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Abstract: Characterisation of space debris has become a fundamental task to facilitate sustainable
space operations. Ground-based surveillance provides the means to extract key attributes from
spacecraft. However, signal inversion attempts are generally under-constrained, which is why an
increase in measurement channels through multispectral observations is expected to benefit parameter
estimation. The current approach to simulating space debris observation at the Institute of Technical
Physics of the German Aerospace Centre (DLR) in Stuttgart relies on monochromatic images taken
from the POV-Ray render engine to form light curve signals. Rendered scenes are generated based
on the location of an observer by propagating a target’s orbit and rotation. This paper describes
the simulation of spectral light curves through the extension of DLR’s Raxus Prime simulation
environment. Light reflections are computed using the Mitsuba2 spectral render engine, while
atmospheric attenuation is accounted for by the radiative transfer library libRadTran. A validation
of the simulator was achieved using multispectral measurements, carried out at the Uhlandshöhe
research observatory in Stuttgart. Measured and synthetic data were found to be in agreement based
on an RMS error <1% of the total measured signal count. Further, simulated spectral products were
used to determine a target’s surface material composition and rotation state and examine aspects of
laser ranging to non-cooperative targets.

Keywords: space debris; space situational awareness; multispectral observation

1. Introduction

The congestion of Earth’s orbits has established itself as a growing threat to space
operations today. Over the past years, the number of objects in orbit has surged, bringing
with it an increased risk for fragmentation events through explosions or collisions [1].
Thereby, objects launched to lower earth orbit (LEO) alone have risen by more than 17 fold
since 2012 [1]. Simulations based on extrapolations of the current launch traffic behaviour
and successful de-orbiting measures have anticipated that, should explosion rates remain
constant, the amount of objects in orbit is set to grow exponentially [1].

To counteract this trend, it will be essential to rethink sustainability in space. A key
aspect of this is facilitating timely collision avoidance manoeuvres that rely on precise
orbit predictions to minimise any impact damage. Current propagations largely stem
from simple estimates of atmospheric drag and solar radiation pressure acting on targets,
which are assumed to remain constant along the targets’ trajectories. This approach has
come to be known as the cannonball model, as it neglects any variation caused by the
objects’ orientation, shape and surface composition. However, the model has been shown
to be inadequate, especially for objects with high area-to-mass ratios, for which a study by
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McMahon et al. found position errors greater than 1 km within a propagation time span of
one hour [2]. Hence, including attitude and surface properties of targets into propagations
can help combat limitations of the cannonball model and lead to more accurate orbit
predictions [2]. Moreover, this information will also be crucial in enabling missions for
in-orbit servicing and de-orbiting of space debris [3].

The circumstances at hand, thus, bring about the need for tools that provide reliable
characterisations of objects in Earth’s orbit. A general approach to infer attributes from
orbital targets has been to exploit ground-based observations, as measured light reflections
vary based on an object’s orientation, shape and surface materials. Figure 1 depicts the
geometric constraints of surveillances, where h represents the bisector of illumination and
observation directions, also known as phase vector, and γ is the angle between illumination
and observation directions, referred to as phase angle. Typically, observations are obtained
passively from sunlight reflections during local twilight [4]. Recent developments in
satellite laser ranging provide prospects of conducting observations under active laser
illumination, as demonstrated through laser ranging activities to non-cooperative targets [5].
Although signal returns are still comparably low, this method is of increasing interest, as
it offers the potential for more accurate position measurements than radar, especially for
smaller targets [5]. That being said, the distribution of returning photons is still poorly
understood, which limits the accuracy of measurement to the radius of the object.

(a) (b)
Figure 1. Space debris observations with phase vector h and phase angle γ. Illustration based
on sketches of the TOPEX/Poseidon satellite model in [6]. (a) Passive sunlight observation
(0◦ < γ ≤ 180◦). (b) Active laser observation (γ = 0◦).

Previous studies have indicated that ground-based observations can provide the
means to estimate targets’ shape, surface and rotation attributes [7,8]. However, due to
the large parameter space dictating measured light reflections, signal inversion attempts
are generally ill-posed. In addition, physical restrictions introduced by the atmosphere
and the optical telescope aperture typically reduce observations to unresolved images.
Especially for satellites at higher orbits (>1000 km), spatial resolution in images is for the
most part insufficient to deduce attributes from spacecraft [7]. Consequently, observations
are frequently compressed to time series of brightness measurements, known as light
curves. The loss of spatial resolution further complicates the parameter estimation. For
this reason, researchers often require a priori information and large datasets to be able
to extract unknown attributes from targets. It is therefore expected that increasing the
amount of independent measurements recorded for light curves through multispectral or
polarised observations will benefit parameter extraction. Previous work has shown that the
additional information provided by spectral and polarised measurements can improve the
conditioning of the estimation problem and facilitate additional approaches to determine
the surface composition of targets [9,10].
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Satellite operators are reluctant to share information about their assets in space, so
there is often no ground-truth information that could provide a basis for research on the
parameter estimation from space debris. Physically accurate simulation can be a stand-in
for ground-truth data. The simulation environment described in this paper will enable the
development and testing of light curve inversion algorithms. The platform is validated
through a comparison to a series of multispectral field measurements obtained in November
2020 using the DLR facilities at Uhlandshöhe research observatory. Further, parameter
estimation approaches are demonstrated based on output from the simulator. The paper is
concluded by discussing products of spectral simulations in context of their contribution to
the inversion of light curve signals.

2. Literature Review

Software for the simulation of spectral light reflections from spacecraft has been presen-
ted in multiple publications so far. Probably the most frequently referenced of these is
the Time-domain Analysis Simulation for Advanced Tracking (TASAT) [11] created by the
U.S. Air Force Phillips Laboratory. Further approaches that can be found in published
literature include the Digital Imaging and Remote Sensing Image Generation (DIRSIG)
suite [12] of the DGIRS Laboratory at Rochester Institute of Technology and the CanCurve
software [13] introduced by Willison and Bédard. Each of these simulators relies on Com-
puter Aided Design (CAD) spacecraft models and the notion of the Bidirectional Reflection
Distribution Function (BRDF) (see Equation (1)) to model light reflections [13–15]. A main
difference between implementations thereby lies in the characterisation of material BRDFs.
TASAT, for instance, features an empirical material database combining reflection models to
compensate for sparse measurements [14]. However, a study by Wellems et al. points out
shortcomings of this database being the limited amount of measurement samples for ma-
terials, both in spectral and geometric domains [16]. Moreover, research by Dugging et al.
raises questions about the accuracy of the Maxwell-Beard BRDF model [17] used by TASAT,
particularly when applied to specular materials [14].

The demonstration of DIRSIG’s simulation pipeline by Bennett et al. indicates that
DIRSIG does not natively support reflection measurements [15], but rather relies on the
parametrised Ward model [18]. By fitting the Ward BRDF to empirical measurements,
Bennett et al. show that the model also entails increasing imprecision for specular materials [15].

Willison and Bédard strive to solve issues arising from BRDF models by supplying
tabulated BRDF data directly to the CanCurve utility [13]. Their research suggests that
this may help avoid errors of reflection models, although they acknowledge that their
measurements lack sufficient and well allocated samples [13,19]. Consequently, inaccurate
representation of an objects’ appearances cannot be excluded using current approaches, es-
pecially when considering the predominantly specular nature of frequent surface materials
used on spacecraft, such as Multi-Layer Insulation (MLI) or solar panels [20,21].

Possibly the main shortcoming of simulators is the lack of quantitative and time-
resolved validation to field measurements. For the TASAT software, Luu et al. attempt to
compare simulations to full spectra taken from the cylindrical Galaxy V satellite [7]. Whilst
empirical and synthetic data appear similar, the limited spectral range of observations is
insufficient to correlate any significant features [7].

An image obtained from DIRSIG is opposed to an observation from the 3.6 m AEOS
telescope in Hawaii by Bennett et al. [15]. However, no validation of temporal or quantitat-
ive results of the simulation are included in the document [15].

Simulated reflections using CanCurve are compared to ground truth measurements
collected by Bédard et al. in [22] from the CanX-1 CubeSat [13]. The simulation model is
thereby constructed from BRDF measurements of white paint, aluminium and the CanX-1
solar cells [13,20]. Modelled and empirical spectra are shown to possess similar features
at multiple observation directions. Regardless, no quantitative comparison can be drawn
between them, as measurements are recorded in sensor counts while simulated results
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are only computed as spectral BRDF values. Moreover, the comparison does not include
atmospheric effects encountered during ground-based observations.

Examining the presented software highlights the need for a solution that combines
accurate measurements of material reflections with a physically sound simulation environ-
ment. Moreover, the focus of developments should be placed on the accuracy of predictions
and facilitating parameter estimation. Therefore, a refined approach should strive to at-
tain a quantitative comparison to field recordings of light curves to assess the validity of
the model.

3. Materials and Methods

The simulation framework presented in this paper is built on the Raxus Prime light
curve simulator, which was originally implemented by Daniel Burandt [23] at the Insti-
tute of Technical Physics of the German Aerospace Centre (DLR) in Stuttgart. Former
revisions to Raxus Prime were carried out by Ewan Schafer [24], which form the basis for
this research. Up until now, Raxus Prime relied on the POV-Ray render engine [25] to
determine light transport. Consequently, simulations were restricted to monochromatic
renders of relative brightness values that were not related to physical units of radiance.
Thus, computations could not fully represent ground-based satellite observations, which
are subject to wavelength dependent material reflections and atmospheric attenuations.
Nevertheless, Burandt et al. were able to produce comparable light curves to measured data
by optimizing targets’ rotation parameters [26], thereby supporting the notion of utilizing
available render software to model reflections. At the same time though, the results of
Burandt et al. highlight the complexity of validating the simulation environment, as for
most targets, insufficient information is accessible, introducing large uncertainties within
the replicated scene.

An enhanced version of Raxus Prime is therefore presented that overcomes previous
limitations by including wavelength-related effects of radiation transfer and allowing spec-
trally accurate instrument transmissions and detector quantum efficiencies to be considered.
The new simulation pipeline is novel in its ability to generate radiometrically correct multis-
pectral light curves of satellites in arbitrary wavelength bands as they would be observed
on the ground, even when non-standard spectral bands are used for observation. This
is critical for photon-starved applications, such as high time resolution satellite photo-
metry, where optical elements such as dichroic mirrors with non-standard transmission
and reflection spectra are employed to maximise the sensitivity of the system.

The use of open-source software components contributes to the computational effi-
ciency of the tool and gives access to features that have previously not been available to
light curve simulators, including differentiable rendering and ingesting state of the art
formats for tabulated reflection measurements. The following section covers the necessary
adjustments to facilitate spectrally resolved simulations. Figure 2 visualises the updated
simulation pipeline.

To model a satellite observation, Raxus Prime requires a set of input parameters defin-
ing the satellite’s reflectance and motion as well as the location of the observer. Specifically,
the input includes:

• The target’s orbital Two-Line Element (TLE) for propagating the satellites trajectory;
• Initial attitude and rotation parameters of the target, including inertia tensor, rotation

axes and rotation periods;
• A 3D target model, partitioned based on material representations using the BRDF

reflection model;
• Observer location in geocentric coordinates.
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Figure 2. Revised simulation pipeline of Raxus Prime.

For active laser ranging scenarios, at least one transmitter is specified from a location,
beam divergence and power spectrum. Optionally, simulated products can be customized
by supplying optical transmissions and efficiencies of the receiver instruments. Raxus
Prime also provides a selection of generic satellite shapes, reflection models and beam
profiles that can be useful if these details are not known beforehand.

The simulation is carried out in three principal steps:

1. Geometric relations between light source, target and observer are propagated from
a target’s TLE and rotational parameters. Alternatively, positions can be set manu-
ally, using information from, for example, Consolidated Prediction Format (CPF)
format predictions;

2. Reflections are computed by rendering the geometry at discrete time intervals during
the pass and subsequently fused to form a spectral light curve;

3. Additional processing steps are applied to the series of spectral data such as atmo-
spheric attenuation or conversion to instrument responses.

TLE propagations are performed using the Simplified General Perturbations 4 (SGP4)
model, which can be accessed at [27]. The target attitude is calculated from the torque
free Euler equations [24,26], under the premise that its rotation state remains constant. In
most cases this is a valid assumption, as typical values for environmental torques acting
on objects in Earth orbit are on the order of 10−4 to 10−7 N m [28–30], which are too
small to have a significant effect on the objects’ rotation over the time span of a simulated
pass (usually less than 10 min). Analysis of historical spin periods for satellites such as
TOPEX/Poseidon and Envisat have revealed changes in rotation periods of approximately
1.1 and 0.3 degrees per year, respectively [28,31].

3.1. Spectral Renders

Following the example of previous versions of Raxus Prime, the spectral simulation
pipeline harnesses the capabilities of specialised render software. Spectral renders are
performed using the Mitsuba2 open-source render engine [32], which implements a classical
Monte Carlo ray tracer, featuring a range of sampling strategies to ensure the efficiency of
computations. Mitsuba2 is also capable of modelling polarised light and can be adapted
to render scenes in a fully differentiable fashion [32]. Although these features are not yet
supported by Raxus Prime, they provide promising areas for further developments.

Figure 3a depicts the principle of Mitsuba’s ray tracing algorithm. Rays are cast from
the sensor and intersected with the scene geometry. At each intersection, the scattering
model of the surface material is evaluated to determine the attenuation along the ray and
sample further directions of incident light. Scattering properties of surfaces are generally
characterised by the Bidirectional Scattering Distribution Function (BSDF), which accounts
for effects of reflective as well as transmissive materials [33]. It was determined by means of
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visual inspection that common spacecraft materials such as solar panels, MLI or aluminium
permit little subsurface transmission. Therefore, light interactions are captured solely
through reflective effects using a subset of the BSDF, namely the BRDF. The BRDF is
defined as the ratio of reflected radiance Lo(ωo, λ) to incident irradiance Ei(ωi, λ) on a
surface [33], ergo

fr(ωi, ωo, λ) =
dLo(ωo, λ)

dE(ωi, λ)
. [sr−1] (1)

The distribution of surface reflections, thus, makes up a five-dimensional problem
that varies with the wavelength λ as well as directions of incident ωi and outgoing ωo
light; see Figure 3b. In particular cases, such as isotropic materials or Lambertian surfaces,
the parameter space can be reduced to four [34] or one dimensions [33], respectively. For
fully diffuse objects, reflections are characterised by the surface albedo ρg(λ) and are
independent of the lighting geometry [33].

(a)
(b)

Figure 3. Backward ray tracing. (a) Ray integration. (b) Material reflection.

Before interfacing Mitsuba2 from the Raxus Prime environment, the render process
was modified to extract spectral data directly, rather than converting to RGB images first.
A custom scene integration procedure was implemented using the Python bindings of
Mitsuba2, so that the main rendering tasks are still delegated to Mitsuba’s C++ functions.
The integration relies on a stratified sampling approach to draw random wavelengths
samples for each ray. Upon rendering a scene, the spectral output is binned to form
hyperspectral intensity maps that can be stored for later processing. The data is saved in
units of [W sr−1 nm−1], allowing for subsequent scaling by the measurement aperture to
determine the expected spectral flux at the telescope.

Although the spectral range of renders is technically not restricted, Mitsuba2 assumes
radiation transfer to occur in thermal equilibrium, thereby ignoring any influence of thermal
emission. Hence, the accuracy of computations will degrade towards infrared wavelengths,
where thermal effects contribute significantly to radiation transfer [35]. For this study,
simulations were limited to wavelengths ranging from 300 to 1240 nm at a resolution of
5 nm.

Target models for Mitsuba can be created using the OBJ and PLY standard 3D-model
formats. Reflection models need to be assigned individually to each target component.
Models are drawn from standard distributions, which include options for specular, diffuse
or GGX [36] or Beckmann [37] surfaces. Spectral scattering distributions of materials
can be altered based on the Fresnel equations by supplying refractive properties [32]
or by overlaying predefined reflectance spectra. Alternatively, measured BRDFs using
the adaptive sampling method introduced by Dupuy and Jakob in [38] can be sourced
from their database [39] or specified independently. Figure 4 gives an example of the
varying appearance of a target across separate spectral bands, based on renders of a
box-wing satellite. In this case, diffuse and Beckmann BRDF models were combined
with lab measurements of reflectance spectra taken at a single illumination and scattering
configuration; further details are given in [21].
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Satellite observations require a relatively simple render scene consisting of the target
model, a sensor and one or more transmitters corresponding to the Sun and/or lasers. For
simplicity, transmitters are modelled using parallel light sources and an orthographic sensor
model, which was ported from the previous version of Mitsuba to represent the telescope.
It was found that the small divergence of ranging lasers, which is typically in the range of
several arcseconds, is negligible for renders, as it is generally well below the accuracy of
material reflection measurements. The same applies to the change in perspective induced
by the orthographic sensor due to the relatively small cross section of targets and the
large distance between target and observer for ground-based observations. In contrast, the
Sun’s angular diameter seen from a satellite is ∼0.54 degrees, which may have a detectable
influence on reflections from highly specular materials, for which slope widths of specular
peaks were observed down to approximately one degree while obtaining lab measurements
for this paper. Minor angular differences must therefore be considered when evaluating
specular sunlight reflections.

Figure 4. Renders of a box-wing satellite model. The top left image indicates the surface materials:
red → aluminium, blue → solar cell, yellow → Multi-Layer Insulation (MLI), green → uniform
reflectance. The other images provide a greyscale depth map and intensity images across different
spectral bands; see colour bar.

Each transmitter in the render scene is instantiated from a spectral irradiance distribu-
tion. The solar irradiance in Earth’s orbit is determined from measured spectra collected in
the libRadTran library [40,41], which is introduced in the following section. Laser irradiance
on a target is calculated from an emission spectrum and the general laser and geometric
parameters, including beam divergence, distance to the object and average power output.

3.2. Post-Processing

Atmospheric effects are accounted for by the radiative transfer library
libRadtran [40,41], which was developed as open-source software at the DLR in Ober-
pfaffenhofen. Raxus Prime exploits the library to compute transmission spectra in the
wavelength resolution of the render at each observation geometry. Atmospheric attenu-
ation, thus, varies with the location of the observer and local target elevation. Turbulence
related effects, such as atmospheric scintillation, are currently not considered, as image
blurring and statistical fluctuations are not relevant for non-resolved observations when
measurements are averaged over time spans larger than the respective coherence time [35].
Static losses are considered during the calibration of reference measurements.

Rendered spectra are multiplied by the atmospheric transmission to determine the
spectral intensity of light at the telescope. For active illumination, incident laser light on
the target is weighted equivalently.

Hyperspectral images from the render can be fused to a single spatial point to form
spectral light curves. In this case, the spectral flux Φ(λ) at the telescope is determined by
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summing rendered intensity maps over all pixels and multiplying with the observational
solid angle, so that

Φ(λ) = ∑
p

Īp(λ)
A
r2 . (2)

where, Īp(λ) is the average intensity spectrum at each pixel p of the orthographic sensor
and the solid angle is defined as A/r2, where A is the cross section of the telescope aperture
and r the distance between target and observer. An example of a synthetic spectral light
curve, produced by Raxus Prime, is given in Figure 5.

Figure 5. Spectral light curve for a passive ground-based observation of the box-wing satellite.

Simulated instrument responses are the product of spectral light curves, transmission
spectra of the telescope optics and instrument specific efficiencies, integrated over the
wavelength range of optical throughput. Figure 6 gives an impression of the processing
steps involved in converting a rendered spectrum to an instrument response for a single
observation geometry.

Figure 6. Conversion of satellite reflectance spectra to instrument responses.

Laser ranging to non-cooperative targets is modelled by applying atmospheric and
instrument attenuations directly to the hyperspectral intensity maps produced by the
render. Using the resulting distribution as weights for the depth map of the rendered
scene, the statistical distribution of photon returns can be evaluated. Figure 7 depicts the
normalised ranging histogram for the scene in Figure 4. Observation bands are chosen
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to be generic Gaussian curves with centre wavelength λ and standard deviation σ, so
that G-λcentre/σ.

Examining the simulated data reveals that the required centre of mass corrections for
ranging estimates differ across observation bands. This is a consequence of the varying
spectral reflectivity among visible surface materials. Offsets will differ based on the sensor
band, observation direction and surface properties of the target. Theoretically, this limits the
accuracy of measurements to the object’s radius if no further target information is known.
For the given example, the distance from the satellite’s true position and the averaged range
measurements in each band are∼0.05 m in the G-531/26 and∼0.01 m in the G-1069/26 band.
That being said, it should be noted that the simulation method does not yet account for
repeated reflections on the target.

Figure 7. Normalised estimate of laser ranging returns based on the scene in Figure 4. Observation
bands are given in Figure A1.

4. Results

Due to the large parameter space of observations, validating the simulation envir-
onment is not trivial. To gather suitable reference data, it is essential that the number of
unknown parameters is constrained to a minimum. In spite of this, satellite providers
generally do not publish details concerning the attitude or surface properties of their space-
craft. Further, the appearance of objects has been found to change when exposed to the
space environment for extended periods of time [42]. Consequently, the main issue lies in
determining targets for which the relevant information is accessible.

An equivalent problem is encountered during the calibration of radar stations. For this
purpose, governmental institutions have launched a range of passive calibration targets
into Earth’s orbit. While obtaining reference measurements for this research, the two
spherical satellites listed in Table 1 were recorded. Each of these is made from a uniform
surface material; therefore, their attitude does not influence observations. Although precise
surface specifications are not publicly obtainable, the general material category allows for
the objects’ reflectance to be estimated within reasonable bounds.

Table 1. Observed radar calibration spheres. Parameters were obtained from [43].

Satellite NORAD ID Surface Material Diameter [m]

Calsphere 4A 1520 White paint 0.36
Lincoln Calibration Sphere 1 (LCS 1) 1361 Polished aluminium 1.13

Reference data was collected at the Uhlandshöhe research observatory using a correc-
ted Dall–Kirkham telescope with a primary mirror diameter of 43 cm and a focal length of
3 m. The optical setup is depicted in Figure 8. Multispectral recordings were obtained from
an Atik 414ex RGB camera and three Single-Photon Avalanche Diodes (SPAD) with peak
efficiencies at 420, 650 and 950 nm. The instruments were calibrated based on a series of
star observations throughout each night of observation to facilitate a quantitative compar-
ison between measured and simulated light curves. For details on the optical system and
calibration, the reader is referred to [21].
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The limited size of the telescope aperture meant that reflections from Calsphere 4A
were for the most part below the signal-to-noise threshold for the instruments. Because of
that, only one pass was recorded for which the signal in the 950 nm SPAD did not exceed
the noise threshold. LCS 1 generally appeared brighter, so that three clear passes during
two nights of observation were acquired.

Previous observations by Hall et al. have shown Calsphere 4A to appear almost
fully diffuse, while LCS 1 is largely specular in reflections [43]. Hence, for simulations,
Calsphere 4A was modelled using a diffuse BRDF and LCS 1 was assigned surface prop-
erties based on the isotropic Beckmann model, which combines specular and diffuse
reflections through an additional roughness parameter. In both cases, the exact spectral
reflectance was unknown and had to be determined by fitting synthetic to measured light
curves. For LCS 1, the roughness parameter required for the Beckmann model was included
in the estimation.

Figure 8. Optical setup used to gather field measurements at the Uhlandshöhe research observatory.

Optimisations of synthetic data were performed over a set of attenuation factors in
each of the observation bands using the constrained Sequential Least SQuares Programming
(SLSQP) algorithm [44]. To simplify computations, count rates from the single photon
detectors were binned to match the frequency of camera images. Table 2 gives an overview
of the extracted albedo coefficients for Calsphere 4A and LCS 1. The comparison between
simulated and measured light curves can be seen in Figures 9 and 10. Although the
measurements are subject to noise, synthetic and empirical data are overall in agreement,
which is underlined by RMS errors of less than one percent with respect to the total
measured signal counts. The signal ratios further indicate that the simulation correctly
captures the influence of varying atmospheric attenuation along the targets’ trajectories.
Comparably high fluctuations detected for LCS 1 are corroborated by observations of Hall
et al. and are most likely a consequence of surface irregularities leading to alterations in
the specular reflection from the target [43].

Table 2. Fitted simulation parameters based on observed passes in the RGB camera and Single Photon
Avalanche Diodes (SPAD).

Satellite Model Roughness Band Albedo
α R G B 950 nm 650 nm 420 nm

Calsphere 4A Diffuse - 0.75 0.73 0.70 - 0.76 0.86
LCS 1 Beckmann 0.12 0.67 0.73 0.66 0.72 0.73 0.63
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Figure 9. Comparison of simulated (dashed line) to measured (continuous line) data for a pass of
Calsphere 4A on 25/11/2020. (above): count rates, (below): signal ratios.

Figure 10. Comparison of simulated (dashed line) to measured (continuous line) data for a pass of
LCS 1 on 27/11/2020. (above): count rates, (below): signal ratios.
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5. Discussion

Products of the simulation can be exploited to study the general inversion problem
in detail. The main benefit of having a software environment to model space debris
observations lies in the flexibility of modelled scenarios and its capability to generate
large amount of data. To demonstrate this, several approaches are discussed that rely on
synthetic light curves to determine target aspects. Presented procedures are included in the
Raxus Prime simulation environment as optional post-processing steps.

5.1. Spectral Upsampling

When re-examining the fit of simulated to observed light curves from the previous
section, it is possible to derive further properties of the calibration spheres. As both targets
have uniform surface materials, fitted albedo values constitute low resolution reflectance
signatures. Hence, the targets’ reflectance spectra can be estimated by applying spectral
upsampling techniques.

Assuming that observations were conducted in n bands with spectral sensitivities
P0(λ), P1(λ), . . . , Pn−1(λ), then any spectral distribution g(λ) matching observed albedo
values ρ = [ρ0, ρ1, . . . , ρn] must satisfy

ĝ(λ) = arg min
g

∥∥∥∥ρ−
∫

g(λ)P(λ)λdλ∫
P(λ)λdλ

∥∥∥∥. (3)

Here, P(λ) = [P0 P1 · · · Pn−1] represents the matrix of spectral sensitivity functions
in each band. Further, band specific bias is avoided through normalising by the photon
throughput in each observation band P(λ) hc

λ , where h is Planck’s constant and c is the
speed of light in vacuum.

For this study, an upsampling method presented by Jakob and Hanika [45] was
expanded to accept multispectral input in arbitrary spectral bands. The original method
employs a second order polynomial smoothed by a sigmoid function to approximate
spectral distributions from tristimulus values [45]. The sigmoid function S(x) is defined so
that it projects the range of polynomial estimates [−∞, ∞] to values between 0 and 1, with

S(x) =
1
2
+

x
2
√

1 + x2
. (4)

Transferring this idea to n-dimensional observations permits the use of polynomial
estimates of order n− 1. Figures 11 and 12 show this applied to the extracted albedo coeffi-
cients of Calsphere 4A and LCS 1, respectively. It will be noted that solutions only represent
suggested spectra, as any upsampling is inherently underconstrained. Nevertheless, the
identified reflectance of Calsphere 4A is similar to measurements of artificially weathered
thermal control paints gathered by Bengston et al., for which reflectivity dips around 500
or 600 nm and generally declines towards higher wavelengths [46]. It is expected that the
steep decrease in reflectiveness starting at 700 nm is an artefact of the sigmoid function
combined with reduced detector sensitivity around 900 nm.

Figure 11. Spectral reflectance of Calsphere 4A estimated from spectral upsampling based on the
albedo values in Table 2.
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Figure 12. Spectral reflectance of LCS 1 estimated from spectral upsampling based on the albedo
values in Table 2.

The spectrum obtained for LCS 1 reveals characteristics of other aluminium spectra
found in [20], including a general gain in reflectiveness towards larger wavelengths and
dips around 400 and 800 nm. Even so, both dips are more prominent than in the literature
and the latter appears slightly shifted towards 900 nm, which may also be traced back to
the decreased sensitivity of the observation set-up around 900 nm.

5.2. Spectral Unmixing

Advantages of spectral observations become apparent when examining signal vari-
ations across individual measurement channels. For one, independent channels can help re-
duce ambiguities in the parameter estimation [10,21]. Primarily though, spectral signatures
can be used to discriminate between targets and discern their material properties [7,47–50].

Essentially, light curves are defined by the emission spectrum of the light source and
scattering properties of the target’s surface materials, as well as atmospheric attenuation
effects for ground-based observations. Since solar or laser emission profiles are known and
atmospheric transmission has been well classified, observed signals can be reduced to the
target’s reflectance signature. The resulting quantity constitutes the combined reflective
properties of all the target’s surface materials that contribute to a reflection.

Let Γj be a target’s reflectance factor in an observation band j; then

Γj =
Φo,j

Φi,j
, (5)

where Φo,j refers to the measured flux at the telescope and Φi,j is the incident flux on the
target, which can be determined from the spectral energy distribution of the light source.
For ground-based observations, Φo,j includes atmospheric attenuations. These can be
removed from the reflectance factor by applying the atmospheric transmission profiles
while calculating Φi,j.

If measurements are carried out within multiple spectral bands, a system of equations
can be established that describes the target’s reflectance signature as a mixture of the
reflectance of its individual surface materials. Fortunately, surface materials on artificial
satellites are typically segregated in discrete patches, so that a linear mixing model can be
assumed [51], taking the form of

x = Sa + w. (6)

Here, x denotes a measured spectrum of n samples, S is an (n×m) matrix containing
the spectral signatures of m materials, a quantifies the signal contribution of each material
and the noise term w captures any inhomogeneities of the model. By minimising the noise
term, the model can be turned into an optimisation problem yielding the contribution
vector a. The signal contribution is also referred to as abundance; however, this term can
be misleading, as the representation of material signatures within a reflection is dependent
on the materials’ reflective properties as well as the size of the reflecting surface area.

For an initial demonstration of the unmixing algorithms, simulation models were
constructed from diffuse and Beckmann BRDFs with manually imposed spectral reflect-
ances. Lab measurements of reflectance spectra from a solar cell, Kapton-coated MLI and
aluminium were obtained in the clean room environment at the DLR Institute of Technical
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Physics in Stuttgart. Additionally, a uniform distribution was added to roughly resemble
white paint. Three different least squares algorithms were tested to extract the contribution
vector for the given spectral signatures: unconstrained, non-negative and fully constrained
least squares. It was found that the non-negative least squares method followed by a
normalisation of the contribution vector performed best. Naturally, estimations relying
on a large amount of spectral samples are more reliable. However, the observation bands
depicted in Figure A1 of Appendix A proved sufficient to unmix the subset of studied
materials. To simplify the ground truth predictions, simulations were performed on a
rotating cube with sides corresponding to each of the four materials. The model was first
placed under solar irradiation and then under simultaneous illumination by seven evenly
distributed laser beams across the spectral range of the simulation. In both cases, the
estimation performed equally well. Figure 13 indicates the resulting confusion matrix.
Predictions proved comparably reliable to unmixing attempts documented by Hall et al.
in [49,52].

Figure 13. Confusion matrix of unmixing from observation in the bands given in Figure A1.

Unmixing signals from known spectral distributions requires a large spectral database
that includes matching materials for all observed targets. Therefore, a more practical
strategy is to extract source signatures directly from signals. Again, multiple approaches
exist to achieve this, such as Principal Component Analysis (PCA) or the Automatic Target
Generation Process (ATGP) [53]. Both algorithms were tested on simulated observations
of the box-wing satellite model depicted in Figure 4. In this case, ATGP proved superior;
while PCA was only able to extract linear combinations of the true material signatures; the
results from the ATGP algorithm given in Figure 14 present a suited approximation of the
objects’ surface materials. Minor fluctuations of simulated spectra are a result of Monte
Carlo noise stemming from random sampling of the spectral domain.

(a) (b)
Figure 14. Spectral reflectance signatures of common spacecraft materials. (a) Lab measurements
assigned to the simulation model. (b) Extracted signatures using Automatic Target Generation
Process (ATGP).
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5.3. Rotation and Attitude Estimation

A promising method used to gain more insight on targets’ surface composition and
motion has been applied by Kucharski et al. in [54,55]. By projecting measurements onto
a sphere in a target’s body frame, it is possible to create a reflection map of the target.
Thereby, the position of measurements on the reflection map is defined by the orientation of
the phase vector of each measurement with respect to the targets body frame; see Figure 15.
To apply this method, prior knowledge of the target’s attitude throughout an observation
is required. However, Kucharski et al. indicate that the mapping may be used to extract
attitude and rotation parameters of targets, as the reflection map is shown to be smooth for
correct estimates [54]. Accordingly, brute force optimisation can be applied to find a set of
suited attributes [56].

Figure 15. Projection of observations into a target’s body frame based on the direction of the
phase vector.

Active, laser-based observations in which illumination and observation directions
coincide (γ = 0◦), produce unique reflection maps. For passive surveillance on the other
hand, multiple observation configurations may correspond to the same phase vector; thus,
the reflection map may differ slightly depending on the observation geometry. During
one pass, however, observations are often restricted to a single observation geometry for
each direction of the phase vector with respect to the targets’ body frame. Hence, maps
produced from passive observations by Kucharski et al. are not affected by this. It remains
unclear to what extent reflection distributions can be combined from separate passes.

To demonstrate the potential of this projection technique, backscattering simulations
of the box-wing satellite from Figure 4 were performed under solar illumination. Figure 16
shows the derived reflection and mean ranging estimate distributions for a single ob-
servation band. Given reflection distributions across multiple observation bands, the
previously introduced spectral unmixing methods can be applied to determine material
contribution maps for the target; see Figure 17. The resulting visualisations allow for better
characterisation and differentiation between targets.

This approach provides the basis for determining the attitude and rotation parameters
of a given pass. Assuming that the target rotates around a single body axis, which is
known from its inertia tensor, then the corresponding rotation period can be calculated
using commonly employed frequency analysis algorithms such as Least Squares Spectral
Analysis (LSSA). Thus, only the orientation of the body frame with respect to the inertial
frame remains unknown.

A grid search over possible Right Ascension (RA) and Declination (Dec) of the target’s
rotation axis in Geocentric Celestial Reference System (GCRS) coordinates can be conducted.
At each point in the grid, a new trajectory is determined from the initial rotation matrix of
the target, which in turn is used to generate a synthetic light curve and evaluate its least
squares error to the reference light curve.

To reduce computational effort, a full spectral reflectivity map, consisting of 10,000 evenly
distributed phase vectors, was computed in under 48 h on an Nvidia GeForce RTX 2080Ti
graphics card. The brightness associated with any particular viewing direction can be
estimated by interpolating between the pre-calculated points on the reflectivity map. This
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approach is computationally more efficient than rendering each light curve in the search
sequentially, as similar phase angles would be rendered repeatedly over the course of the
full optimisation.

Conditioning of estimates is improved by carrying out interpolation across reflectivity
and ranging maps for all bands as well as the material contribution maps. Figure 18
shows the mean of least squares errors of the interpolated count rates, ranging returns
and material contributions. To avoid any bias, count rate and ranging distributions are
normalised beforehand. The true trajectory of observation directions is represented as a
white line in the body frame. For visualisation purposes, these plots show a cross section of
the error surface, where the phase of the rotation around the rotation axis is fixed at the
start epoch of the simulation.

(a) (b)

Figure 16. Retroreflective simulations of the box-wing satellite depicted in Figure 4 under solar illumin-
ation, measured in the G-638/26 band. (a) Passive reflection. (b) Mean theoretical ranging estimate.

(a) (b)

(c) (d)

Figure 17. Estimated material contribution from the surface of the box-wing satellite depicted in
Figure 4 obtained from backscattering simulations under solar radiation. (a) Aluminium. (b) Solar
Cell. (c) MLI. (d) White paint (uniform).

Considering Figure 18, it is apparent that the error surfaces are not convex and have
multiple local minima. Ergo, attempts to determine the true target attitude through least
squares optimisation were only found to be successful as long as the initial guess was in
close proximity to the correct parameters. Despite this, an optimum point on the error
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grid is apparent in both cases. The second minimum around the inverse rotation axis in
Figure 18a is a result of the targets symmetry with respect to its equatorial plane. Cross-
shaped fluctuations around the minima are features of the interpolation between grid
points in the plot.

(a) (b)

Figure 18. Grid search optimisation for estimating the initial attitude of the box-wing satellite in two
degrees of freedom. Top: reflection map with observation trajectory (white line); bottom: normalised
optimisation error. (a) Rotation axis pointing along the satellite antenna. (b) Rotation axis pointing
along the wingspan of the solar panels.

6. Conclusions

A spectral light curve simulator was developed to reproduce ground-based observa-
tions from space debris. The application provides options to model active and passive light
curve observations, as well as predict return rates and centre of mass range offsets from
laser ranging measurements to non-cooperative targets. By including open-source software
such as the Mitsuba2 render engine and the atmospheric transfer library libRAdTran, the
simulation pipeline is optimised. Spacecraft materials are specified via the interface of the
render engine through BRDF measurements using an adaptive sampling technique or para-
metrised BRDF models. The validity of the simulation environment was verified through
a quantitative comparison to field measurements of radar calibration spheres. Although
these simple calibration targets do not capture the full capability of the software, they were
selected due to the restricted availability of shape, surface material and attitude information
for satellites. To attain a validation based on more complex targets, a cooperation with a
satellite manufacturer and operator is envisioned for future studies.

The simulation toolkit was equipped with algorithms to demonstrate the potential of
synthetic products for studies on parameter estimation from spacecraft. Thereby, material
properties as well as rotation and attitude parameters were determined for a box-wing
satellite using a limited set of prior knowledge. Much research is still to be conducted before
these methods can be exploited to reliably extract attributes from space debris. However,
the presented methods yield promising approaches to achieve this.

As the current ranging estimate does not consider multi-bounce reflections, one area
of future development will be the Monte Carlo integration of the path length of rays to
allow for more accurate ranging predictions. Moreover, simulations may be extended to
include polarised light and resolved imaging to make use of all available information from
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measurements. The latter is especially relevant when considering the large increase of
objects in LEO in recent years and the amount of satellites that are yet to be launched [1],
for which moderately resolved imaging may hold valuable status information.

Further potential for research is provided by the differentiable rendering capabilities of
Mitsuba2. Exploiting derivatives may help increase the efficiency of attribute estimations.
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ATGP Automatic Target Generation Process
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LEO Low Earth Orbit
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Appendix A

Figure A1. Gaussian observation bands denoted as G-λcentre/σ.
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