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Abstract: This paper studies the attitude tracking control of a flexible airship subjected to wind
disturbances, actuator saturation and control surface faults. Efficient flexible airship models, including
elastic deformation, rigid body motions, and their coupling, are established via Lagrange theory.
A fast-nonsingular terminal sliding-mode (NTSM) combined with a backstepping control is proposed
for the problem. The benefits of this approach are NTSM merits of high robustness, fast transient
response, and finite time convergence, as well as the backstepping control in terms of globally
asymptotic stability. However, the major limitation of the backstepping NTSM is that its design
procedure is dependent on the prior knowledge of the bound values of the disturbance and faults.
To overcome this limitation, a wind observer is designed to compensate for the effect of the wind
disturbances, an anti-windup compensator is designed to compensate for actuator saturation, and an
adaptive fault estimator is designed to estimate the faults of the control surfaces. Globally exponential
stability of the closed-loop control system is guaranteed by using the Lyapunov stability theory.
Finally, simulation results demonstrate effectiveness and advantages of the proposed control for the
Skyship-500 flexible airship, even in the presence of unknown wind disturbances, control surface
faults, and different stiffness variants.

Keywords: flexible airship; fast-nonsingular terminal sliding-mode control; backstepping control;
wind disturbance observer; fault tolerant control

1. Introduction

Airships have many potential applications for transport, environment surveillance,
communication relay, and aerial photography, etc. These applications have attracted much
research interest [1]. As one of the lighter-than-air unmanned vehicles, reliable autonomous
control is highly desired for different airship missions. Thus, the key objective is to
realize accurate trajectory-tracking control for the unmanned airship. However, due to the
inherent system nonlinearity and underactuation of the airship under diverse environment
disturbances, this makes the trajectory-tracking control of the airship quite challenging
and difficult.

To achieve high-precision tracking performance, many control schemes of the air-
ship have been proposed to solve the trajectory tracking problem, which includes gain
scheduling control [2], backstepping design [3,4], sliding-mode control [5,6], neural net-
work control [7,8], and fuzzy control [9]. Among these methods, the sliding-mode control
and backstepping design are potentially useful approaches to overcome disturbance and
faults of the airship. The backstepping approach has been proposed for the robust con-
trol of nonlinear systems in a strict feedback form through the construction of control
Lyapunov functions (CLFs) [10]. The nonlinear backstepping design has been widely
studied for various aerospace and underwater vehicle control problems [11,12]. Meanwhile,
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the sliding-mode control, due to its insensitivity to disturbances and model uncertainties,
has been applied to the trajectory-tracking control for the airship with unknown distur-
bances and winds [5]. To make the output response quickly converge to the desired values,
the terminal sliding-mode control (SMC) is proposed for robust control within a finite
time [7,13]. Mofid et al. proposed a super-twisting terminal SMC and barrier function
terminal SMC to deal with the quad-rotor unmanned aerial vehicles (UAVs) with delay
input [14] and drive the error dynamics to converge on a region near the origin within a
finite time [15]. The event-triggered fractional-order SMC technique was proposed to stabi-
lize the quadrotor UAV with external random/time-varying disturbances [16]. In addition,
recently, some researchers developed the backstepping sliding-mode control design to use
combination merits of SMC and the backstepping design [17,18].

On the other hand, the system faults and disturbances of the airship are unknown and
nonlinear. Thus, it is necessary for disturbance rejection and fault compensation to achieve
the desired robust performance. Guo et al. [19] investigated a distributed fault-tolerant
sliding-mode control for 2-D plane vehicular platoon systems, where a neuro-adaptive
fault-tolerant control scheme was implemented by combining a sliding-mode control
technique with a radial basis function neural network (RBFNN) to guarantee the finite-
time stability. Xiao et al. [20] proposed an adaptive integral sliding-mode approach to
realize fault-tolerant tracking control for a multi-vectored thrust ellipsoidal airship. Liu and
Whidborne [8] proposed a neural network adaptive backstepping fault tolerant control for
the unmanned airship with multi-vectored thrusters. These methods not only guarantee
the system with faults of robust stability, but also tolerate the unknown actuator faults,
even in the disturbance environment.

However, all the above nonlinear designs are focused on rigid-body airship models,
which cannot guarantee the performance for flexible cases. To realize high altitude and long
endurance missions, the stratospheric airship often uses the flexible inflated membrane
material as the airship hull; thus, the weight is lighter and endurance is longer. Unlike con-
ventional rigid airships, the mutual interaction between flexibility, aerodynamics, and flight
dynamics of flexible airships should be modeled [21,22], because this interaction will im-
prove the model precision and control performance [23]. For the trajectory-tracking control
of the flexible airship, Li et al. [21] proposed an integrated model, including the flight
dynamics, structural dynamics, aerostatics, and aerodynamics, but they only analyzed the
linear mode characteristics of the flexible airship without consideration of nonlinear control
problems. The main difficulties for the flexible airship are nonlinear and coupling control
between the rigid and flexible body. Bennaceur and Azouz [24] proposed a Lagrangian
method to build up an efficient model of flexible airships. In addition, Han et al. [25]
proposed a command filtered backstepping approach to design the trajectory controller
for a flexible airship. However, they did not consider disturbances and fault effects on the
flexible airship, both of which can result in system instability. In fact, from long endurance-
hovering in the air and working in diverse environments day and night, the sensors and
actuators of the flexible stratospheric airship are easily impaired. Thus, fault tolerant
control of the airship with actuator faults is studied here.

Motivated by Li’s [21] and Han’s work [25], the main work in this paper is a novel
backstepping nonsingular terminal sliding-mode (BNTSM) control scheme proposed for
attitude tracking of the airship with unknown faults, disturbances, and actuator saturation.
In the proposed BNTSM control scheme, the nonsingular terminal sliding-mode technique
and backstepping technique are integrated. The proposed BNTSM control has advantages
of high robustness, fast transient response, and finite time convergence, and the globally
asymptotic stability of the closed-loop system can be guaranteed. Furthermore, a wind
observer and an adaptive fault estimator are designed to observe the wind disturbances and
estimate the control surface faults; thus, the limitation of the BNTSM control dependent
on prior knowledge is overcome. The main contributions of the proposed scheme are
summarized as follows.
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1. A backstepping nonsingular terminal sliding-mode control scheme is proposed for
attitude tracking control of the flexible airship with actuator faults, actuator saturation,
and uncertainties of stiffness.

2. A wind observer with an adaptive disturbance observer is designed to reject variable
external bounded disturbances and cope with model parameter uncertainties.

3. An anti-windup compensator based on proportion to saturation errors is used to
compensate actuator saturation.

4. An adaptive fault estimator is incorporated into the BNTSM control to implement
fault estimation and fault tolerant control.

This paper is organized as follows. The nonlinear dynamics-modeling of the flexible
airship and the robust control problem are described in Section 2. The BNTSM control is
proposed in Section 3, and stability is proven for the corresponding closed-loop tracking
system. In Section 4, three scenarios are simulated to demonstrate the BNTSM control
performance. Section 5 gives the conclusions.

2. Airship Modeling and Problem Formulation

The structure of the flexible airship is shown in Figure 1. There are four control
surfaces, including two rudders and two elevators on the tail fins, and two propellers are
set up on each side of the hull. The gondola under the airship envelope houses the avionics
system and the flight control system and other payloads.
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2.1. Airship Kinematics Model

The equations of motion of a flexible airship are expressed in a body frame Fb{Obxbybzb}
fixed on the undeformed airship with its origin, Ob, at the center of volume (CV), see
Figure 1. The motion of the airship is described as the translation and rotation of this body
frame with respect to the inertial frame FI{OIxIyIzI}, plus the deformation of the material
points on the body relative to the body frame [21]. A centerline frame Fp{Opxpypzp}
is introduced to calculate the aerodynamics forces of the flexible airship. The elastic
displacement u of a material point on the airship can be written by a summation of the
shape functions, as

u = ∑ qi(t)Φi(r), (i = 1, 2, . . . N) (1)

where qi are the time-dependent generalized coordinates, Φi =
[

Φxi Φyi Φzi
]T are

the structural mode shape vector, and r is the position vector of the material point from the
origin, Ob. The associated velocity distribution over the elastic body is:

v = υa + Ω× r + Ω× u +
.
u (2)

where υa = [u, v, w]T is the translational velocity vector in Fb, Ω =
[

p q r
]T is the

angular rate vector, and the × denotes cross-product operation. The first two terms of
Equation (2) are related to the rigid body translation and rotation, while the last two terms
reflect the influence of the elasticity on the local velocity.
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Assume the airship is modeled as a free-free Euler–Bernoulli beam only undergoing
bending deformation; hence, if the internal pressure is high enough to prevent wrinkling,
then the hull bending can be described as the fundamental mode shape of the airship.
The shape functions Φ are chosen as the natural vibration mode shapes of the beam, and 2N
shape functions are employed to describe the airship’s deflection, that is,{

Φi =
[

0 Φi 0
]T , the bending in the Oxy plane

ΦN+i =
[

0 0 Φi
]T , the bending in the Oxz plane

(i = 1, 2, . . . N) (3)

where Φi is the ith natural mode shape of the free-free Euler–Bernoulli beam. The kinemat-
ics equations of the position and attitude of the airship are [3]:{ .

ξ = R(η)υa + υw.
η = J(η)Ω

(4)

where ξ = [x, y, z]T is the position vector, η =
[

φ θ ψ
]T is the attitude vector,

υa = [u, v, w]T is the translational velocity vector in Fb, and υw is the wind velocity in
fixed frame. From Equation (4), it can be obtained that the local velocity is:

υ = υa + RT(η) · υw (5)

where R(η) denotes the direction cosine matrix [3], and the transformation matrix J is:

J(η) =

 1 s(φ) tan θ c(φ) tan θ
0 c(φ) −s(φ)
0 s(φ) sec θ c(φ) sec θ

 (6)

where |θ| < π/2 is assumed to avoid the matrix singularity, and s(·) and c(·) denote sine
and cosine functions, respectively.

The motions of the flexible airship are described as Lagrange equations [24], and the
flexible dynamics model is obtained as follows [21]:

Msys


.
υa.
Ω
..
q

 = −

 0
0

SE

+

 FI
MI
QI

+

 FG
MG
QG

+

 FAS
MAS
QAS

+

 FAD
MAD
QAD

+

 FC
MC
QC

 (7)

where Msys =

 M11 M12 M13
M21 M22 M23
M31 M32 M33

 is the airship total mass, the virtual mass terms are

included, FI denotes the inertia force vector, FG denotes the gravity vector, FAS denotes
the aerostatic force vector, FAD denotes the aerodynamics force vector, and FC denotes
the control force vector; Mi and Qi denote the associated moments and general elastic
forces of the flexible airship, i = I, G, AS, AD and C. The local velocity is as Equation (5);
q = [q1, q2, · · · , q2N]

T denotes the generalized elastic coordinate vector. SE denotes the
internal elastic force vector,

SE = Kq (8)

where the stiffness matrix K meets

Ki,j = KN+i,N+j =
∫
L

EI ·Φ′′i Φ′′j dx,(i, j = 1, 2 · · · , N) (9)
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where Φ
′′
i = d2Φi

dx2 . EI denotes bending stiffness with EI = πR3 ET0, E is the elastic modulus
of the hull envelope, T0 is its thickness, and R is the hull radius. Equation (7) can be
rewritten as .

X(t) = f(X) + g(X)u(t) (10)

where X =
[
υT

a ΩT .
qT

]T
is the augmented state vector, u =

[
δT δe δr

]T denote
control inputs of the thruster, elevator, and rudder, and

f =
1

Msys

−
 0

0
SE

+

 FI
MI
QI

+

 FG
MG
QG

+

 FAS
MAS
QAS

+

 FAD
MAD
QAD

 (11)

g =
[

g1 g2 g3
]

9×3 (12)

g1 = 1
Msys


FkT(

ST +
2N
∑

i=1
qiSΦi

)
FkT

FT
kT
[

Φxi Φyi Φzi
]T


9×1

, g2 = 1
Msys


Fδe(

S f +
2N
∑

i=1
qiSΦi

)
Fδe

FT
δe

[
Φxi Φyi Φzi

]T


9×1

, g3 = 1
Msys


Fδr(

S f +
2N
∑

i=1
qiSΦi

)
Fδr

FT
δr

[
Φxi Φyi Φzi

]T


9×1

, (13)

ST =

 0 −zT yT
zT 0 −xT
−yT xT 0

, SΦi =

 0 −Φzi Φyi
Φzi 0 −Φxi
−Φyi Φxi 0

, S f =

 0 −zr yr
zr 0 xr − xm
−yr −xr + xm 0

, (14)

FkT =
[

kT 0 0
]T , Fδe = qSre f

[
0 0 Czδe

]T , Fδr = qSre f
[

0 Cyδr 0
]T , (15)

where (xT, yT, zT) and (xr, yr, zr) denote positions of the thrust and control surface in the
body frame, Fb, respectively; xm is the position of the aerostatic center along the x-axis,
kT is control gain for thruster. Czδe and Cyδr denote the aerodynamic derivative coefficients
of the elevator and rudder, respectively, q = 1

2 ρV2 denotes the dynamic pressure, V is the
airspeed, and ρ is the air density.

Next, we detailed and present each force and moment on the right-hand side of
Equation (11). The inertia force and moment vector of the flexible airship in Equation (11)
is [21]:  FI

MI
QI

 = −

 mΩ× −Ω×c×total 2P .
q

c×totalΩ
× Ω×Jtotal 2H .

q,total
−PT.

q −HT.
q,total 2Me

.
q


 υa

Ω
.
q

 (16)

where

c×total = M21 =

(∫
m
(r+u)dm

)×
=

(
mrG +

∫
m
(∑ qi(t)Φi(r))dm

)×
, Jtotal = M22 = −

∫
m
(r+u)×(r+u)×dm,

P .
q = Ω×P = Ω×M13, H .

q =
[

J
′
ru,1Ω J

′
ru,2Ω · · · J

′
ru,2NΩ

]
, J
′
ru,i =

∫
m

r×Φ×i dm, H .
q,total = H .

q + H .
qu,

H .
qu =

[
∑ qj(t)J”

uu,1jΩ ∑ qj(t)J”
uu,2jΩ · · · ∑ qj(t)J”

uu,2NjΩ
]
(i, j = 1, 2, . . . , 2N), Me

.
q =

∫
m

ΦTΩ×Φdm.

(17)

The superscript denotes the skew-symmetric matrix form of a vector (corresponding
to a cross-product operation). Consider the gravity, aerostatic force, and moment vector of
the flexible airship in Equation (11). Gravity, the resulted moment, and its generalized one
are described as follows:

FG = mg
^
g (18)

MG = (rG + uG)× FG = rG × FG +
1
m

2N

∑
i=1

qi(t)pi × FG (19)
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QGi =
∫
m

g
^
g

T
Φidm =g

^
g

T
pi, i = 1, 2, · · · , 2N (20)

where g denotes that the acceleration of gravity and unit direction vector of gravity is:

^
g =

[
− sin θ cos θ sin φ cos θ cos φ

]T (21)

uG =
∫
m

udm/m =
1
m

2N

∑
i=1

qi(t)pi, pi =
∫
m

Φidm (22)

The aerostatic force in the body frame in Equation (11) is:

FAS = −ρgVB
^
g (23)

The resulted moment and its generalized moment are presented as follows:

MAS = uV × FAS =

∫
VB

udV/VB

× FAS = ∑ qi(t)I×AS,iFAS (24)

QAS,i = −
∫
L

ρ
^
g

T
ΦiSdx =FT

ASIAS,i, i = 1, 2, · · · , 2N (25)

where VB denotes the volume of the airship hull and S is the hull cross-sectional area:

uV =
1

VB

∫
VB

udV, I×AS,i =
1

VB

∫
VB

ΦidV =
1

VB

∫
L

ΦiS(x)dx (26)

The aerodynamics force and moment vector of the flexible airship in Equation (11) is: FAD
MAD
QAD

 =

 Fp
Mp
Qp

+

 Fv
Mv
Qv

+

 FF
MF
QF

+

 FH(F)
MH(F)
QH(F)

+

 Faxial
Maxial
Qaxial

 (27)

where subscripts p, v, F, H(F), and the axial on the right-hand side of Equation (27) denote
the forces and moments due to the potential-flow (related to the added mass), viscous effect
on the hull, aerodynamic force acting on fins and acting on the hull due to the fins, and axial
drag, respectively. The calculation of the aerodynamics forces is the same as in [21].

The control force and moment vector FC,MC,QC of the flexible airship includes
those of propellers and control surface deflections. The thrust in the body frame is
FT =

[
FTx FTy FTz

]T ; the corresponding moment and generalized moment are as follows:

MT = rT × FT + ∑ qi(t)Φi(rT)× FT (28)

QTi = FTΦi(rT) (29)

where Φi(rT) is the mode shape function at the propeller-mounted position rT . Forces due
to the control surface deflection are presented in the body frame, as

FT
δ =

 ∆CD
∆CL(δr)
∆CL(δe)

 · q · S f (30)
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where S f denotes the area of control surface, and ∆CL and ∆CD are the lift and drag
resulted from the control surface deflection. The corresponding moment and generalized
moment are:

Mδ = rδ × Fδ + ∑ qi(t)Φi(rδ)×Fδ (31)

Qδ,i = FT
δ Φi(rδ) (32)

where Φi(rδ) is the shape function at the control surface-mounted position of rδ.
Considering the model uncertainties or disturbances often occurring in the dynamics

system of Equation (10), assume the atmospheric parameters are stable and disturbances
are bounded; thus, a model uncertainty, d, and the actuator saturation are introduced,
thus the system (10) can be modified, as

.
X(t) = f(X) + g(X)sat(ua(t)) + Γd(t) (33)

where d denotes disturbances except for winds and model uncertainties, such as aero-
dynamic coefficients and structural stiffness; sat(·) denotes saturation function. As the
airship has a large inertia and its motion is slow and sedate, d can be assumed to be a
slow-varying disturbance, which can be estimated on-line by using an adaptive law. Let d̂
be the estimated value of the uncertain parameter d; d̃ = d̂− d is the associated estimated
error. Finally, Г denotes the disturbance coefficient matrix. The faults can be modeled as
abrupt changes of the nominal control action from ua [26,27],

u f
a (t) = ua(t) + (I− ¯

ρa(t))(fa(t)− ua(t)) (34)

that is,

u f
a (t) = uh + u f =

¯
ρaua(t)︸ ︷︷ ︸

uh

+ (I− ¯
ρa(t))fa(t)︸ ︷︷ ︸

u f

(35)

where ua = [ua,1, ua,2, · · · , ua,m] ∈ Rm is the actual control output; the diagonal matrix
¯
ρa = diag{ρa,1, ρa,2, · · · , ρa,m} denotes the operational effectiveness of the actuators; I is
the m×m identity matrix; the fault vector fa = [ fa,1, fa,2, · · · , fa,m] ∈ Rm denotes the control

action from the failed or un-manipulated actuators; uh =
¯
ρaua(t) denotes the remaining

control of the health actuators; u f = (I− ¯
ρa(t))fa(t) denotes the fault of the inputs.

Assumption 1. In Equation (34), for the multiplicative and additive actuator faults, ρa,i and fa,i

are all bounded. In addition,
.
ρa,i and

.
f a,i exist and are bounded, i = 1, 2, . . . , m.

Substituting Equation (35) into Equation (33) yields:

.
X(t) = f(X) + g(X)

¯
ρasat(ua(t)) + g(X)(I− ¯

ρa(t))fa(t) + Γd (36)

Remark 1. There are two underactuated cases for the flexible airship. Case 1. The airship without a
lateral tilt angle of the propellers (i.e., the thrust direction is fixed) is underactuated in the y-direction
(that is, the lateral control force, Tsy = 0); thus, the sway velocity, v, cannot be directly controlled.
If the wind is in the presence in this case, then the airship can align against the wind through the
yaw motion, reducing the lateral forces requirement to a low and acceptable value; thus, the lateral
force input can vanish in stationary conditions. Case 2. The airship works in Case 1 without ailerons
or differential actuators (i.e., δeL = δeR, δrU = δrB, and the roll control moment, MTx ≈ 0). Sway
velocity, v, and bank angle, ϕ, cannot be directly controlled. In this case, the disturbance of the roll
moment resulting from the wind can be attenuated by the airship roll damp; thus, the roll moment
input can vanish in stationary conditions.
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2.2. Fault Tolerant Trajectory Tracking Problem

The fault-tolerant trajectory tracking problem is a challenge for the flexible strato-
spheric airship because it is a hard task to achieve precise trajectory tracking under the
actuator faults; the main reason is that the interaction between fluid and structure should
be considered. Presently, consider the system of Equations (10) and (36)—the control
task is to design a fault-tolerant trajectory-tracking controller, such that the closed-loop
system is globally asymptotically stable and the output trajectory, η, is steered towards a
given reference trajectory, ηr, with lim

t→∞
‖e(t)‖2 < ε0, even in a specified model parameter

uncertainty, unknown wind disturbances, and control surface faults; where the tracking
error is e(t) = η(t)− ηr(t), ε0 is a prescribed constant, and 2-norm is ‖e(t)‖2 =

√
eTe.

3. BNTSM-Based Trajectory Tracking Design

In this section, the robust BNTSM controller is designed to solve the problem in
Section 2.2. Firstly, a command filter is used to meet the magnitude and rate constraints of
the input signal. The command filter can be obtained by using a second-order lower pass
filter, as follows:

Gr(s) =
Xr(s)
X0

r (s)
=

ω2
n

s2 + 2ζnωns + ω2
n

(37)

where ζn denotes the filter-damping ratio and ωn denotes the undamped nature frequency
of the filter. To reduce the filter error e = x0

r − xr, the filter frequency, ωn, is the bandwidth
of X0

r (s), which is generally less than that of Gr(s), and then ωn can be selected.
Secondly, for the system (4), the wind field is assumed as a constant, due to the stable

meteorological condition in the stratosphere [28]. Some people regarded wind speed as
one kind of external disturbance, but it is hard to separate wind and model uncertainty
and they are not easily handled. Here, a wind observer is introduced to improve tracking
performances. A wind observer state is defined,

[
ξ̂T υ̂T

w
]T , where ξ̂ and υ̂w denote

estimates of ξ and υw. The wind can be sensed by the wind speed sensors in the fixed
frame, and the observer dynamics are designed, as follows [4]:[ .

ξ̂
.
υ̂w

]
=

[
R(η)υa

0

]
+

[
Lξ I3
Lw 0

][
ξ − ξ̂

υ̂w

]
(38)

The estimation error of the position and wind speed are defined as e4 =

[
ξ − ξ̂

υw − υ̂w

]
,

and the estimation error e4 can be obtained as

.
e4 =

[
ξ − ξ̂

υw − υ̂w

]
=

[
−Lξ I3
−Lw 0

]
e4 = Ãee4 (39)

where Lξ , Lw are gain matrices such that
~
Ae =

[
−Lξ I3
−Lw 0

]
be Hurwitz; I3 is the unit

matrix with a dimension of 3 × 3. Thus, there exists a positive definite symmetrical matrix,
Pe, such that

d
dt

(
eT

4 Pee4

)
= −eT

4 Qee4 (40)

where Qe = diag(Qξ , Qυw), Qξ , and Qυw are symmetric positive definite matrices and the
weight matrix, Pe, meets the following Lyapunov equation,

Ã
T
e Pe + PeÃe = −Qe (41)
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Thirdly, consider the kinematics in Equation (4) and dynamics in Equation (36).
The control objective is to track a reference signal, x1r = ηr, with the derivative

.
x1r under

unknown disturbances and faults. The tracking error vectors of the attitudes are defined as

z1 = x1 − x1r (42)

z2 = x2 − x2r (43)

where x1 = η x2 =
.
x1 =

.
η, x1r is the reference or desired attitude angle, and x2r is the

output of a command filter.
Presently, the BNTSM controller is designed, and the kinematics Equation (4) and dy-

namics Equation (33) are considered. To obtain a fast and transient response and finite time
convergence without a singular problem, a non-singular terminal sliding-mode (NTSM)
surface or manifold is designed by using the fractional order derivative, as follows [29],[30]:

s = z̃1 + αγz̃λ
1 +

1
β

z̃2
p/q = z̃1 + αγ

∣∣∣∣z̃1

∣∣∣∣λsgn(z̃1) +
1
β

∣∣∣∣z̃2

∣∣∣∣p/qsgn(z̃2) (44)

where z̃1 and z̃2 are defined in (A6), the SMC parameter λ > p/q, αγ > 0, s =
[

s1 s2 s3
]T ∈ R3

denotes the sliding-mode surface, i.e., s1 = s(ϕ), s2 = s(θ), s3 = s(ψ) and 1 < p/q < 2, β > 0;
sgn(·) is the sign function. In addition, the derivative of the sliding-mode surface, s, is

.
s =

.
z̃1 + αγλ

∣∣∣∣z̃1

∣∣∣∣λ−1 ·
.
z̃1 +

1
β
· p

q

∣∣∣∣z̃2

∣∣∣∣(p/q−1) ·
.
z̃2 (45)

Using an extended CLF, a control law will be designed to drive the virtual angular
rate error, z̃2, to zero, while ensuring that the current attitude vector, η, will converge to the
desired value of ηr. The attitude controller is derived in two steps, and the detailed design
is presented in Appendix A.

Presently, we consider the input saturation problem, in order to analyze the effect of
the actuator saturation on the closed-loop dynamics; the actuator output is

sat(ua) =


u f 0

a + û f for
∣∣∣u f 0

a + û f

∣∣∣ < Ulim

Ulim for u f 0
a + û f > Ulim

−Ulim for u f 0
a + û f < −Ulim

(46)

where u f 0
a is the input of the BNTSM controller as Equation (A13), and û f is the fault

estimator as Equation (A19).
Furthermore, defining ∆u as the difference between the desired control input u and

the actuator output, i.e., ∆u = ua − sat(ua), an anti-windup compensator is designed to
compensate for the actuator saturation, as follows:

v = Ks(ua − sat(ua)) (47)

where Ks is the control gain of the saturation compensator, and then the total control is

ua = u f 0
a + û f + v (48)

Remark 2. For the fault estimator (A19) (in Appendix A), if z̃2 converges to zero, then
.
û f will

converge to zero, and the fault becomes constant; a disturbance observer method [31] can be used to
estimate û f = const.
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Note that the operational effectiveness,
¯
ρa, (or the multiplicative fault) of the actuators

in Equation (34) can also be estimated by using a similar method as Equation (A19) [32];
thus, there is no more detail.

The BNTSM controller for the trajectory-tracking control is designed as Figure 2, which
includes the flexible airship dynamics and a BNTSM control module. The BNTSM controller
is designed based on the above steps. The disturbance estimator and the fault estimator
are governed by Equations (A18) and (A19). A wind observer is also used according to
Equation (38). The control output is filtered by the command filter (37).
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Figure 2. Block diagram of the proposed BNTSM controller. 

  

Figure 2. Block diagram of the proposed BNTSM controller.

4. Simulation and Analysis

The considered model is the flexible Skyship-500 airship, and the structure parameters
are listed in Table 1; the aerodynamic coefficients are as in [21].

Table 1. Structure parameters for the studied airship.

Parameter Value Parameter Value (kg)

Ix 1.0834 × 105 (kg·m2) m 2.682 × 103

Iy 2.8819 × 105 (kg·m2) m11 5.0575 × 102

Iz 2.1722 × 105 (kg·m2) m22 5.0737 × 103

Ixz 0 m33 5.0737 × 103

L 50 (m) m44 6.8879 × 104

(xG, yG, zG) (0, 0, 3.605) (m) m55 5.8540 × 105

VB 5.131 × 103 (m3) m66 5.8540 × 105

ET0 433,440 (N/m)

The initial position in Fg of the airship is ξ0 = [0, 0, 0 m]T, the initial velocity in
Fb is υ0 = [8.42 m/s, 0, 0]T, the initial attitude is η0 = [0, 0, 0]T, and the initial angular veloc-
ity is ω0 = [0, 0, 0]T. The position constraints for the elevator and rudder are [−30◦, 30◦].
Three scenarios of bounded wind disturbances, control surface faults, and the variable
stiffness of the flexible airship envelope are simulated to illustrate the BNTSM controller
performances. The software of MATLAB and Simulink are employed to solve the problems.

Scenario 1. Attitude tracking control under unknown winds.



Aerospace 2022, 9, 209 11 of 25

This scenario will demonstrate the attitude-tracking performance by using the pro-
posed BNTSM controller and the wind observer. The wind vector is initially set as

υw =


[7, 0, 0]T(m/s), t ≤ 20s
[0, 5, 0]T(m/s), 20s <t ≤ 50s
[0, 0, 3]T(m/s), 50s <t ≤ 80s
[3, 1, 2]T(m/s), t > 80s

(49)

Wind parameters in (38) and (39) are chosen as Lξ = diag(1, 1, 1), Lw = diag(2.5, 2.5, 2.5),
and Qξ = I3, Qυw = I3. To illustrate the proposed performances, a backstepping integral
sliding-mode control (BISMC) [3,4] and a PID controller are employed for comparison.
The sliding surface s of the BISMC is defined as follows: s = λ1z1 + λ2

∫ t
0 z1d(t) + z2.

In addition, the PID controller structure is as in Figure 3.
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The controller parameters are designed as shown in Table 2.

Table 2. Selected parameters of the controller.

Controller Parameters Value

PID kp,zj, ki,zj (j = 1, 2) 2, 0.04
BNTSM c1, c2 diag(2, 2, 2), diag(0.2, 0.2, 0.2)

h, ς, ϕs 0.01 * diag(1,1,1), 0.01 * diag(1, 1.2, 1), 0.4
p, q, β 5, 3, 0.1 * diag(1, 1, 1)

αr, γd, λ 5, 1, 1. 8 * diag(1, 1, 1)
BISMC c1, c2 0.1 * diag(1, 1, 1), 0.01 * diag(1, 1, 1)

h, ς 0.1 * diag(1, 1, 1), diag(1, 1.2, 1)
λ1,λ2 0.5 * diag(1, 1, 1),0.05 * diag(1, 1, 1)

ϕs, ki,smc 0.4, 0.1

The parameters are selected to satisfy the requirements in Section 3 after several design
iterations. The damping ratio and undamped nature frequency of the command filter are
selected as ζn = 0.9, ωn = 20 rad/s. The mode number, N, selects N = 2, Pe = 0.1, Γ = 1.
The gain of the actuator saturation compensator is Ks = 1, and control gain for thruster
kT = 90,000. A doublet command is predefined as the desired attitude.

For an easier comparison, the averaged tracking error is defined as

E =

√√√√ 1
N

N

∑
k=1

(
‖e(k)‖2

)
(50)
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where N is the number of simulation steps, and the elapsed time (ET) is the time that
MATLAB has used to complete the 10-s simulation time. This may not reflect the true
computational burden of the controllers, but it can be used to provide a general idea about
the comparison in computational time among the controllers. The simulation results are
shown, as follows.

It can be observed from Figure 4 and Table 3 that the reference signals of pitch and yaw
angles are precisely tracked, but the averaged tracking errors of the BNTSM controller are
smallest, and then those by the BISMC design are smaller, and the PID controller provides
worse tracking performances comparing with the BNTSM control and the BISMC. In view
of the computational burden, the BNTSM controller is time consuming, while the cost of the
PID controller is the cheapest. The roll motion response is free oscillating and has not been
controlled due to the absence of the direct roll moment under the underactuated Case 2.
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Table 3. Tracking errors and ET of the airship under the input of the controller without
wind compensation.

Controller Error Eϕ (rad) Eθ (rad) Eψ (rad) ET (s)

PID 0.0532 0.0843 0.0893 × 10−3 2153.6
BNTSM 0.0525 0.0834 0.0887 × 10−3 2367.2
BISMC 0.0528 0.0839 0.0890 × 10−3 2226.2

It also can be observed from Figure 5 and Tables 3 and 4 that the responses have smaller
overshoots and shorter transient times by using the BNTSM controller with wind observer
compensation versus those without wind compensation. The wind speeds are precisely
estimated by the proposed wind observer, as shown in Figure 6. Figure 7 demonstrates the
structure mode shapes in the Oxy and Oxz planes; that is, according to (3), the 1st and 2nd
bending mode in the Oxy plane are Φ1 =

[
0 φ1 0

]T and Φ2 =
[

0 φ2 0
]T ; the 1st

and 2nd bending mode in the Oxz plane are Φ3 =
[

0 0 φ1
]T and Φ4 =

[
0 0 φ2

]T ;
the associated nature frequency of the 1st and 2nd bending modes can be obtained by the
modal rigidness and mass, i.e., ωn1 = 22.8rad/s and ωn2 = 64.2rad/s, respectively, and it
can be observed from Figure 7 that the rigidness is bigger and the elastic displacement is
smaller in the middle airship than those on the two sides of the airship.
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Scenario 2. Trajectory-tracking control under actuator faults with unknown winds.

This scenario will demonstrate fault-tolerant tracking performance by using the pro-
posed BNTSM controller and the fault observer. The faults of actuator bias forces with
wind are studied here. The faults are set as follows: Fault 1, the bias from the nominal value
is 5 deg and the loss of effectiveness is 25% for the elevator in t > 30 s; Fault 2, the bias
from the nominal value is 5 deg and the loss of effectiveness is 50% for the rudder in
t > 60 s. The faults are simulated by setting bias values of each actuator at the triggering
time. The wind disturbances are set as Equation (49) in Scenario 1. A doublet attitude
is predefined as the desired attitudes to verify the tracking performance of the BNTSM
control. The controller parameters are the same as Table 2, except for{

c2 = diag
(

0.2, 20, 0.2
)
, β = diag(0.1, 0.002, 0.2), for BNTSM

c1 = c2 = diag
(

2, 2, 2
)
, for BISMC

, (51)

In addition, the fault observer parameters are designed as

γ f = 3, P f = 3, 000, 000× diag(0, 1,−1). (52)
Aerospace 2022, 9, x FOR PEER REVIEW 14 of 27 
 

 

 
Figure 5. Tracking responses of Euler angles with and without wind compensation. 

 
Figure 6. Wind speed estimation, in Scenario 1 with wind. 

Figure 5. Tracking responses of Euler angles with and without wind compensation.

Table 4. Tracking errors and ET of the airship under the input of the controller with
wind compensation.

Controller Error Eϕ (rad) Eθ (rad) Eψ (rad) ET (s)

PID 0.0577 0.0786 0.0817 × 10−3 1993.2
BNTSM 0.0574 0.0774 0.0805 × 10−3 2050.4
BISMC 0.0575 0.0780 0.0811 × 10−3 2048.9

By using the above design, the simulation results are demonstrated as follows.
Figures 8 and 9 shows the pitch step input of 0.2, the rad shows at 5 s, and the tracking

response converges the desired value at 10 s (within 10 s). Because the doublet command is
a changing signal, the steady value of the tracking response also changes; thus, the overall
tracking process is dynamically varying, but the response will quickly converge when the
command is fixed. It can be observed from Figure 8 and Table 5 that the reference inputs
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of pitch and yaw angles are well tracked, even with control surface faults and unknown
winds. Comparing with the PID controller and the BISMC, the BNTSM controller has
smaller averaged tracking errors. In the view of elapsed time, the PID controller is the
least, with the BISMC next, while the BNTSM control will cost more time. The roll motion
is not controlled due to the underactuated character of the flexible airship. It also can
be observed from Figure 9 and Tables 5 and 6 that the responses have shorter transient
times by using the fault observer compensation and the BNTSM controller than those
without fault compensation. This demonstrates the fault tolerant control capability of the
BNTSM controller. The control inputs are shown in Figures 10 and 11. Figure 11 shows
that the control surface faults are estimated by using the proposed estimator of (A19) (in
Appendix A). There are some differences initially because the corresponding tracking errors
z̃2 are affected by the variable reference signals. The fault estimations are gradually close
to the true values. Figure 12 shows the response of the sliding-mode variable, s, which
asymptotically approach zero except for s(ϕ), due to the underactuated roll motion.
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Table 5. Tracking errors and ET of the airship under the input of the controller without
fault compensation.

Controller Error Eϕ (rad) Eθ (rad) Eψ (rad) ET (s)

PID 0.0510 0.0810 0.0788 × 10−3 2171.4
BNTSM 0.0511 0.0803 0.0775 × 10−3 2354.3
BISMC 0.0510 0.0805 0.0780 × 10−3 2193.0

Table 6. Tracking errors and ET of the airship under the input of the controller with
fault compensation.

Controller Error Eϕ (rad) Eθ (rad) Eψ (rad) ET (s)

PID 0.0488 0.0804 0.0829 × 10−3 1821.0
BNTSM 0.0490 0.0797 0.0817 × 10−3 2114.1
BISMC 0.0489 0.0798 0.0819 × 10−3 2016.2
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Scenario 3. Trajectory-tracking control under variable stiffness and unknown faults and winds.

In this scenario, we investigate the significance envelope flexibility has on the effect of
rigid-body dynamics of the airship. What effect does the hull stiffness of the airship have
on the structure modes? Four hull stiffness variants, plus the baseline stiffness case, are
compared. The bending stiffness of the envelope is scaled for the model variants by ±30%
and ±50%, respectively. The model was trimmed in steady level flight at 9 m/s and sea
level. Winds and faults are also considered as Scenario 2. The controller parameters are the
same as Scenario 2 except for{

c2 = diag(0.2, 0.2, 0.4 ), β = diag(0.1, 0.1, 0.2), for BNTSM
c1 = c2 = diag(2, 2, 2), for BISMC

, (53)

By using the BNTSM control design, the simulation results are shown in Figures 13–16.
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From Figure 13, it can be observed that the variable stiffness of the airship envelope
has a small effect on the rigid-body attitude and the position motions. However, the stiff-
ness variation has a great effect on the structure modes, as shown in Figures 14 and 15,
where it can be found that the bending mode responses of qi will become a smaller and
smaller amplitude of oscillation with the increasing stiffness. The general coordinate, q1,
for the first bending mode, is increased in amplitude by 30% for the −50% stiffness variant,
and the general coordinate, q1, reduced in amplitude by 8.3% for the +30% stiffness case.
The same case happens for the generalized coordinate velocity responses. This demon-
strates that stiffness can suppress structural mode oscillation. Figure 16 shows that the
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control inputs change little when the stiffness of the flexible airship is variable, where *
denotes multiplication sign.
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5. Conclusions

This paper proposes a nonlinear attitude tracking control approach for the flexible
airship. A nonlinear backstepping nonsingular terminal sliding-mode control method is
used to design the controller to track desired attitudes and stabilize structural modes of
the flexible airship. Meanwhile, a wind observer is designed to estimate variable wind
speeds. An adaptive fault estimator is designed to deal with nominal offset and loss of
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effectiveness faults of the control surfaces. Saturation compensator is designed to reduce
effect of the actuator saturation. The stability analysis demonstrates that the closed-loop
attitude tracking error dynamics are globally exponentially stable. Simulation results
demonstrate that the BNTSM control designed for three scenarios of the flexible airship can
achieve better attitude tracking performances by using the corresponding compensation
controller, even though the airship is affected by unknown winds, control surface faults,
and variable stiffness of the airship envelope. Therefore, the effectiveness and availability
of the BNTSM control design are verified.

6. Future Recommendation

The future work is to expand the control strategy into a position control loop and
velocity control loop for the flexible airship.
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Abbreviations

BISMC Backstepping integral sliding mode control
BNTSM Backstepping nonsingular terminal sliding mode
CLFs Control Lyapunov functions
CV Center of volume
EI Bending stiffness, E means the elastic modulus, I means the area moment of inertia
NTSM Nonsingular terminal sliding mode
SMC Sliding-mode control
RBFNN Radial basis function neural network

Appendix A

The attitude controller designed by using BNTSM control.
Step 1 Backstepping for the variant of z1.
Using the standard backstepping procedure, select the positive definite function, V1, as

V1 =
1
2

zT
1 z1 (A1)

To make the derivative function ∂V1/∂z1 a negative definite, a virtual control is de-
fined as

α1 = G−1
1
( .
x1r − c1z1

)
, (A2)

where G1 = J, J is in Equation (4). Then,

∂V1

∂z1
= zT

1
( .
x1 −

.
x1r
)
= zT

1
(
G1α1 −

.
x1r
)
= −zT

1 c1z1 < 0 (A3)
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However, instead of directly applying this to virtual control α1, a new signal, x0
2r,

is defined as
x0

2r = α1 − ζ2, (A4)

where ζ2 will be designed in Step 2. The command signal, x0
2r, is filtered to produce the

reference signal, x2r, and its derivative,
.
x2r. It can be implemented to enforce magnitude

and rate limits through the command filter (37). By the design of the command filter (37),
the signal

(
x2,r − x0

2,r

)
is bounded and small.

The effect of filtering on the tracking error z1 is estimated by the following stable
linear filter .

ζ1 = −c1ζ1 + G1

(
x2,r − x0

2,r

)
(A5)

where c1 > 0. To remove the effect of filtering the stabilizing functions from the tracking
error, the compensated tracking error is defined as

z̃i = zi − ζ i, (i = 1, 2) (A6)

Re-selecting the first Lyapunov function V1 as a quadratic function of the compensated
tracking error is

V1 =
1
2

z̃T
1 z̃1, (A7)

whose derivative is
.

V1 = z̃T
1

.
z̃1 = z̃T

1

( .
x1 −

.
x1r −

.
ζ1

)
= z̃T

1

(
G1x2 −

.
x1r −

(
−c1ζ1 + G1(x2r − x0

2r)
))

, (A8)

Substituting Equations (A2) and (A4) into Equation (A8) yields

.
V1 = z̃T

1 (G1(z2 + α1 − ζ2)) + z̃T
1
(
c1ζ1 −

.
x1r
)
= −z̃T

1 c1z̃1 + z̃T
1 G1z̃2 (A9)

Step 2 The effect of filtering the command signal on the tracking error, z2, is estimated
by the following stable linear filter:

.
ζ2 = −c2ζ2 + G2

(
ua − u0

a

)
, (A10)

where G2= diag(0,
Cmyδe

Iy+m55
, Cmzδr

Iz+m66

)
· qSL, Cmyδe , and Cmzδr denote the aerodynamic deriva-

tive coefficients of elevator and rudder, respectively, and L is the length of the airship. Note
that there is no aileron input for the flexible airship, thus Cmxδa= 0, that is, the first roll
moment term, is Cmxδa

Ix+m44
= 0.

Now let us construct the second augmented quadratic CLF by the compensated
tracking error, fault estimation error, and parameter disturbance estimation error, as

V2 = V1 +
1
2

sTs +
1
2

d̃
T

d̃ +
1
2

eT
4 Pee4 +

1
2

ũT
f P−1

f ũ f , (A11)

where ũ f = û f − u f is the fault estimation error, û f denotes the estimation of the fault input
u f . In addition, Pe and Pf are positive definite weight matrices. Considering Equation (A9)
and substituting Equations (35), (45), (A4), (A6) and (A10) into the derivative of V2, yields
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.
V2 = z̃T

1

.
z̃1 + sT .

s + d̃
T

.
d̃− eT

4 Qee4 + ũT
f P−1

f

.
ũ f

= −z̃T
1 c1z̃1 + z̃T

1 G1z̃2 + sT((−c1z̃1 + G1z̃2)
(
1 + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
+ 1

β ·
p
q

∣∣∣z̃2

∣∣∣(p/q−1)
(

f2 + G2u f
a + Γ2d− .

x2r + c2ζ2 − G2

(
u f

a − u f 0
a

)))
+d̃

T .
d̂− ξ̃TQξ ξ̃ − υ̃w

TQυw υ̃w + ũT
f P−1

f

.
ũ f

= z̃T
1 (−c1z̃1 + G1z̃2) +

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)(
sTG1z̃2 − c1z̃T

1 s
)

+sT 1
β ·

p
q

∣∣∣∣z̃2

∣∣∣∣(p/q−1)
(

f2 + Γ2d− .
x2r + c2ζ2 + G2u f 0

a

)
+ d̃

T .
d̂− ξ̃TQξ ξ̃ − υ̃w

TQυw υ̃w + ũT
f P−1

f

.
ũ f ,

(A12)

where ξ̃ = ξ − ξ̂,υ̃w = υw − υ̂w,u f 0
a = u0

h + u0
f . According to Equation (11),

f2 = 1
M22

(MI + MG + MAS + MAD); Γ2 denotes elements of the matrix Γ from the 4th row
to the 6th one, and

M22 =

 m44 + Ix 0 0
0 m55 + Iy 0
0 0 m66 + Iz


As d is an unknown constant or a slow-varying disturbance, then

.
d̃ =

.
d̂−

.
d ≈

.
d̂. If d is

a fast-varying process, a RBF-neural network-based backstepping control can be used [33].
The stabilizing function is defined as

u f 0
a = 1

G2

(
−β · q

p
(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
G1

∣∣∣z̃2

∣∣∣(2−p/q) − f2 − G2ûf − c2z̃2 +
.
x2r − Γ2d̂− (hs + ςsgn(s))

)
(A13)

where c2 > 0, h, ς are sliding-mode surface parameters with h > 0, ς > 0. The control input
of uh is generated by using the above Equation (A13), and then

.
V2 = −z̃T

1 c1z̃1 + z̃T
1 G1z̃2 −

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1z̃T

1 s + sT 1
β ·

p
q

∣∣∣z̃2

∣∣∣(p/q−1)
(

Γ2
(
d− d̂

)
+ G2

(
u0

f − û f

)
− c2z̃2

)
−hs2 − ς

∣∣∣∣s∣∣∣∣+d̃
T .

d̂− ξ̃TQξ ξ̃ − υ̃w
TQυw υ̃w + ũT

f P−1
f

.
ũ f

= −z̃T
1 c1z̃1 + z̃T

1 G1z̃2 −
(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1z̃T

1 s− sT 1
β ·

p
q

∣∣∣z̃2

∣∣∣(p/q−1)c2z̃2 + sT 1
β ·

p
q

∣∣∣z̃2

∣∣∣(p/q−1)G2ũ f

−sT 1
β ·

p
q

∣∣∣∣z̃2

∣∣∣∣(p/q−1)Γ2d̃ + d̃
T .

d̂− hs2 − ς

∣∣∣∣s∣∣∣∣−ξ̃TQξ ξ̃ − υ̃w
TQυw υ̃w + ũT

f P−1
f

.
ũ f

(A14)

As

−z̃T
1 c1z̃1 + z̃T

1 G1z̃2 −
(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1z̃T

1 s− sT 1
β ·

p
q

∣∣∣z̃2

∣∣∣(p/q−1)c2z̃2

= −z̃T
1 c1z̃1 + z̃T

1 G1z̃2 −
(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1z̃T

1

(
z̃1 + αγz̃λ

1 + 1
β z̃2

p/q
)
−
(

z̃1 + αγz̃λ
1 + 1

β z̃2
p/q
)T 1

β ·
p
q

∣∣∣∣z̃2

∣∣∣∣(p/q−1)c2z̃2

= −z̃T
1 c1z̃1 + z̃T

1 G1z̃2 −
(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
z̃T

1 c1z̃1 − αγ

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
z̃T

1 c1z̃λ
1

− 1
β

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1z̃T

1 z̃2
p/q − 1

β ·
p
q diag(

∣∣∣z̃2,i

∣∣∣(p/q−1)z̃T
1 c2z̃2

− 1
β ·

p
q diag (|z̃2,i|) (p/q−1)αγ(z̃λ

1 )
T

c2z̃2 − 1
β2 ·

p
q diag (|z̃2,i|) (p/q−1)

(
z̃2

p/q
)T

c2z̃2

= z̃T
1 G1z̃2 −

(
2In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1z̃T

1 z̃1 − αγ

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1

∣∣∣z̃1

∣∣∣λ−1z̃T
1 z̃1

− 1
β

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1

∣∣∣z̃2

∣∣∣p/q−1z̃T
1 z̃2 − 1

β ·
p
q diag(

∣∣∣z̃2,i

∣∣∣(p/q−1)c2z̃T
1 z̃2

− 1
β ·

p
q diag (|z̃2,i|) (p/q−1)αγ

∣∣∣z̃1

∣∣∣λ−1c2z̃T
1 z̃2 − 1

β2 ·
p
q diag (|z̃2,i|) (p/q−1)

∣∣∣z̃2

∣∣∣p/q−1c2z̃T
2 z̃2

=
[
−
(
2In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1 − αγ

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1
∣∣z̃1
∣∣λ−1

]
z̃T

1 z̃1

+
(
− 1

β

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1

∣∣∣z̃2

∣∣∣p/q−1 − 1
β ·

p
q diag(

∣∣∣z̃2,i

∣∣∣(p/q−1)c2 − 1
β ·

p
q diag (|z̃2,i|) (p/q−1)αγ

∣∣∣z̃1

∣∣∣λ−1c2

)
z̃T

1 z̃2

+z̃T
1 G1z̃2 − 1

β2 ·
p
q diag (|z̃2,i|) (p/q−1)

∣∣∣z̃2

∣∣∣p/q−1c2z̃T
2 z̃2

(A15)

and define the positive definite matrix
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Q =

 Q11
1
β

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)∣∣∣z̃2

∣∣∣p/q−1
(

c1 + c2 · p
q

)
−G1

1
β2 ·

p
q diag (|z̃2,i|) (p/q−1)

∣∣∣z̃2

∣∣∣p/q−1c2


where Q11 =

[ (
2In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1 + αγ

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1
∣∣z̃1
∣∣λ−1

]
, then it yields

(A16)

−z̃T
1 c1z̃1 + z̃T

1 G1z̃2 − (In + αγλdiag(|z̃1,i|λ−1))c1z̃T
1 s− sT 1

β
· p

q

∣∣∣∣z̃2

∣∣∣∣(p/q−1)c2z̃2 = −
[

z̃T
1 z̃T

2

]
Q
[

z̃1
z̃2

]
(A17)

Choose the update law as

.
d̂ =

(
1
β
· p

q

∣∣∣∣z̃2

∣∣∣∣(p/q−1)Γ2

)T
s (A18)

In addition, the fault estimator is designed as

.
û f = P f (

1
β
· p

q

∣∣∣∣z̃2

∣∣∣∣(p/q−1)G2)
T

z̃2 − γ f û f (A19)

which yields

ũT
f P−1

f

.
ũ f = ũT

f P−1
f

( .
û f −

.
u f

)
= ũT

f P−1
f P f (

1
β ·

p
q

∣∣∣z̃2

∣∣∣(p/q−1)G2)
T

z̃2 − ũT
f P−1

f γ f û f − ũT
f P−1

f
.
u f

= ũT
f (

1
β ·

p
q

∣∣∣z̃2

∣∣∣(p/q−1)G2)
T

z̃2 − P−1
f γ f ũT

f û f − P−1
f ũT

f
.
u f

(A20)

As
∣∣∣∣∣∣u f

∣∣∣∣∣∣≤ umax < ∞,
∣∣∣∣∣∣ .

u f

∣∣∣∣∣∣≤ .
umax < ∞ , umax and

.
umax denote upper bounds of the

actuator position and rotation rate, then

− P−1
f γ f ũT

f û f = P−1
f γ f ũT

f

(
ũ f + u f

)
≤ 1

2

(
−P−1

f γ f ũT
f ũ f + P−1

f γ f u2
max

)
(A21)

− P−1
f ũT

f
.
u f ≤

1
2

(
P−1

f ũT
f ũ f + P−1

f
.
u

2
max

)
(A22)

Substitute (A21); (A22) into (A20) yields

ũT
f P−1

f

.
ũ f ≤ ũT

f (
1
β
· p

q

∣∣∣∣z̃2

∣∣∣∣(p/q−1)G2)
T

z̃2 + c (A23)

where

c =
1
2

(
−P−1

f γ f ũT
f ũ f + P−1

f γ f u2
max

)
+

1
2

(
P−1

f ũT
f ũ f + P−1

f
.
u

2
max

)
(A24)

Let Z12 =
[

z̃T
1 z̃T

2

]T
, and thus, it finally yields

.
V2 = −ZT

12QZ12 − hs2 − ς
∣∣∣s∣∣∣−ξ̃TQξ ξ̃ − υ̃w

TQυw υ̃w + c

≤ −ZT
12QZ12 − hs2 − ς

∣∣∣∣s∣∣∣∣− 3
∑

i=1
qξi ξ̃

2
i −

3
∑

i=1
qwiυ̃

2
wi + c

(A25)

where qξi and qwi are diagonal elements of matrices of Qξ and Qυw, respectively. Us-
ing (A16), it is obtained that



Aerospace 2022, 9, 209 24 of 25

|Q| =

∣∣∣∣∣∣
 Q11

1
β

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)∣∣∣z̃2

∣∣∣p/q−1

(
c1 + c2 · p

q

)
−G1

1
β2 ·

p
q diag (|z̃2,i|) (p/q−1)

∣∣∣z̃2

∣∣∣p/q−1c2

∣∣∣∣∣∣
=
[ (

2In + αγλdiag(
∣∣z̃1,i

∣∣λ−1)
)
c1 + αγ

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1
∣∣z̃1
∣∣λ−1

]
·
(

1
β2 ·

p
q diag (|z̃2,i|) (p/q−1)

∣∣∣z̃2

∣∣∣p/q−1c2

)
+ 1

β

(
In + αγλdiag(

∣∣z̃1,i
∣∣λ−1)

)
c1

∣∣∣z̃2

∣∣∣p/q−1G1 +
1
β ·

p
q diag(

∣∣∣z̃2,i

∣∣∣(p/q−1)c2(1+αγ

∣∣∣z̃1

∣∣∣λ−1
)

G1

=

(
1
β · diag(

∣∣∣z̃2,i

∣∣∣(p/q−1)
)(

1
β ·

p
q c1c2

(
2In + αγ(λ + I)

∣∣∣z̃1

∣∣∣λ−1 + α2
γλ
∣∣∣z̃1

∣∣∣2λ−2
)
·
(
|z̃2|p/q−1

)
+
(

In + αγλ|z̃1|λ−1
)(

c1 + c2 · p
q

)
G1

)
(A26)

If the following condition is satisfied,

(
In + αγλ|z̃1|λ−1

)(
c1 + c2 · p

q

)
G1 > − 1

β ·
p
q c1c2

(
2In + αγ(λ + I)

∣∣∣z̃1

∣∣∣λ−1 + α2
γλ
∣∣∣z̃1

∣∣∣2λ−2
)
·
(
|z̃2|p/q−1

)
(A27)

then Q is a positive definite, and if ς > 0, then

.
V2,1 = −zT

12Qz12 − ς
∣∣∣s∣∣∣< 0. (A28)

Let ck = min{2Q, 2ς, –γf+1, 2qξi, 2qwi} > 0 (i = 1, 2, 3), then

.
V2 ≤ −ckV2 + c. (A29)

According to LaSalle-Yoshizawa Lemma [34] and referring to [32], the closed-loop
system tracking error will exponentially converge, and

V2 ≤ (V2(0)− c/ck)e−ckt + c/ck (A30)

Hence
1
2

z̃T
i z̃i ≤ V2, ‖z̃i‖ ≤

√
2c
ck

(A31)

that is, the desired tracking error will exponentially converge to the set ‖z̃i‖ ≤
√

2c
ck

, and

‖x1‖ = ‖z̃1 + ζ1‖≤ ‖z̃1‖+ ‖ζ1‖,‖x2‖ = ‖z̃2 + ζ2‖≤ ‖z̃2‖+ ‖ζ2‖ (A32)
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