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Abstract: Vibration propagates in the form of elastic waves. The tuning of elastic waves is of great
significance for vibration and noise reduction. The elastic metamaterials (EMs), which can effectively
prohibit elastic wave propagation in the band gap frequency range, have been widely studied.
However, once the structures of the EMs are determined, the band gap is also determined. In this
paper, a discrete nonlinear elastic metamaterial is proposed. The harmonic balance method is used to
derive the nonlinear dispersion relation combined with Bloch’s theorem. The low frequency band
gap near the linear natural frequency of local resonators is obtained. The theoretical results show
that the nonlinearity will change the starting and ending frequencies of the band gap. In addition,
amplitude can also influence the band gap. This means that the amplitude can be changed to achieve
the tunability of elastic waves in nonlinear elastic metamaterials. Finally, the theoretical results are
verified by numerical simulation, and the results are in good agreement with each other.

Keywords: elastic waves; nonlinearity; elastic metamaterial; band gap; harmonic balance method;
Bloch’s theorem

1. Introduction

In the aerospace field, from unmanned aerial vehicles (UAVs) to manned aircrafts,
vibration not only affects the confidentiality of instruments and the comfort of passengers,
but also causes hidden dangers for flight safety. Vibration and noise also widely exist in
various fields such as mechanical engineering, vehicle engineering and so on. Reducing
harmful vibration has always been an urgent problem to be solved in engineering technol-
ogy [1–3]. Phononic crystals (PCs) and elastic metamaterials provide a new way to solve
this problem. PCs and EMs are artificially designed periodic structures [4–14]. They possess
band gaps (BGs) in which elastic waves are prohibited, while they can propagate in other
frequency regions without exhaustion. This makes it possible to achieve wave guiding [15],
acoustic filter [16], acoustic cloaking [17], vibration control [18,19], noise reduction [20],
acoustic focusing [21,22], non-destructive testing [23], etc. Compared with PCs, EMs can
produce band gaps caused by local resonance at lower frequencies.

However, the BGs of EMs are usually fixed once the structures have been designed
and fabricated. On the contrary, it is desirable to tune the BGs dynamically or adaptively in
most practical applications after they have been fabricated. In recent years, some methods
have been proposed to overcome this limitation, such as initial stresses [24,25], piezoelectric
materials [26,27], temperature variation [28], external mechanical loads [29] and the space–
time modulation elastic metamaterials [30].

Scholars mainly adjust the band gap structure of linear EMs by adjusting their geo-
metric structure and composition. However, in many engineering applications, structures
undergo large deformations, such that linear analysis would no longer apply. Nonlinear
elastic metamaterials (NEMs) have attracted significant attention recently. Some interesting
wave propagation phenomena have been shown in NEMs, such as amplitude-dependent
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band gaps [31–33], bifurcations [34] and chaotic bands [35,36]. These make it possible to
tune the BGs by nonlinear tunability. Vakakis and King used standing wave solutions to
study the amplitude-dependent attenuation zone of a one-dimensional periodic chain with
cubic nonlinearity [37]. Cang He [13] used the string to shift the Bragg and local resonance
band gaps. The tension produced by the string is cubic nonlinear. Silva et al. [38] showed
that the tunable band gap depended on the amplitude through the metamaterial with the
quadratic nonlinear resonators.

In this paper, we proposed a nonlinear elastic metamaterial made of linear mass-
spring chains with nonlinear oscillators attached to the masses. Many methods have been
developed to study the nonlinear band gap, including multiple timescale approaches [39],
perturbation methods [12] and incremental harmonic balance methods [40]. Compared
with other methods, the harmonic balance method is suitable for a strong nonlinear system
and its solving process is more concise. Hence, we apply the harmonic balance method to
calculate the dispersion relation of the proposed structure. A concise amplitude-dependent
dispersion relation is obtained. The results show that the mass ratio, linear stiffness ratio,
nonlinearity and amplitude can change the position and width of the band gap. This means
that when the structure design is completed, the band gap can be changed by changing the
amplitude, so that the elastic wave can be tuned.

This paper is organized as follows. In Section 2, we derive the dispersion expressions
for one-dimensional linear and nonlinear elastic metamaterials. In Section 3, we discuss
the tuning of different parameters on the amplitude-dependent band gap. Numerical
simulations are presented in Section 4. The conclusions are drawn in Section 5.

2. Dispersion Relation of One-Dimensional Elastic Metamaterials
2.1. Linear Case

The model of the linear EMs is shown in Figure 1. The unit cells are connected by a
spring with a stiffness of K1. In the unit cell, an oscillator with a mass of m is attached to a
mass of M by a spring with a stiffness of K2. The distance between the two unit cells a is
the so-called lattice constant.

Figure 1. Linear one-dimensional mass-spring lattices attached with local resonators.

For the n-th unit cell, the motion equations of the mass and the attached oscillator can
be written as:

M
d2un

dt2 + K1(2un − un−1 − un+1)− K2(vn − un) = 0 (1)

m
d2vn

dt2 + K2(vn − un) = 0 (2)

where un is the displacement of the n-th mass on the main chain and vn is the displacement
of its additional local resonator, as shown in Figure 1. By introducing the coefficients

ω0 =
√

K1
M , α = m

M and β = K2
K1

, Equations (1) and (2) can be written as:

d2un

dt2 + ω0
2(un − un−1 − un+1)− βω0

2(vn − un) = 0 (3)
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d2vn

dt2 +
β

α
ω0

2(vn − un) = 0 (4)

Based on Bloch’s theorem, the following equations can be obtained:

un = Cei(ωt−nka) (5)

vn = Dei(ωt−nka) (6)

where C and D are the amplitudes of un and vn, respectively, and k is the wave vector.
By combining the equations above, the dispersion relation of the linear EMs can be ob-
tained [41]:

cos(ka) = 1−
( β

α + β)ω2 − ω4

ω0
2

2( β
α ω02 −ω2)

(7)

Normalized frequency ω = ω/ω1 is introduced, where ω1 =
√

K2/m. Then, Equation (7)
can be simplified as:

cos(ka) = 1− (
β

2α
ω2 +

βω2

2
(
1−ω2) ) (8)

For a given value of ω, if the real part of ka exists, the elastic wave can propagate in
the structure. The range of ω is the so-called passband and the rest is the bang gap. The
imaginary part of ka represents the attenuation characteristic of the band gap. Figure 2
shows the band gap of the linear elastic metamaterial at a mass ratio of α = 0.5 and stiffness
ratio of β = 2. It can be seen that the largest attenuation occurs at the natural frequency of
the attached oscillator.

Figure 2. Dispersion curve of a one-dimensional linear elastic metamaterial with α = 0.5, β = 2.

2.2. Nonlinear Case

In this section, we investigate the dispersion relation of the nonlinear EMs as shown
in Figure 3. The unit cells are connected by a spring with a stiffness of K1. In the unit cell,
an oscillator with a mass of m is attached to a mass of M by a nonlinear spring. The elastic
force of the nonlinear spring is expressed as:

F = K2x + γK2x3 = K2 f (x) (9)

where x is the deformation of the nonlinear spring, γ is a parameter controlling the degree
of nonlinearity and f (x) = x + γx3. The motion equations of the n-th unit cell and the
attached oscillator can be written as:

M
d2un

dt2 + K1(2un − un−1 − un+1)− K2 f ((vn − un)) = 0 (10)
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m
d2vn

dt2 + K2 f ((vn − un)) = 0 (11)

Figure 3. Nonlinear one-dimensional mass-spring lattices attached with local resonators.

By introducing wn = vn − un and the parameters above Equation (3), the motion
equations can be rewritten as:

d2un

dt2 + ω0
2(un − un−1 − un+1)− βω0

2 f (wn) = 0 (12)

d2wn

dt2 +
β

α
ω0

2 f (wn) +
d2un

dt2 = 0 (13)

Here, we adopt the harmonic balance method to solve the nonlinear equations. wn(t)
is assumed to be complex Fourier series:

wn(t) = ∑
j

ε(j−1)/2 Aj,neijωt + ε(j−1)/2 Aj,ne−ijωt

j = 1, 3, 5 . . .
(14)

where ε represents a small parameter. By substituting Equation (14) by Equation (13) and
integrating twice with respect to time, the time response of mass n can be obtained as
follows:

un(t) = A1,neiωt(−1 + β

αω2 +
γβ

αω2 (3A1,n A1,n +
3εA2

1,n A3,n
A1,n

))+

εA3,ne3iωt(−1 + β

9αω2 +
βγ

9αω2 (
A3

1,n
εA3,n

+ 6A1,n A1,n)) + c.c. + O(ε2)
(15)

Based on Bloch’s theorem, the displacement of the mass n can be expressed as:

un(t) = ∑
j

Bn,je−inkaeijωt + c.c. (16)

where Bn,j is the coefficient in front of eijωt in Equation (15). We assume the nonlinearities to
be small, so the contributions to the solution of no less than third harmonics are neglected.
Substituting Equations (14) and (16) by (12), equating the coefficient in front of eijωt to zero,
the dispersion relation for the nonlinear EMs is obtained as follows:

cos(ka) = 1− ω2β

2α
(1 +

α(1 + 3γA1,n A1,n)

1 + 3γA1,n A1,n −ω2 ) (17)

It is evident that the dispersion relationship is affected by nonlinear parameters and
amplitude. It is the same as the dispersion relation for the linear case in Equation (8), when
the nonlinear parameter γ is equated to zero.
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3. Tuning on the Nonlinear Band Gap

In Equations (8) and (14), let cos(ka) = 1 or−1, and the starting and ending frequencies
of the band gap can be obtained, respectively. For the linear case:

ωl−start =

√√√√√ (1 + α + 4α
β )−

√
(1 + α + 4α

β )
2 − 16α

β

2
(18)

ωl−end =
√

1 + α (19)

In the nonlinear case:

ωn−start =

√√√√ c−
√

c2 − 16β(α + 3αγA1,n A1,n)

2β
(20)

ωn−end =
√
(1 + α)(1 + 3γA1,n A1,n) (21)

where c = 4α + β + αβ + 3βγA1,n A1,n + 3αβγA1,n A1,n.
Figure 4 shows the effect of mass ratio on the band gap of the linear EMs and Figure 5

shows the nonlinear case. It shows that both the ending and starting frequencies of the
stopband increase with the increase in the attached mass, regardless of whether it is linear
or nonlinear. Additionally, the width of the band gap also increases. A more detailed
comparison is shown in Figure 6. For the nonlinear EMs, the ending frequency of the band
gap is about 26% higher than that of the linear EMs, while the starting frequency is slightly
increased. This indicates that nonlinearity can significantly enhance the influence of the
mass ratio on the band gap.

Figure 4. Dispersion relation for the linear EMs with β = 2 and different mass ratio.

Figure 5. Dispersion relation for the nonlinear Ems with β = 2, γA1,n A1,n = 0.2 and different mass ratio.
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Figure 6. Effect of mass ratio on starting and ending frequency.

Figures 7 and 8 show the effect of stiffness ratio β on the band gap in the linear
and nonlinear EMs, respectively. Figure 9 shows the trends of the starting and ending
frequencies with respect to the stiffness ratio. The greater the ratio of linear stiffness ratio β
is, the greater the band gap is. Different from the mass ratio, the change of stiffness ratio
almost does not affect the ending frequency of the band gap, but it will make the starting
frequency smaller. Compared with the linear EMs, both the starting and ending frequencies
of the nonlinear case are increased, but the width of the band gap is not significantly
increased.

Figure 7. Dispersion relation for the linear EMs with α = 0.5 and different β.

Figure 8. Dispersion relation for the nonlinear EMs with α = 0.5, γA1,n A1,n = 0.2 and different β.
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Figure 9. Effect of stiffness ratio on starting and ending frequencies.

Figure 10 shows the effect of nonlinear parameter γA1,n A1,n on the stopband in the
EMs. Figure 11 shows the trends of the starting and ending frequencies with the change in
the nonlinear parameter. It can be seen that when the nonlinear parameters increase, the
ending frequency of the band gap increases greatly, while the starting frequency increases
marginally. As a result, the width of the band gap increases significantly. In addition,
the position of the maximum value of the attenuation is shifted above the linear natural
frequency.

Figure 10. Dispersion relation for the linear EMs with α = 0.5, β = 2 and different γA1,n A1,n.
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Figure 11. Effect of nonlinear parameter on starting and ending frequencies.

4. Numerical Simulation

The above solution of the vibration band gap of the one-dimensional mass-spring
chain is carried out under the infinite period structure. In this section, the numerical
calculation method is adopted to calculate the vibration transmission properties of the
mass-spring structure with finite period. A diagram of the finite structure is shown in
Figure 12. The transmission properties of the finite lattices are defined as follows:

tr = 20 log10

∣∣∣∣uout

uin

∣∣∣∣ (22)

where uout is the response of the output point and uin is the amplitude of the input point.
Here, we apply sine sweep displacement excitation, with a frequency band from 1 to 20 Hz
and an amplitude U to the first unit cell and measure the response at the n-th cell. Specific
parameters are shown in Table 1.

Figure 12. Schematics of a finite 1D mass-spring chain with attached local resonators.

Table 1. Parameters of finite lattices.

K1 K2 M m

1000 N/m 2000 N/m 1 kg 0.5 kg
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Figures 13–15 show the effects of unit cell number, amplitude of the displacement
excitation and nonlinearity on the transmission properties of the mass-spring chain attached
with nonlinear local resonators. Figure 13 shows that the increase in the cell number does
not change the band gap width, but the vibration attenuation in the band gap range becomes
increasingly larger. Figures 14 and 15 show that the increase in excitation amplitude and
nonlinearity have little effect on the lower boundary of the band gap, but will increase the
upper boundary. This indicates a good agreement with the theoretical analysis in Section 3.
However, in the numerical simulation, the influence of amplitude and nonlinearity on the
upper boundary of the band gap is not as great as that in the theoretical analysis. This
mainly takes into account the fact that the amplitude in Section 3 is not consistent with the
amplitude of displacement excitation. Although the simulation method has disadvantages,
the trend of the band gap change caused by nonlinearity and amplitude still coincides with
the analytical results.

Figure 13. Influence of unit cell number on band gap (U = 0.1; γ = 0.05).

We also choose two typical frequencies, f = 4 Hz and f = 10 Hz, to represent the
corresponding responses in the passband and band gap, respectively. Figures 16 and 17
are time domain and frequency domain diagrams of excitation and response at f = 4 Hz ,
respectively. Figures 18 and 19 are the case at f = 10 Hz. It can be clearly seen that the elastic
wave can propagate without attenuation in the passband, while it delays significantly in
the band gap.
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Figure 14. Influence of displacement excitation amplitude on band gap (γ = 0.2; N = 20).

Figure 15. Influence of nonlinearity on band gap (U = 0.1; N = 20).
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Figure 16. Time histories and FFT result of displacement excitation at f = 4 Hz.

Figure 17. Time histories and FFT result of displacement response.

Figure 18. Time histories and FFT result of displacement excitation at f = 10 Hz.
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Figure 19. Time histories and FFT result of displacement response.

5. Conclusions

In this paper, we focus on the nonlinear tunability of elastic waves in one-dimensional
mass-spring lattices attached with local resonators. The harmonic balance method is
applied to derive the nonlinear dispersion relation and a concise expression of wave vector
and normalized frequency is obtained. The results show that the band gap can be adjusted
by mass ratio, stiffness ratio, nonlinearity and displacement amplitude. The mass ratio
can increase both the upper and lower boundary of the band gap. However, it has little
effect on the width of the band gap. The linear stiffness ratio has little effect on the upper
boundary of the band gap, but the lower boundary decreases significantly with the increase
in the stiffness ratio. This means that the width of the band gap increases. By changing
the nonlinearity or displacement amplitude, the bang gap can be shifted and the width of
the band gap visibly increases. With the increase in nonlinear parameters, the maximum
value of attenuation shifts above the linear natural frequency of local resonators. Then,
a numerical simulation is carried out to obtain the transmission properties of the finite
mass-spring lattices attached with local resonators. The result shows that the analytical
predictions are in good agreement with the simulations. Our research discusses the tuning
effect of various parameters on elastic waves in nonlinear EMs in detail, which provides a
potential application for vibration reduction.
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