τ).

sref ≈
N

∑
i=1

βiT(τ).

The relative state evolution of chaser spacecraft can be analysed in Figure 14. The needed
low-thrust acceleration is displayed in Figure 15.

Figure 14. Evolution of the relative state vector components for the JWST servicing spacecraft during
the low-thrust approach.

Figure 15. Control input in mm/s2 for the JWST servicing spacecraft during the low-thrust approach.
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After 243.33 days of visual inspection and formation flying, the chaser spacecraft
is planned to rendezvous with the target vehicle using the combined MPC-MISG core
described in Section 3. The phase considers a time horizon of N = 100 impulses in t f = 0.6
nondimensional time units. The phase initial state for both the target and relative spacecraft
is given by

St(t0) =
[
1.00818 0.00010 −0.00133 0.00000 0.01042 0.00008

]ᵀ
s(t0) = 1 · 10−8 ·

[
0.14004 −0.05683 −0.01369 −0.01694 0.10161 −0.05052

]ᵀ.
The final (purely numerical) relative error between vehicles is of 1.98 · 10−16, which,

in position space, corresponds to 0.02mm, thus successfully achieving the rendezvous of
the two spacecraft. Figure 16 shows the relative state evolution during this final close-
range rendezvous phase, while Figure 17 depicts the needed impulses to accomplish
the rendezvous.

Figure 16. Evolution of the relative state vector components for the JWST servicing spacecraft during
the final close-range rendezvous.

Figure 17. Control input in m/s for the JWST servicing spacecraft during the final
close-range rendezvous.

The trajectory of the proposed JWST servicing mission for the complete mission
timeline is illustrated in Figure 18.
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Table 7. Phase metrics for the JWST servicing mission.

Phase Time of Flight Controller Control Cost

Long-range rendezvous 177.18 days MPC-AL-iLQR 723.91 m s−1

Formation flight 243.33 days SMC-LQR 1.34·104 m s−1

Rendezvous 34.85 days MPC-MISG 3.61·10−4 m s−1

Thus, the proposed solution leads to affordable rendezvous maneuvers and control
strategies, where the majority of the control budget is allocated to perform the relative
formation flying phase, which is by far the longest in time and the most demanding in high-
frequency actuation. Moreover, despite the associated ∆V budget, the phase is completed
using bounded continuous propulsion, for which direct ∆V requirements are less stringent
thanks to their higher specific impulse. The rest of the manoeuvres are negligible in cost,
while successfully completing all phases. The proposed guidance and control architecture
is therefore demonstrated for the mission.

Figure 18. Trajectory of the JWST servicing spacecraft for the complete mission timeline.

6.2. Rendezvous in a Near Rectilinear Halo Orbit

For the past decade, deep space missions have gained increasing attention from the
space industry. In order to ease such missions, a lunar orbit station is planned to be
established within this decade, known as the Lunar Gateway [2,3], which will serve as a
communication hub and short-term habitation module to support human return to the
Moon and as a staging point for these deep space missions. Thanks to their station keeping
long term stability, nearly uninterrupted communication with Earth and eclipse-avoidance
properties, Near Rectilinear Halo Orbits (NRHO) have been selected as the major candidate
for the Gateway nominal trajectory; these orbits are highly eccentric trajectories, nearly
normal to the orbital plane of the Earth-Moon system. The NRHO family can be found
in both L1 and L2 southern halo sets, at the closest side to the Moon; although they are
an intrinsic solution to the CR3BP, they also persist under ephemerides models. NRHOs
provide easy access to the lunar surface, as well as to the Earth, by means of their stable
and unstable manifolds.

The Lunar Gateway and their supply and re-fueling necessities will provide the
second validation mission scenario that we shall consider: for crew replacement and life
support resupply purposes, a chaser spacecraft is tasked to rendezvous with the Gateway
station after being inserted into its nominal NRHO orbit, located at the L2 point in the
Earth-Moon system.
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The proposed mission schedule for this Lunar Gateway resupply mission is summa-
rized in Table 8, and the different mission phases and their associated control cost estimates
as listed in Table 9.

Table 8. Phases timeline for the Gateway re-supply mission.

Mission Time Phase

T + 0 Long-range rendezvous & homing
T +14 days Close-range rendezvous & mating

T + 19.57 days Formation flying

Again, the transfer trajectory from Earth may be designed based on the globalized
NHRO stable manifold with potentially null associated control cost [99]. Such design
is not considered in this simulation. Instead, to propose a demanding mission scenario,
the chaser spacecraft is first inserted into a northern L1 halo orbit of out-of-plane amplitude
of Az = 20,000 km to demonstrate the capabilities of the proposed GNC architecture even
in extreme trajectory design cases. Moreover, this initial L1 halo orbit may serve as a
loitering circuit for a complete multi-spacecraft re-supply chain. The initial conditions of
the Gateway station (the target) and the relative state after insertion into the loitering L1
orbit are:

St(t0) =
[
1.09452 0.10590 0.01161 0.05686 0.10648 −0.16324

]ᵀ
s(t0) =

[
−0.27039 −0.10590 0.04520 −0.05686 0.06077 0.16324

]ᵀ .

which corresponds to an initial relative range of 112, 967 km.
The transfer shall be accomplished in less than 14 days or t f = π, given it will be

performed using low-thrust propulsion. The continuous SDRE algorithm is used to con-
struct an optimal low-thrust trajectory between the two LPO in close-loop. The algorithm
is defined by the following Q and R matrices

Q =

(
500 · I3×3 03×6

06×3 10−4 · I6×6

)
, R = I3×3.

Figures 19 and 20 demonstrates the low-thrust transfer and insertion into the nominal
target halo orbit in the absolute and relative phase space, respectively. Moreover, Figure 21
shows the needed control acceleration to accomplish the transfer. A lower control authority
bound exists to escape the gravitational well of the Moon, which is found to be ‖u‖ ≥
3 mms−2. The optimal transfer trajectory reduces the initial relative range by 99.99%.

Figure 19. Absolute trajectory for the Lunar Gateway resupply mission during the
long-range rendezvous.
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Figure 20. Relative state evolution for the Lunar Gateway resupply mission during the
long-range rendezvous.

Figure 21. Control input in mm/s2 for the Lunar Gateway resupply mission during the long-
range rendezvous.

The second phase comprises close-range rendezvous and re-supply of the Gateway
after a total time of flight of t f = 1.25 nondimensional time units or 5.57 days. The selected
GNC architecture to fulfill such task is the combination of the MPC scheme with the Opt-MI
guidance algorithm, with impulses every 1.07 h. The initial conditions of the phase are

St(t0) =
[
1.08688 0.08105 0.03793 0.03262 0.18559 −0.14131

]ᵀ
s(t0) = 1 · 10−4 ·

[
−0.14131 −0.04576 −0.01970 0.34390 0.17148 −0.27110

]ᵀ.
Figure 22 depicts the relative state evolution during this second phase. High-frequency

impulsive actuation is clearly noticed, also given in Figure 23. The minimum required
control actuation is 0.1 mm/s. The final rendezvous error is of 3.67 m, completing the
rendezvous and docking.
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Figure 22. Relative state evolution for the Lunar Gateway resupply mission during the close-
range rendezvous.

Figure 23. Control input in m/s for the Lunar Gateway resupply mission during the
close-range rendezvous.

Before finishing the mission with a retrieval of the chaser spacecraft to the L1 nearbies,
a formation flying demonstration is performed around the Lunar Gateway at a relative
range of ∼1 km, where the chaser vehicle performs a Lissajous relative orbit-like of am-
plitudes Ax = 1 km, Az = 1 km and frequencies ω = 4π, ν = 2π/3. The SMC controller
tracks the desired state evolution for 21 days or t f = 3π/2. The initial conditions of the
phase are

St(t0) =
[
1.16523 0.01927 −0.10691 0.01694 −0.19749 −0.02022

]ᵀ
s(t0) = 1 · 10−8 ·

[
−0.07279 0.91323 0.26657 0 0 0

]ᵀ.
Figure 24 shows the relative state evolution during this last phase, where the periodic

variation of both the position and velocity is noticeable, as well as the transitory secular
departure of the relative state from the rendezvous condition to the nominal formation
flying relative range. The associated control acceleration is given in Figure 25.
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Figure 24. Relative state evolution for the Lunar Gateway resupply mission during formation flying.

Figure 25. Control input in mm/s2 for the Lunar Gateway resupply mission during formation flying.

Again, the majority of the required ∆V budget is allocated to the low-thrust long-
range rendezvous, the contributions of the other two phases being negligible in comparison.
Moreover, with an appropriate design of the L1 loitering orbit, this control effort may be
even null if heteroclinic connections between the two halo orbits are exploited. Interestingly,
a relatively complex formation flying configuration is accomplished nearly for free.

Table 9. Phase metrics for the Gateway resupply mission.

Phase Time of Flight Controller Control Cost

Long-range rendezvous 14 days SDRE 1.42 km s−1

Rendezvous 5.57 days MPC-Opt-MI 0.36 m s−1

Formation flying 21 days SMC 2.32 m s−1

7. Conclusions

The problem of relative orbital motion within the CR3BP framework is tackled in this
work. First, a framework for the relative dynamics in the CR3BP is presented: a new set of
relations is derived for the development of control schemes based on linearized dynamics,
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including a novel LTI relative motion model, and a scheme based on Encke’s formulation
is presented for the accurate numerical calculation of the relative motion. Afterwards,
these tools are utilized for the design of rendezvous manoeuvres between spacecraft in
relative motion within the CR3BP dynamical model. To this end, several control and
guidance approaches of increasing complexity and performance are investigated and either
successfully adapted or specifically designed to relative motion applications and proximity
operations in the framework of CR3BP. These approaches enable the design of efficient
and affordable (in terms of ∆V budget) rendezvous trajectories between spacecraft in
neighboring trajectories. These techniques cover a variety of approaches, ranging from
impulsive manoeuvres (two-impulse manoeuvres, multi-impulse manoeuvres, optimal l1,2-
norm multi-impulsive sequence planning algorithms), to continuous thrust manoeuvres
(based on Linear Quadratic Regulators, State Dependent Ricatti Equation, Augmented
Lagrangian Iterative Linear Quadratic Regulator). Moreover, the presented guidance
techniques are effectively combined with modern control strategies for robust and optimal
guidance reference tracking (Model Predictive Control for impulsive control inputs and
Sliding Mode Control for acceleration-based actuation).

These trajectory design techniques have been successfully validated through applica-
tion to several mission scenarios, which showcase a good performance (based on a series
of proposed performance indices) and flexibility, both for mission design as well as for
autonomous proximity operations. However, the design of a complete GNC architecture
is still to be accomplished, where navigational aspects, beyond the scope of this work,
play a major role. Improvements to the presented algorithms, both for further exploiting
the problem’s intrinsic dynamical structures and extending them to rendezvous-related
activities, remain as an open line of research for future work.
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CR3BP Circular Restricted Three-Body Problem
GNC Guidance, Navigation and Control
iLQR Iterative Linear Quadratic Regulator
JWST James Webb Space Telescope
LOS Line of Sight
LP Linear Programming
LPO Libration Point Orbit
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
LTP Linear Time Periodic
MI Multi-Impulse
MISG Multi-Impulsive Staging Guidance
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MCPI Modified Chebyshev Picard Iterations
MPC Model Predictive Control
Opt-MI Optimal Multi-Impulse
RLM Rendezvous Linear Model
RLLM Relative Libration Linear Model
SDRE State Dependent Ricatti Equation
SMC Sliding Mode Control
STM State Transition Matrix
TI Two-Impulse

Appendix A. Numerical Integration

Throughout this investigation, two numerical integrators are predominantly used and
are here described.

General integration of the relative and absolute motion dynamical systems is achieved
through a variable-step, variable-order Adams-Bashforth-Moulton predictor-corrector
solver of orders 1 to 13. The latter is is used to form the error estimate and the function
does local extrapolation to advance the integration at order 13. Such integrator has been
employed as commercially implemented in Matlab 2021b [98].

Additionally, the iLQR guidance core benefits from a Modified Chebyshev-Picard
Iterations (MCPI) integrator, as formulated in the seminar work of Bai [12]. The high-
accuracy MCPI scheme allows to integrate the nonlinear, controlled relative vector field
without explicit regression of the control law with respect to an independent variable, thus
allowing for enhanced numerical precision.

Consider the first-order differential dynamical system

ṡ = f(µ, s, u, t)

where u is the control input. The solution of the above system is given by the quadrature

s(t) =
∫ t1

t0

f(µ, s, u, t) dt.

Given an initial estimation of s(t), the MCPI approximates the solution s as a Cheby-
shev polynomial series of order N, evaluated over the N + 1 Chebyshev nodes τj

s(τj) ≈ TWα = Csα

where T is the Chebyshev polynomial matrix evaluated over the Chebyshev nodes τj and
W is an appropriate weight matrix (see [12] for details). Vector α is the coordinates of s in
the Chebyshev functional space.

To comply with the differential vector field f, such approximation is updated following
an iterative procedure described now

1. Compute the nonlinear vectorfield g evaluated at the Chebyshev nodes τj

g(τj) =
t1 − t0

2
f(µ, sj, uj,

t1 − t0

2
τj +

t1 + t0

2
) .

2. Compute the updated polynomial coefficients fi

β = Cαg + χ0 ,

where χ0 is a function of the initial conditions s0 and Cα is appropriately defined
in [12].

3. Update the state approximation s

s(τj)← Csβ .
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Iterations continue until some convergence criteria is met.

Appendix B. Performance Indices

Different performance indices are defined and used to compare the proposed guidance
and control schemes to achieve rendezvous and proximity operations. These are based on
proxies that are regularly used in Control Theory to assess general control performance,
defined both in terms of the rendezvous error e(t) in time and the needed control effort
made to accomplish such state.

In particular, the Integral of the Absolute Error (IAE) and the Integral of the Square of
the Error (ISE) are well-known performance indices to address the performance of a given
control input action as a function of the final system relative error; for this study, we define
these indices as the following integral loss functions:

IAE =
∫ t f

0
|e|dt

ISE =
∫ t f

0
e · e dt.

Propellant consumption can be directly quantified using the Euclidean norms of the
integral l1 and l2-distances of the control law u over the time of flight t f , thus defining the
following performance indices:

E1 =
∫ t f

0
|u|1 dt

E2 =
∫ t f

0
u · u dt.

Finally, the equivalent finite burn ∆VT is given by the following integral:

∆VT =
∫ t f

0
‖u‖dt.

In addition, the computational cost of each algorithm has been quantified by means of
the mean computational time taken to solve the problem in particular over 25 repetitions
each. Simulations have been performed in Matlab using an 11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80 GHz with 15.7 GB of RAM.

Appendix C. AL-iLQR Formulation, Hessian and Gradient Approximations

The following Appendix details the mathematical formulation of the AL-iLQR scheme,
and the exact form of the gradient and Hessian operators within the AL-iLQR optimal
problem. Recovering its general formulation

arg min
u,λ

J∗ =
N

∑
i=0

1
2
(
sᵀi Qisi + ∆t uᵀi Rui

)
+

(
λi +

1
2

c(si)Iγ

)ᵀ
c(si)

subject to si+1 = f(µ, si, ui, ∆t),

s(t0) = s0,

(A1)

attention is now drawn to the Step I if the iLQR scheme, solving the unconstrained prob-
lem. The backward pass first starts decomposing the cost function into a terminal and
running cost

J = l(sN , λN , γN) +
N−1

∑
i=0

(si, ui, λi, γi).
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Using Bellman’s Principle of Optimality and realising the recursive structure in J,
a cost-to-go and action value functions, VN(s)|λ,γ, M(si, ui)|λ,γ respectively, are defined

VN(sN)|λ,γ = l(sN , λN , γN),

Vi(si)|λ,γ = arg min
ui

{
(si, ui, λi, γi) + Vi+1(f(µ, si, ui, ∆t))|λ,γ

}
,

Vi(si)|λ,γ = arg min
ui

M(si, ui)|λ,γ.

To optimize the action sequence ui, deviations from the true optimal solution u∗i are
considered by a second-order expansion of Vk

δVk ≈
1
2

δsᵀi Sisi + vᵀi δsi .

At the final step N, δVN is completely defined

sN = (lN)s + (cN)
ᵀ
s
(
λ + Iγ

NcN
)
,

SN = (lN)ss + (cN)
ᵀ
s Iγ

N (cN)s.

()x denote partial derivatives with respect to the vector x. To derive a recursive
relationship between δVi and δVi+1, the second-order expansion of M around the optimal
solution is leveraged

δMi =
1
2

[
δsi
δui

]ᵀ[Mss Msu
Mus Muu

][
δsi
δui

]
+

[
Ms
Mu

]ᵀ[
δsi
δui

]
.

The optimal control sequence deviation δu∗i is therefore given by

δu∗i =
∂δMi
∂δu

= 0→ δu∗i = −M−1
uu (Musδsi + Mu) = Kiδsi + di

Finally, the Gauss-Newton approximation of the Hessian of M and its gradient yield
the following exact expressions

Ms = Qisi + Aᵀi vi+1 + (ci)
ᵀ
s (Iγc + λ)

Mu = Rui + Bᵀi vi+1 + (ci)
ᵀ
u(Iγc + λ)

Mss = Qi + Aᵀi Si+1 Ai + (ci)
ᵀ
s Iγ(ci)s

Muu = R + Bᵀi Si+1Bi + (ci)
ᵀ
u Iγ(ci)u

Mus = Bᵀi Si+1 Ai + (ci)
ᵀ
u Iγ(ci)s

where vi and Si are the gradient and Hessian of the cost-to-go function Vi. Precisely,
the backward pass is closed with the recursions for Si, si

Si = Mss + Kᵀi (MuuKi + Mux) + MsuKi,

vi = Ms + Kᵀi (Muudi + Mu) + Msudi.

Matrices A and B are the linearization of f with respect to s and u

A =
∂

∂s
f , B =

∂

∂u
f .
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