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Abstract: In order to compare and analyze the similarities and differences between normal droplet
icing shapes and supercooled large droplet icing shapes, SADRI carried out normal droplet and
supercooled large droplet icing wind tunnel tests in the NRC−AIWT icing wind tunnel. Taking the
typical glaze ice in normal droplet icing conditions as the reference, the freezing drizzle and freezing
rain icing tests under the supercooled large droplet conditions were carried out. The test results show
that compared with normal droplets, the ice horn height of supercooled large droplets decreases with
the increase in droplet particle size, and even the ice horn characteristics are not obvious when the
icing condition is freezing rain. At the same time, the range and height of rough element ice shape
after the main ice horn of supercooled large droplets are significantly larger and higher than those of
the normal droplets, while the difference in the rough element in different supercooled large droplet
icing conditions is small.

Keywords: supercooled large droplets; icing wind tunnel tests; glaze ice; freezing rain; rough element

1. Introduction

When a plane crosses clouds containing supercooled droplets which hit the surface,
the droplets will ice and accrete on the surface when the temperature is below freezing. Ice
not only changes the aerodynamic configuration of the aircraft (especially on the wings),
it has a bad impact on the handling and stability of the aircraft, but also may fall off into
the engine or hit the body. So, aircraft icing is one of the main threats to flight safety [1].
Johnson stated [2], “The icing problem is one of the most important ones facing the aviation
industry today”. In 1938, Gulick [3] tested an aspect ratio 6 wing in the Langley Full-Scale
Tunnel with roughness intended to simulate an ice accretion. He found a 25% reduction
in maximum lift and a 90% increase in drag for the conditions tested. Therefore, icing
seriously affects the flight safety of aircraft. As for supercooled large droplet (SLD) ice,
Ashenden et al. [4] found a similar result in wind tunnel tests with simulated ice accretions.
The results showed more severe aerodynamic penalties due to the freezing drizzle case
when operation of the deicing boot was simulated. Lee and Bragg [5] found that when
the simulated ice shape was located at critical chordwise locations, a long separation
bubble formed downstream of the shape and effectively eliminated the formation of a
large leading-edge suction peak that was observed on the clean NACA 23012 airfoil. This
resulted in a significant reduction in the maximum lift coefficient. For more information on
the impact of icing on aircraft aerodynamics, refer to Reference [6].

Currently, civil aviation bureaus attach great importance to the safety of aircraft icing.
In the airworthiness regulations of transport aircraft, there are a large number of items
concerning the flight safety under icing conditions [7,8].

On 31 October 1994, an ATR72 model transport aircraft was wrecked in icing weather
conditions [9]. The NTSB investigated the accident and confirmed that the cause of the
accident was local freezing rain weather conditions that exceeded the normal drop icing
environment in the FAA airworthiness regulations (Appendix C icing environment). Later,
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after 20 years of meteorological research, the FAA officially issued a new airworthiness
icing requirement (the 140 amendment) in 2014, adding Appendix O SLD icing conditions.

With the release of new airworthiness regulations and the increasing importance of
the icing status and anti/de-icing devices under SLD icing conditions, the analysis and test
verification methods of icing conditions in SLD also face new challenges [10–16]. Numerical
simulation and icing wind tunnel experiments are the common methods to verify the
aerodynamic performance and the effect of anti/de-icing devices under icing conditions.
When the aircraft manufacturer indicates the aircraft’s compliance with airworthiness to a
civil aviation bureau, it generally needs to use more than one method to verify safety. For
flight safety under icing conditions, an icing wind tunnel test is one of the most important
methods. When additional SLD icing conditions are added to the airworthiness regulations,
the icing wind tunnel test becomes one of the most important and feasible means to
understand the similarities and differences between the normal droplet ice shape and SLD
ice shape. The icing wind tunnel can be used in any season with stable test conditions and
good repeatability. Compared with the natural icing test and icing tank test, the cost is
low and the test period is short, and is very safe. However, the test capability envelope is
limited, subject to the capability of the test equipment. At present, the icing wind tunnel
test plays an irreplaceable role in solving the three-dimensional icing ice type prediction,
verifying the effect of the anti/de-icing device, and verifying the accuracy of the numerical
simulation results [17–20].In order to obtain the similarities and differences between frozen
ice shapes and SLD ice freezing conditions, the Shanghai Aircraft Design and Research
Institute has carried out a phase of normal droplets and SLD at the high-Altitude Icy Wind
Tunnel (AIWT) of the National Research Council of Canada (NRC) [21,22] to compare the
icy air tunnel tests.

2. Icing Wind Tunnel

The AIWT belonging to the NRC is a refrigerated closed-loop low-speed wind tunnel
oriented in a vertical plane as shown in Figure 1. The wind tunnel has two available test
section sizes of 0.57 m × 0.57 m, with a demonstrated top simulated wind speed of over
100 m/s, and 0.52 m × 0.33 m, that increases the top wind speed to 180 m/s. The wind
tunnel has a height simulation capacity of 0~9100 m [10]. The air temperature in the AIWT
is controlled by varying the amount of refrigerant flowing through the heat exchanger
in the channel loop to achieve a static air temperature at a Mach number of 0.3, ranging
from −40 ◦C to + 30 ◦C or higher. The pressure in the wind tunnel can be controlled
between about 101 and 30 kPa, which allows the simulation to rise from the ground to at
least 40,000 ft. The wind tunnel uses 2 nozzle systems to simulate the icing conditions of
SLD [23,24]. The small nozzle and large nozzle each have a set of independent water supply
and gas supply systems. In the development of SLD icing condition simulation ability,
the wind tunnel researchers first used computational methods to simulate the granularity
distribution characteristics obtained by two nozzle joint injections with Langmuir-D distri-
bution, and compared them with the curve of Appendix O to obtain the calculation results
very close to the Appendix O curve in FAA Amendment 140. Based on the calculation
results, the verification work of the combined jet in the wind tunnel was conducted. By
continuously adjusting the water supply and gas supply pressure of the nozzle, the bimodal
distribution characteristics consistent with the SLD conditions were well realized, as shown
in Figure 2. The “App. O ZLE < 40” represents mean volume diameter (MVD) of freezing
drizzle (FZDZ) less than 40 µm. The “App. O ZRE < 40” represents mean volume diameter
(MVD) of freezing rain (FZRA) less than 40 µm.
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Considering the blockage in the icing wind tunnel in the 0.57 m × 0.57 m test section, 

a NACA0012 airfoil with 0.533 m chord length and 0.565 m span length was selected as 
the test model as shown in Figure 3 with details. The model was designed and manufac-
tured by the NRC. The model has two leading edges, one is equipped with pressure taps 
as shown in Figure 4 to match the angle of attack by measuring the upper and lower sur-
face pressure distribution. The other leading edge is for all icing tests. As shown in Figure 
5, to reduce the weight, the first 1/4 of the airfoil is made of aluminum alloy (hollowed 
out), and the aft 3/4 of the airfoil is made of acrylic. 
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Figure 2. NRC−AIWT drop cumulative mass distribution for freezing drizzle and freezing rain.

3. Model

Considering the blockage in the icing wind tunnel in the 0.57 m × 0.57 m test section,
a NACA0012 airfoil with 0.533 m chord length and 0.565 m span length was selected as the
test model as shown in Figure 3 with details. The model was designed and manufactured
by the NRC. The model has two leading edges, one is equipped with pressure taps as
shown in Figure 4 to match the angle of attack by measuring the upper and lower surface
pressure distribution. The other leading edge is for all icing tests. As shown in Figure 5, to
reduce the weight, the first 1/4 of the airfoil is made of aluminum alloy (hollowed out),
and the aft 3/4 of the airfoil is made of acrylic.
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4. Test Conditions

The tests were performed in accordance with Appendixes C and O of CFR 14 Part 25.
It should be noted that the AIWT does not fully guarantee that the in-flight icing simulation
meets the Appendix O conditions due to the difficult decreasing temperature and velocity
balance with the surrounding airflow.

As shown in Table 1, the test conditions include 10 test points (excluding repetitive
runs). Target test points include the following conditions: (1) Appendix C [25,26] (double
ice horns and single ice horn); (2) Appendix O glaze ice (double ice horns and single ice
horn). When the droplets collide on the surface of the component, they do not immediately
freeze and the water film (formed by droplets) gradually freezes while flowing along the
material surface, forming glaze ice. Water film squeezes small air bubbles during the flow,
so the ice is transparent and dense. Moreover, due to the aero-heating in the leading-edge
area, especially the stagnation point, the thickness of the ice is small, and the large-scale
icing occurs behind the two sides of the stagnation point, and it generally forms an ice horn.
When near the 0◦ angle of attack, the ice forms a significant double ice angle; when the
angle of attack is near the non-0◦ angle of attack, there is generally only one obvious angle
of ice (main ice angle). In Table 1, the App. C-CM represents the continuous maximum icing
conditions in Appendix C of Part 25 of CFR 14. App. O represents CFR 14 Part 25 Appendix
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O icing condition, while FZDZ/L is the freezing drizzle (MVD < 40 µm), and FZDZ/G is
the continuous maximum icing condition of the freezing drizzle (MVD ≥ 40 µm). FZRA
is the icing condition of Appendix O freezing rain. As the 14,000 ft altitude exceeds the
envelope of App. O when the static temperature Ts equals to −6.6 ◦C, altitude was set as H
= 5000 ft in the uniform. The value of the median volume diameter (MVD) is taken when
the cumulative mass of the droplets reaches 50%. The liquid water content (LWC) takes the
maximum value corresponding to Appendix O.

Table 1. Test conditions.

Run No. H
(ft) V (m/s) AOA (◦) Ts (◦C) MVD (µm) LWC (g/m3) Time

(min) Cloud

1 14,000 95 4.9 −6.6 20 0.50 11 min App.C-CM
2 14,000 95 0.0 −6.6 20 0.50 11 min App.C-CM
3 14,000 95 4.9 −6.6 20 0.40 11 min App.O-FZDZ/L
4 14,000 95 0.0 −6.6 20 0.40 11 min App.O-FZDZ/L
5 14,000 95 4.9 −6.6 110 0.25 11 min App.O-FZDZ/G
6 14,000 95 0.0 −6.6 110 0.25 11 min App.O-FZDZ/G
7 5900 95 4.9 −6.6 19 0.28 11 min App.O-FZRA/L
8 5900 95 0.0 −6.6 19 0.28 11 min App.O-FZRA/L
9 5900 95 4.9 −6.6 526 0.24 11 min App.O-FZRA/G
10 5900 95 0.0 −6.6 526 0.24 11 min App.O-FZRA/G

The test conditions in Table 1 are very typical glaze ice icing conditions. In particular,
the angle of attack of 4.9 degrees and H = 14,000 ft are the typical angle of attack and
altitude in the holding stage of a large aircraft, which will form an obvious upper ice
horn (usually on the wing). The angle of attack of 0 degrees will form obvious double
ice horns (usually on the horizontal tail). The MVD = 20 µm is the most critical MVD
condition after sensitivity analysis in Appendix C in FAR25. Ts = −6.6 ◦C is very close to
the most critical static temperature (−4.1 ◦C). Considering the problem of ice shedding, Ts
is designed to be 2.5 ◦C lower. The LWC is determined jointly by Ts and MVD in Appendix
C in FAR25. As the model is relatively small, the ice accretion is relatively fast, so the icing
time cannot reach the holding icing time (in Appendix C in FAR25 holding icing time is
45 min). Considering that the ice horn is easy to break when it is too high, after calculation
carried out before the experiment, it was considered that 11 min is appropriate. The MVD
value in Appendix O is the MVD when cumulative mass of droplet reaches 0.5, shown in
Figures 6 and 7.
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5. Test Results

The pressure distribution of the leading region in both flight states was matched in the
wind tunnel prior to the icing test. The results of the pressure distribution matching results
for the two states, AOA = 0◦ and AOA = 4.9◦, are shown in Figures 8 and 9. In Figures 8
and 9, the abscissa x/c (dimensionless) represents relative position in the chordal direction
(the c is the length of the airfoil chord). The ordinates Cp represent the dimensionless
pressure coefficient.
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After pressure distribution matching, icing runs were conducted: first, the wind speed
was adjusted to the target wind speed. Second, the air was cooled down to the target
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temperature. Third, the nozzle was turned on to spray supercooled droplets and this was
timed. Fourth, when the icing time was up, the spray ended. Fifth, the temperature was
reduced (to prevent ice from falling off). Sixth, after cooling, the wind was decreased
to make the wind speed zero. Seventh, the hatch door was opened, and the “hot knife”
(square copper plate, with which the shape of the leading edge of the airfoil was removed)
was heated to melt the ice shape, forming a groove (as shown in Figure 10), so that the hot
knife could fit with the airfoil. Eighth, the coordinate paper was stuck on the hot knife, and
then the ice shape was drawn on the coordinate paper along the circumference of the ice
shape. Ninth, the ice was heated to melt it quickly. Tenth, the airfoil surface was cleaned
and the next test run was conducted.
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After ice accumulation, ice shapes were taken at three different span locations (center
line and 100 mm on the left and right sides of the center of the model as shown in Figure 11
in red curves). The ice shapes at the three different sections coincide in position and
height of the ice horn well. The ice shapes presented in this paper were all obtained at the
centerline position of the model.
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Figure 11. Ice shape at three different span locations.

In Figure 12, ice shapes with a single ice horn in different states are shown in different
colors. The main ice horn of Appendix C is the highest, followed by FZDZ/L, FZDZ/G
and FZRA/L and FZRA/G. Ice shape of Appendix C has the smallest range of the rough
element, and the height of the rough element decreases sharply far away from the main ice
horn; the range of the SLD ice shapes after the main ice horn are very large, and the rough
element is almost the same in different states; the height of the rough element does not
decrease significantly with the distance away from the main ice horn.



Aerospace 2022, 9, 844 8 of 11

Aerospace 2022, 9, x FOR PEER REVIEW 8 of 11 
 

 

decreases sharply far away from the main ice horn; the range of the SLD ice shape after 
the main ice horn is very large, and the rough element is almost the same in different 
states; the height of the rough element does not decrease significantly with the distance 
away from the main ice horn. 

Through the comparative analysis of the above test results, it can be seen that a sig-
nificant result of the SLD icing was ice accretions that formed downstream of the ice-pro-
tected surfaces [27]. The shape characteristics of ice in Appendix O are consistent with 
those in other references [13,19,28,29]. After observing the shape of the roughness element 
behind the main ice horn shown in Figure 14, the roughness cannot be formed by runback 
water, it can only be formed by reattachment of water droplet splashing or bouncing [30–
33] as shown in Figure 15 because the roughness element particles are discontinuous, as 
shown in Figure 13. 

The shape characteristics of ice in Appendix O are consistent with those in other ref-
erences. For example, the test results in NASA IRT and Chinese FL-61 icing wind tunnel. 
It can be found in the above icing wind tunnel from References [16,19,29,34] that after the 
main ice horn, the range of roughness element is wide, and there is little ice at the gap 
between the roughness elements, indicating that the formation of the roughness element 
here is not due to the runback water, but SLD splashing and bouncing. 

 
Figure 12. Ice shapes with single horn at AOA = 4.9°. 

 
Figure 13. Ice shapes with double horns at AOA = 0°. 

Figure 12. Ice shapes with single horn at AOA = 4.9◦.

In Figure 13, ice shapes with double ice horns in different states are shown in different
colors. The height of the main ice horns decreases gradually from Appendix C to FZDZ/L,
FZDZ/G; while the main ice horn of FZRA/L and FZRA/G is not very obvious. Appendix
C has minimized the range of the rough element, and the rough element height decreases
sharply far away from the main ice horn; the range of the SLD ice shape after the main ice
horn is very large, and the rough element is almost the same in different states; the height
of the rough element does not decrease significantly with the distance away from the main
ice horn.
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Figure 13. Ice shapes with double horns at AOA = 0◦.

Through the comparative analysis of the above test results, it can be seen that a
significant result of the SLD icing was ice accretions that formed downstream of the ice-
protected surfaces [27]. The shape characteristics of ice in Appendix O are consistent with
those in other references [13,19,28,29]. After observing the shape of the roughness element
behind the main ice horn shown in Figure 14, the roughness cannot be formed by runback
water, it can only be formed by reattachment of water droplet splashing or bouncing [30–33]
as shown in Figure 15 because the roughness element particles are discontinuous, as shown
in Figure 13.
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The shape characteristics of ice in Appendix O are consistent with those in other
references. For example, the test results in NASA IRT and Chinese FL-61 icing wind tunnel.
It can be found in the above icing wind tunnel from References [16,19,29,34] that after the
main ice horn, the range of roughness element is wide, and there is little ice at the gap
between the roughness elements, indicating that the formation of the roughness element
here is not due to the runback water, but SLD splashing and bouncing.

6. Conclusions

In NRC’s AIWT, the icing wind tunnel test of normal droplets and SLD was carried
out. The differences from the comparison of ice shapes were consistent with the splashing
and bouncing [30,31] theory of SLD:

(1) As the LWC of SLD is smaller than the LWC of normal droplets, the ice horn height of
SLD is smaller than that of the normal droplets. At the same time, due to the splashing
and rebound phenomenon of large droplets, the main ice horn of SLD ice will be
further reduced, and the position of the main ice horn will move to the trailing edge,
especially in the case of freezing rain.

(2) After splashing and rebounding, droplets will continue to fly to the trailing edge with
the airflow. Due to the influence of gravity and airflow, some droplets will hit the
airfoil twice, thus forming rough elements in a far range after the main ice horn of the
leading edge. This rough element is mainly caused by the splashing and rebound of
droplets, rather than the runback water, so the height of the rough element does not
decrease significantly with the distance away from the main ice angle, and obvious
discontinuities between rough elements will occur.
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