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Abstract: The success of space missions like capture-and-deorbit or capture-and-service relies on
the ability of the capturing satellite to establish a stable mechanical connection by its gripping tool
with the object being intercepted. Most of the potential objects of capture missions are not equipped
with dedicated docking ports; hence, the satellite robot intercepting them will have to provide the
mechanical compliance necessary for the safe establishment of contact between the two structures.
Articulated robotic arms with controlled mechanical impedance are one set of promising solutions for
this challenge. In this study, the authors discuss how the mechanical impedance realized only along
a single axis can be useful for facilitating the contact between the manipulator arm’s end effector
of a free-floating robot and an uncooperative object in microgravity. By distinguishing a dominant
direction in the final approach and contact establishment maneuver, the need for impedance control
of six degrees of freedom may be relaxed, and a single prismatic joint with controlled impedance can
be used at the end effector. Such architecture is simulated and compared with the full model-based
six-degree-of-freedom Cartesian impedance control of a free-floating manipulator. Authors then
discuss the limitations and possibilities of such architecture in a potential practical setting.

Keywords: space manipulator; impedance control; nonholonomic; in-orbit servicing; debris removal;
robotics

1. Introduction

With the advancement of space exploration leaving a substantial amount of large
disused objects in orbit as well as the recently growing interest in extending the life of
existing satellites by in-orbit servicing, the relevance of satellite robots capable of mechani-
cally manipulating those orbiting objects is growing. The mitigation of space debris is an
important priority of space exploration agencies [1]. A collision of two objects in space
above the size of approximately 10 cm is going to produce objects capable of causing further
destruction of in-orbit equipment, producing again objects of a size sufficient to continue
this perpetual destruction and littering. The highest risk is posed by large defunct satellites
occupying important and populated orbits such as the geostationary or low Earth orbits [2].
The successful interception of large objects in orbit opens possibilities to stop them from
becoming dangerous space debris either by deorbiting them safely or extending their useful
life by providing refueling or maneuverability. In either case, the success of the capture
operation depends on the ability of the robotic arm to bring its end effector in contact with
the object being captured and establish a mechanical connection between them.

The mechanical connection between the chaser satellite equipped with a robotic grap-
pler arm and the intercepted object can be achieved by closing the grappler around a
geometric feature of the target, e.g., a rim of separation ring [3], or interlocking an expand-
able mechanical penetrator tip inside a sufficiently stiff opening, e.g., inside a thruster
combustion chamber like in [4]. The chaser and target velocities and angular rates will very
likely vary since in many cases the target will be in an uncontrolled motion. This difference
needs to be accounted for when coming into contact with the target, since it may cause
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abrupt forces to act on the gripping robot. A common method to manage such interaction
as contact in robotic applications is the mechanical impedance control of the end effector
with the use of a full robot dynamical model [5], although other methods exist, most of
which achieve the commanded impedance at the end effector by suitably controlling all the
robot joints [4–8]. The impedance matching to the target satellite was proposed as a means
to shape the dynamic properties of the capturing robotic arm of the intercepting satellite [4],
and in a more recent study a frequency-independent method was proposed to match the
velocity of the end effector and the target satellite, hence guaranteeing capture [9]. The
control of free-floating space manipulators using the Generalized Jacobian Matrix (GJM)
has established history [10,11] and numerous applications, including optimization [12]
and control under nonlinear predictive control [13], as well as evolution to multiple ma-
nipulators on a single satellite [14]. The work on the application of impedance control
to a satellite-based robot [15] employs the GJM in the formulation of control, and while
it approaches formulation of model-based impedance control, it focuses on the topics of
computational complexity and uncertainty of the intercepted object. The approach to
compliance control of the satellite manipulator using a force controller is proposed in [16],
but the concept of a compliant manipulator wrist is introduced in the work [17]. The work
does not focus on the manipulator architecture, but on the coefficient of restitution and
its relationship with the impedance parameters as well as a method to establish desired
impedance control parameters for attaining a controlled coefficient of restitution between
the target and a robotic arm. Importantly, the verification work is carried out using a
ground-based robot and a fixed wall as a target. The work [18] discusses a combined
method involving resolved motion rate control and admittance control for providing com-
pliant contact control and shows simulation results for a 3-DoF (degree of freedom) robot
capturing a rotating target body.

In the presented work, we perform a simulation study of the robot with an impedance-
controlled prismatic joint at the end effector in a three-dimensional simulation of a 7-DoF
free-floating robot and a free-floating target. The robot configuration used in this study is
based on the 7-DoF configuration common in the European Space Agency’s projects [19],
although the method is applicable to any robot with six or more degrees of freedom. In our
previous research we investigated free-floating robot manipulators where the impedance
control law was incorporating the dynamic model of the manipulator [20] involving all
robot joints in the realization of the impedance control. This kind of control law allows the
independent shaping of the mechanical impedance along each direction xyz in Cartesian
space as well as the corresponding three torsional components. Observing that in the
intercept missions the final approach and contact establishment between the end effector
and the target usually happens along a single dominant direction of action, we analyze
how a controlled impedance can be achieved along a single translational degree of freedom,
while keeping the rest of the joints under classical position and velocity control, rather
than torque control. In the case of space applications, where reliability and low complexity
are highly valued design features, a simplification of the system while maintaining its
key functionality is a useful gain. In order to account for the attitude change of the target,
the work [21] proposed a 2D contact model and dual manipulator setup. The presented
work addresses the attitude tracking by separating the function of impedance control
and orientation-position control into two separate control tasks. As a consequence, the
complexity of the method is lowered in terms of computational requirements and by
allowing the limitation of the necessity for high-bandwidth hardware needed for the
impedance control to one prismatic joint. We simulate a free-floating robotic manipulator
with a single impedance-controlled joint at the end effector coming into contact with
a target body in a final approach maneuver scenario. We compare the resulting loads
on the joints and the overall satellite disturbance with a full model-based impedance-
controlled free-floating space robot in the same scenario. We then discuss the limitations
and possibilities of such architecture in a practical setting. A similar architecture, i.e., using
a prismatic stage at the end effector, was also proposed for a space manipulator, though
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one with a controlled base (non-free-floating) [22], and not with a focus on simplification,
but rather on introducing an additional layer of interaction between the robot pose control
and impedance control. Our earlier work considered a two-dimensional simulation case of
a robot with a prismatic compliant stage at the end effector focusing on disturbance to the
base of the satellite [23], whereas this work expands it to a three-dimensional case. In the
work [24], the authors considered stabilization of contact using position-based impedance
control, which relies only on kinematic information about the space robot. The authors
stressed the aspects of low computational complexity of the method.

The contributions of this work are the following: The distinction of the dominant
direction of contact is made as a prerequisite for single-axis prismatic impedance control for
providing control of an end effector in contact with the target body. The GJM is modified to
include the prismatic stage at the end effector in the mathematical model of the free-floating
robot and the simulation of the space robot with a prismatic impedance-controlled stage at
the end effector is carried out in three dimensions, where both the robot and the target are
free-floating.

The text is organized as follows: In Section 2, the mathematical model of the system
is elaborated. Section 2.2 derives the equations of motion of the space robot and the
model-based Cartesian impedance control law for a free-floating robot. The simplified
architecture of a 7-DoF space robot with only one compliant joint is presented and described
in Section 2.8. In Section 3, the simulation environment for the space robotics platforms is
used to simulate two free-floating impedance-controlled robot architectures: the full model-
based Cartesian impedance control from [11] and the one based on a single-axis prismatic
joint with impedance control. Both share the same GJM. Section 4 discusses the results
obtained with both approaches to impedance control and compares their performance and
implementational complexity.

2. Mathematical Model of the Space Robot

In this section we derive the dynamics model of the free-floating robot manipulator.
The logical steps we take are the following: First, in Section 2.1 we start with a brief
introduction to the nonholonomic nature of the robot system. Then, in Section 2.2 we
define the reference frames of the satellite with a robot manipulator. Section 2.3 focuses
on the description of the kinematics of such robot. In the Section 2.4, the dynamics of the
free-floating robot are derived by taking the following steps: in Section 2.4, the dynamical
model of a full, free-flying satellite-based robot is presented. The Free-flying robot is one
which is mounted on a base equipped with actuators, e.g., thrusters [25]. In Section 2.4., we
discuss the constraints of the robot having zero initial momentum and angular momentum
which are then needed to reformulate the dynamical model of the satellite as a free-floating
robot in Section 2.4.2. This way, we obtain the free-floating robot dynamics equations where
the state vector contains only the joint variables and is independent of the base coordinates.
The gravity gradient effects, as well as orbital mechanics, solar wind pressure, residual
atmospheric drag, etc., are ignored in the following analysis.

2.1. The Nonholonomic Nature of the Free-Floating Space Robot

The free-floating satellite equipped with manipulator arm exhibits nonholonomic
properties as the angular momentum of the system consisting of the satellite and manip-
ulator chain is not integrable [25]. The presented control method does not address the
nonholonomic aspects of the trajectory planning and tracking, unlike, e.g., [26], but the
simulation cases are selected such that the simulated trajectories are unlikely to evolve into
singular ones.

2.2. Reference Frames in a Space Robot

The satellite equipped with robotic arm is modelled as a multibody system. It is
described using the coordinate systems depicted in Figure 1.
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Figure 1. Schematic depiction of reference frames of a robotic arm on a satellite base (left). Detail
showing the end effector with the prismatic joint displacement (right).

2.3. Kinematics of the Free-Floating Space Robot

In this subsection, the standard description of the manipulator kinematic equations is
recalled after [10,24].

In the inertial reference system, the satellite’s center of gravity position rs is:

rs =
[
(rs)x (rs)y (rs)z

]T
, (1)

Its orientation Θs is expressed using Euler angles as follows:

Θs = [ψ φ θ]T, (2)

The series-type manipulator with n rotational joints and a prismatic joint before the
end effector is described by a vector of configuration variables corresponding to the angles
of each joint θ1 . . . θn and the translational position of the slider in the prismatic joint λ:

θ = [θ1 . . . θn λ]T, (3)

The vector of generalized coordinates qp, describing the system of satellite base and
manipulator, is assembled from definitions (1)–(3)

qp =

 rs
Θs
θ

 (4)

The differentiation of the state vector yields the following expression, where TΘ

transforms the angular velocities into the time derivatives of the Euler angles:

qv =

 drs
dt

T−1
Θ

dΘs
dt

dθ
dt

 =

 vs
ωs.
θ

 (5)

The symbol vs is the satellite base velocity,ωs is its angular velocity,
.
θ is the vector

of angular rates of the joint angles. The position vector of the end effector in the inertial
frame is determined by the sum of positions of the links of the robot manipulator and the
satellite position:

ree = rs + rq +
n

∑
i=1

li + kprismλ (6)
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As depicted in Figure 1. The kprism is the unit vector of the translation axis of the
prismatic joint. By taking the time derivative of the expression for position vector, we arrive
at the end effector velocity in the Cartesian inertial frame:

vee = vs +ωs × (ree − rs) +
n

∑
i=1

[ki × (ree − ri)]
.
θi + kprism

.
λ (7)

For an i-th joint, ki represents the unit vector of the rotation axis and
.
θi is its angular

rate, while ri represents the position of the ith kinematic pair. The angular velocity of the
end effector is simply:

ωee =ωs +
n

∑
i=1

ki
.
θi (8)

Having arrived at the kinematic expressions for the velocities, the model of dynamics
of the satellite manipulator system can be formulated.

2.4. Dynamics of the Space Robot

This section introduces the dynamics of a full (non-free-floating) space robot without
nonholonomic constraints. The reaction forces and torques acting on the system are
the following:

Q =

Fs
Hs
T

 (9)

where Fs and Hs are the forces and torques acting on the satellite base center of mass,
e.g., from the thrusters. Vector T is the torques in the joints of the robotic arm. The
generalized equations of motion for the satellite equipped with a robotic manipulator,
using the Lagrangian equations of the second kind, take the following form [11]:

Q = M
(

qp

) .
qv + C

( .
qp, qp

) .
qv (10)

The mass matrix M [10,24] for the general case is:

M =

 A B DM
BT EM FM
DT

M FT
M N

 (11)

The velocity-dependent effects are modelled by the Coriolis matrix which has entries
with the following form [27]:

cij =
n

∑
k=1

1
2

(
d

dqk
mij +

d
dqj

mik −
d

dqi
mjk

)
.
qi (12)

where the mij ∈M(qp) and i, j, k = 1 . . . n and the sub-matrices are defined below, with the
tilde symbol ~ denoting a skew symmetric matrix of a vector and Ii denoting the inertia
matrices of each link. I is an identity matrix of suitable size.

A =

(
ms +

n

∑
i=1

(mi)

)
I (13)

B =

(
ms +

n

∑
i=1

(mi)

)
~
rs_q (14)

DM =
n

∑
i=1

(miJTi) (15)
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EM = Is +
n

∑
i=1

(
Ii + mi

~
r

T
i_s

~
ri_s

)
(16)

FM =
n

∑
i=1

(IiJRi + mi r̃i_sJTi) (17)

N =
n

∑
i=1

(
JT

RiIiJRi + miJT
TiJTi

)
(18)

with rs_q = rs − rq, ri_s = rm,i − rs, where the rm,i is the position of the center of mass of
the i-th link, while the JTi, JRi are the translational and rotational components of a standard
Jacobian of the manipulator [28,29]:

JM =

[
ρR,1k1 × (ree − r1) . . . ρR,nkn × (ree − rn)

ρT,1k1 . . . ρT,nkn

]
,

ρR,i = 1 for rotational joint, 0 otherwise.
ρT,i = 1 for translational joint, 0 otherwise.

(19)

In the architecture proposed in this work, the last joint before the end effector is
prismatic; thus, including its effect in the Jacobian requires the use of the nonzero JTi term
for this last joint, while in our previous work [20] we considered impedance control of a
free-floating manipulator with all rotational joints only.

2.4.1. Free-Floating Space Manipulator

In case of a free-floating manipulator system, being the scope of this research, the
above formulations of the kinematics and dynamics equations change.

The manipulator’s angular momentum is described as follows:

L = L0 + rs × P (20)

with L0 being the initial angular momentum and P being the linear momentum for which
the following relationship holds:[

P
L

]
= H2

[
vs
ωs

]
+ H3

.
θ = 0 (21)

with

H2 =

[
A B

BT +
~
rsA EM +

~
rsB

]
, (22)

H3 =

[
DM

FM +
~
rsDM

]
(23)

We consider a drift-less case; hence, the initial momentum and angular momentum
above is zero. A different case is discussed in [30]. The system is free floating; hence, the
Equation (21) is equated to zero. The relationship between the angular velocities of the
joints of the space robot and the linear and angular velocity of the end effector vee, ωee are
given by: [

vee
ωee

]
= (JM − JSH−1

2 H3)
.
θ (24)

where finally the Generalized Jacobian Matrix GJM emerges as JD

JD = (JM − JSH−1
2 H3) (25)
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The Jacobian JM is a standard manipulator Jacobian mentioned earlier and the satellite
Jacobian JS is defined as below, with

~
rees being the end effector position with respect to

the satellite:

JS =

[
I

~
r

T
ees

0 I

]
(26)

2.4.2. Dynamics of the Free-Floating Manipulator

The center of mass of the satellite-arm system remains constant under the assumption
of no momentum exchange with the environment and by neglecting the orbital motion, but
the base is free to change its orientation and position in the inertial reference frame. In such
a case, the state vector qp in (4) contains only the joint positions.

qp = θ

qv =
.
θ

(27)

The vector of generalized forces becomes:

Qm = T = [T1, T2 . . . Tn]
T (28)

By using the approach used in the paper [17] and using constrained Lagrangian
formulation, the mass matrix becomes:

Mm

(
qp

)
= N−

[
DM
FM

]T[A B
BT EM

]−1[DM
FM

]
(29)

2.5. The Impedance Control

Impedance control [4–8,11,22,31] is a paradigm which aims to achieve desired char-
acteristics of the interaction between the robot and its environment. It draws from the
long-recognized analogies between electrical and mechanical building blocks of dynamic
systems and became an important toolbox for modeling robotics interacting with environ-
ments and humans, cooperative robotics, exoskeletons, etcetera. Impedance describes the
dynamic behavior of the system at its interaction port with the environment which is the
end effector in the case of most robotic manipulators.

The impedance is fundamentally a relationship between the input “flow variables”
.

X
such as velocity or electric current and output “effort variables” F—force or voltage. In the
Laplace domain this can be written as the following ratio:

Z(s) =
F(s)
.

X(s)
(30)

Since most robotic tasks involving interaction with an environment are naturally
defined in coordinates relative to the environment, it is useful to replace the

.
X(s) with

relative displacement sXr(s). Specifically, the relative displacement is understood as the
difference between the current actual position of the interaction port X relative to the
intended one, often referred to as the “virtual” trajectory X0 [5].

Xr = X− X0 (31)

The virtual trajectory is useful in its generality since it can be defined in terms of
position space, as well as velocity or acceleration spaces and need not be within the
reachable space of the manipulator [5]. In a basic form, the mechanical impedance is
typically described to be composed of elements which exhibit an inertia-like or mass-like
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behavior, represented below as matrix Md, with damping-like behavior described by D
and elastic-like behavior described by matrix E.

Z(s) = Mds + D + E/s (32)

Substituting (31) and (32) into (30), rearranging terms and taking the inverse Laplace
transform gives the time-domain differential equation describing the interaction point
forces F as a function of the difference between current and virtual trajectory, parametrized
by the desired inertia parameters:

Md
( ..
x− ..

x0
)
+ D

( .
x− .

x0
)
+ E(x− x0) = F(t) (33)

The above basic formulation of a generic impedance control law can be described from
the point of view of the environment as “hiding” the natural dynamics of the manipulator
and exposing only the desired dynamics at the interaction port. At the implementation
level, there are numerous ways by which the dynamic behavior of the robot’s interaction
port can be shaped. There exist purely mechanical methods such as springs and dampers
or exploiting the redundancies of the manipulator to achieve different inertial properties
by the virtue of their dependence of the manipulator’s configuration [5,31]. The software-
based methods rely on using control strategies which reproduce the dynamic behavior with
robot’s actuators based on the loop closed via sensors. Three important types of software
approaches to impedance implementation are [6]:

- Position-based approach, where typically the controller’s outer loop gives the desired
position based on the desired impedance parameters and feedback information about
interaction force, and the inner loop tracks the position simply as a position servo,

- Torque/force-based approach, where instead of the position, the outer loop commands
the torque or force and the inner loop is the torque/force servo.

- Model-based approach, which fundamentally differs from the previous two, because
it uses the known manipulator dynamics and substitutes into it the desired dynamics
described by the impedance parameters.

An exhaustive discussion and comparison of the above methods is presented in [6]. In
this work, we propose the use of a Cartesian, model-based impedance controller to a space
robot on a free-floating satellite platform.

2.6. Cartesian Impedance Control

In this section we briefly recall the Cartesian impedance control after [5,31] and show
how the dynamics model of the free-floating satellite robot is incorporated into the control
law. We, with a slight abuse of the notation, reuse the symbol θ in this section to symbolize
a vector of rotational configuration coordinates of a robot with purely rotational joints,
whereas outside of the description of model-based Cartesian impedance control, this
symbol retains its meaning set in Section 2.3.

General robotic manipulator dynamics are modeled by the configuration-dependent
inertia I(θ), configuration- and velocity-dependent inertial coupling between the links, e.g.,
Coriolis and centrifugal effects Cc(θ,ω), and Vc(θ) the velocity-dependent terms, e.g., the
viscous friction. There, static forces S(θ) such as gravitational loads are assumed to be zero,
since the application we are discussing is set in the microgravity context of an on-orbit
operation. The manipulator control torques are denoted as Tact and Tint, and Fint are the
torques and force due to interaction at the interface.

I(θ)
dω
dt

+ Cc(θ,ω) + Vc(ω) + S(θ) = Tact + Tint (34)

The desired behavior in Cartesian space can be expressed as follows:

dV
dt

= M−1
d E(X0 − X) + M−1

d D
( .

X0 −
.
X
)
+ M−1

d Fint (35)
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Note, however, that in this case, the impedance control is achieved with rotational
joints only, and the Jacobian does not include any terms other than rotational. With use
of the standard manipulator Jacobian, the transformation between the Cartesian and joint
space is as follows:

dV
dt

= JM(θ)
dω
dt

+ G(θ,ω) (36)

G(θ, ω) =
d[J(θ)]

dt
ω (37)

dω
dt

= J−1
M (θ)

[
dV
dt
−G(θ, ω)

]
(38)

The Cartesian impedance control law takes the form:

Tact = I(θ)J−1
M (θ)M−1

d E[X0 − X] + S(θ)
(position terms)

+I(θ)J−1
M (θ)M−1

d D
[ .
X0 −V

]
+

.
Xc(ω)

(velocity terms)
+I(θ)J−1

M (θ)M−1
d Fint − JT

M(θ)Fint
(force interaction terms)

−I(θ)J−1
M (θ)G(θ,ω) + Cc(θ,ω)

(inertial coupling terms)

(39)

2.7. Free-Floating Platform-Based Space Robot under Cartesian Impedance Control

In the case of the free-floating satellite platform equipped with a robotic manipulator,
the Jacobian in (34)–(39) is replaced with its dynamic counterpart given by (25). The mass
matrix (29) encodes the configuration-dependent inertial properties of the manipulator and
base. Combining the above, we arrive at the following expression:

Tact = Mm(θ)J−1
D (θ)M−1

d E[X0 − X]
+Mm(θ)J−1

D (θ)M−1
d D

[ .
X0 −

.
X
]

+Mm(θ)J−1
D (θ)M−1

d Fint − JT
D(θ)Fint

−Mm(θ)J−1
D (θ)G

(
qp, qv

)
+ C

(
qp, qv

)
qv

(40)

The equation relates the driving torques Tact of the joints to the end effector’s deviation
from the virtual trajectory, parametrized by desired impedance terms, in essence expressing
the Cartesian impedance control law for the robot on a free-floating satellite base.

2.8. The Simplified Robot Architecture with Controlled Impedance on a Single Axis

During the last part of the intercept maneuver when the gripper is closing, the con-
trolled impedance of the end effector shall maintain stable contact with the target feature.
Typically, the chaser and target satellite will be moving with respect to each other, and
as a consequence there will be a dominating direction along which the displacement of
the contact point will take place throughout the time required for closing the gripper.
Simplified illustrations of various gripping scenarios of in-orbit intercept are shown in
Figure 2. Scenario A is applicable to many defunct satellites equipped with maneuvering
and orbit-correction engines [5], which is typical for large geostationary communication
and meteorological and observational missions. Scenario B is a simplified illustration of
a clamping gripper locking on a feature from a side, like the docking gripper for locking
on a satellite’s separation ring [3]. The scenario C depicts a symmetrically acting gripper,
similar to the one from e.Deorbit project [19]. In case of a tumbling target satellite, the
dominant direction will be collinear with the vector of a momentary linear velocity of the
feature to be gripped. Assuming that this dominating direction can be tracked with the
end effector orientation control, so that the gripper center point stays on the line and the
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gripper orientation with respect to the feature to be gripped is kept constant throughout
the final approach and gripping phase, it is sufficient that the compliance due to impedance
control is present only in the axis of the dominant direction.
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The mechanical impedance control presented in previous sections allows the shaping
of the end effector’s impedance properties along Cartesian axes independently. The control
law involves interface forces Fint as seen Equation (40). In a practical setting, those forces
and torques need to be measured by a hardware sensor and appropriately conditioned.
This adds complexity to the spaceborne hardware of the robot. The whole control loop,
including calculation of the torques and generation of the appropriate currents in the
motors in each joint, needs to be fast to cope with the dynamics of the contact. Calculation
of the torques with the control law (40) requires numerous multiplications of 6 × 6 and
6 × 7 matrices by the control computer, which needs to provide adequate processing power
to meet the timing requirements.

By using a single prismatic impedance-controlled joint, like the one discussed in [32],
as the last joint before the end effector, a controlled mechanical impedance along the
dominant direction of the contact can be achieved and the hardware and control laws of
the whole free-floating space manipulator can be substantially simplified. Although this
joint provides an additional degree of freedom and can be incorporated into the GJM by
translational term in a construction of the Jacobian, its primary objective is to provide space
for the compliant behavior of the mechanical impedance, not to play any major role in the
planning or realization of a trajectory.

The single-degree-of-freedom impedance control of the prismatic joint can be ex-
pressed as a scalar version of Equation (33), where the displacement x and virtual trajectory
x0 are expressed as positions in the direction collinear with kprism in terms of λ in such a
way that the point λ0 lies in x0 and kprism is in line with the dominant direction of the final
approach and contact:

Md

( ..
λ−

..
λ0

)
+ D

( .
λ−

.
λ0

)
+ E(λ− λ0) = F(t) (41)

This way, the impedance control law does not involve the whole state vector of the
robot, only the prismatic stage. Defining the impedance control law in the above way is
useful for practical applications, e.g., involving an electromagnetic linear actuator, where
the force F(t) after scaling by a motor force constant becomes the immediate input for the
actuator’s quadrature current controller [32].

The realization of the virtual trajectory x0,
.
x0 and keeping the kprism oriented along

the dominant direction of the approach can be conducted using known strategies for the
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joint control of a free-floating space robot, which require less calculation effort than the
model-based impedance control. One example of such control methods is the Cartesian
joint control based on the GJM presented in the following subsection.

2.9. Basic Cartesian Controller for Free-Floating Robot

A simple control strategy for a trajectory-following task in Cartesian coordinates can
be realized for a space robot using the GJM. This strategy can be used to bring the end
effector to follow the virtual trajectory required by the impedance control.

The dynamic Jacobian relates the velocity space to joint space, so a simple controller
computing the joint velocities as given by the Equation (24). It can be used to find joint
velocities

.
θcont, minimizing the deviation ev between the intended and actual velocity

as follows: .
θcont = J−1

D ev (42)

Since the planned virtual trajectory of the end effector, x0, is typically not defined
in the velocity space but rather in the position space, we use the approximation of the
velocity error ev by the position error ep = x0 − xc, where xc is the current EE position,
multiplied by some gain matrix Gee. The joint control torques defined by the simple
Cartesian trajectory-following controller are given by:

T = G .
θ

(
J−1

D Geeep −
.
θ
)

(43)

where G .
θ

is the gain matrix converting the difference between
.
θcontr and current joint

angular velocities
.
θ to the control torque.

Variable Impedance

The impedance parameters, Md, D and E, do not need to be constants. Their values
may be varied over the course of the maneuver to the required values. A useful case for
varying the impedance is the following: during the initial approach phase when the chaser
satellite is closing in on the target and moving the manipulator arm into the position of
readiness to start the final approach, the end effector’s inertia experienced by the rest of the
manipulator and base should be minimized. This would be achieved by fully retracting
the prismatic stage, e.g., by keeping x0 at a value corresponding to a fully retracted state,
and setting the Md, D and E to very high impedance. The prismatic stage should then be
extended by setting new x0 and thus λ0, to prepare it for being compressed after coming
into contact with the target. Shortly before the end effector comes into contact with the
target, the impedance parameters, Md, D and E, should be set to values suitable for the
given target, e.g., using the virtual mass impedance matching (VIM) method for mechanical
impedance matching [17] or other methods, e.g., [9]. Finally, once the positive gripping is
confirmed, the impedance can be further changed to meet the requirements of post-capture
activities, e.g., rigidizing it to bring the target and chaser relative velocity to zero [19],
detumbling or docking.

3. Simulation
3.1. Simulation Parameters and Configuration

The simulations of a free-floating space robot concerning both of the proposed end
effector impedance control methods were performed using the simulation tool developed
at the Space Research Centre of the Polish Academy of Sciences and used in numerous
research studies [11,14,33]. The robot arm configuration used in the simulation of motion
and in trajectory planning was 7-DoF for both cases. In case of the configuration with the
prismatic compliant stage, there was an additional prismatic joint providing mechanical
impedance between the joint no. 7 and the end effector. This joint was not used in trajectory
planning and was initialized to its neutral position in which the actual end effector center
coincided with the virtual trajectory point x0.
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The schematic of the manipulator and target initial positions is depicted in Figure 3.
The robot pose was initialized with the end effector in a position at the beginning of the
final approach as shown in Figure 2, which in this case was 5 mm away from the target.
Both the end effector center and the target body center lay on a straight line which was
then followed during the approach to contact. This line defined the dominant direction
and coincided with the axis of the prismatic stage.
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Since this study did not consider any specific gripper architecture, the target and
end effector were simulated by spheres. The mass of the simulated target body was
1000 kg had uniform mass distribution. The satellite base mass was 100 kg and had inertia
Ixx = 2.8 kgm2, Iyy = 6.0 kgm2 and Izz = 7.4 kgm2 with zero off-axis components.

The robot manipulator had the mass and geometrical parameters as listed in Table 1.
The manipulator mounting point was shifted from the center of mass of the satellite by
[0.2 0.1 0.4] m.

Table 1. Geometric and mass properties of the simulated robot.

Link Length [m] Mass [kg] Inertia [kgm2]
(Dominant about the Joint Axis)

1 0.28 1.60 0.004
2 0.20 4.20 1.25
3 0.60 1.60 0.004
4 0.60 4.40 1.14
5 0.20 1.60 0.004
6 0.10 1.60 0.008
7 0.10 0.19 1 × 10−4

Two simulation cases were executed: the model-based impedance controller (40) and
the one where the single axis impedance control of the end effector was provided by the
prismatic impedance-controlled joint between the joint no. 7 and the end effector. The
seven rotary joints of the robot arm were under the control of the Cartesian controller
tracking the virtual trajectory.

In the model-based impedance control scenario, the following impedance parameters
provided in SI units were used:

E = 1000 [5 5 1 5 5 1]T, D = 500 I7×7,
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Md =



19.25 0 0 0 0 0 0
0 19.25 0 0 0 0 0
0 0 19.25 0 0 0 0
0 0 0 10 0 0 0
0 0 0 0 10 0 0
0 0 0 0 0 10 0
0 0 0 0 0 0 10


The symbol I7×7 denoted an identity matrix of the size given by the subscript. The

matrix Md, describing the impedance in terms of desired mass parameters, was chosen such
that the end effector behaved similarly to a rigid body with 10% of the actual system’s mass
and inertia. The stiffness E was selected so that it was five times higher in the directions
normal to the dominant contact direction z to keep the end effector on the planned line.

The scalar parameters for the mechanical impedance of the prismatic joint in the
second simulation were set to be Md = 4 kg, D = 500 Ns

m and E = 40 N/m with the
help of the VIM method proposed in [5]. The Cartesian controller tracking the virtual
trajectory in this case used the same gain values as in the work [20] with the matrix sizes
adjusted accordingly.

G .
θ
= 150 I7×7, Gee = 100 I7×7

3.2. Simulation Scenario

In both cases, the robot controller was tracking a straight-line trajectory constituting
the dominant direction of the final approach. The starting point was chosen such that the
initial distance between the end effector sphere and the target sphere was 5 mm. In order
to assure that the contact between the end effector and the target took place, the length of
the planned trajectory was 7 mm, implying that the virtual trajectory ended 2 mm into the
target sphere envelope. The 7 mm distance was planned to be travelled from full stop at
the beginning to a full stop at the end over 15 s. The simulation time lasted 20 s in total
to allow the recording of an additional 5 s more of the simulation data after the planned
motion stopped. The impedance parameters were kept constant throughout the simulation
in both cases.

3.3. Results

The aim of the simulation was to compare the results from both controllers and assess
the disturbance which the contact forces cause to the free-floating robot system. The
parameters selected for comparison of the performance of the controllers in this study were:
velocities of the base satellite center of mass after the contact maneuver and peak of the
torques about the driven axis of each joint.

The Table 2 compares the resultant loads in joints. The percentages in the “Com-
parison” columns show how much the loads in the single prismatic impedance control
simulation exceeded the loads in the model-based impedance control of the full robot, for
each respective joint.

Table 2. Comparison of peak torque loads in robot joints.

Joint No. Peak Torque
Model-Based Impedance Ctrl.[Nm] Single Prismatic Joint Impedance Ctrl.[Nm] Comparison

1 0.62 0.885 43%
2 0.067 0.04 −40%
3 0.048 0.097 102%
4 0.051 0.077 51%
5 0.047 0.076 62%
6 0.011 0.012 9%
7 0.636 0.888 40%

Average: 38%
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During the contact event, the momentum exchange between both the target and the
free-floating robot took place causing the disturbance to the satellite–robot system. The
disturbance was recorded in the form of linear and angular velocities of the center of mass
of the robot’s satellite base. They are summarized in Table 3.

Table 3. Velocity and angular rates of the center of mass of the satellite body at the end of simulation.

Model-Based
Impedance Ctrl.

Single Prismatic Joint
Impedance Ctrl.

Velocity along x [m/s] −0.3 × 10−4 −1.1 × 10−4

Velocity along y [m/s] 5.8 × 10−4 1.8 × 10−3

Velocity along z [m/s] 0.4 × 10−4 1.2 × 10−4

Angular rate about x [◦/s] −3 × 10−4 23 × 10−3

Angular rate about y [◦/s] −6 × 10−4 24 × 10−3

Angular rate about z [◦/s] −9.0 −15.1

4. Discussion

The parameters which were used for the comparison of the performance of the two
schemes were the following:

1. Torque magnitudes in robot joints;
2. Contact force magnitude;
3. The final linear and angular velocities of the satellite body after the contact event.

The torque magnitudes are plotted in Figure 4. In the model-based impedance control
they were on the same order of magnitude as in the case with a single prismatic impedance-
controlled joint, i.e., 100 . . . 10−1 Nm for joint 1 and 10−1 . . . 10−2 Nm for the subsequent
joints although on average the loads on the joints were on average 38% higher for the pro-
posed architecture. The peak torques in the joints are summarized in Table 2. Importantly,
the torque about joint 2 was 67 × 10−3 Nm for the proposed architecture with the prismatic
impedance-controlled joint instead of 4 × 10−2 Nm in the case of the baseline model-based
impedance control. In the pose which the robot had during the contact (Figure 3), the
torque on this joint acted about axis close to the y-axis of the base, and was significantly
contributed to by the contact force via the long “lever arm” of the whole manipulator. The
40% lower torque on joint 2 in the case of the proposed impedance controller translated to
a much lower disturbance of the base about the y-axis: 24 × 10−3 ◦/s with the proposed
control instead of the −6 × 10−2 ◦/s with the baseline impedance control. The reason for
this behavior is the following: in the case of the baseline controller, where all the joints took
part in realizing the impedance control behavior at the end effector, the masses and inertias
of all the links preceding the end effector needed to be suitably accelerated, while in the
case of the proposed architecture, in principle, just the mass of the end effector needed to
be accelerated to realize the impedance behavior of the end effector.

The contact force magnitude was higher in the case of a prismatic joint case (−0.89 N
rather than−0.63 N in baseline case), but also the contact was shorter: 1.8 s for the prismatic
impedance-controlled joint architecture vs. 2.8 s for the baseline, as depicted in Figure 5.
The disturbances of the base of the free-floating robot in both cases are compared in Table 3.
The disturbance was higher under the Cartesian control with a prismatic impedance-
controlled joint, in the sense that its center of mass came out of the maneuver moving and
rotating faster.

The impedance parameters selection and optimization could likely lead to closing
the gap between the sets of results eventually. Rather than elaborating on the impedance
parameters selection method, the purpose and scope of this work was to verify the pos-
sibility of replacing the full robot model-based impedance control with the simplified
scheme for the free-floating robot. The initial expectation was to arrive with the prismatic
joint approach at the same order of magnitude of the joint torques, contact force and base
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disturbance as in the full model-based impedance control of the robot. Even without more
accurate impedance parameters selection, the results met that criteria.
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The potential technical benefit of the approach based on a single prismatic impedance-
controlled joint to provide tunable compliance at the end effector in contact with a target
body is twofold: Firstly, the overall computational effort is lower. Both methods require
computation of inverse of the generalized Jacobian matrix and keeping it updated through-
out the maneuver since it is present in both the model-based control law (40) and in the
simple Cartesian joint controller (43) used to follow the virtual trajectory with the prismatic
impedance-controlled joint. Nonetheless the control law (40) also requires the computing
and inverting of the instantaneous mass matrix, and four more matrix multiplications.
Secondly, the full model-based impedance control also requires a current, measured value
of the forces and torques at the interface between the end effector and the target Fint, a
rather significant complication for the gripper to be designed for reliable operation in space.
The impedance control of the single axis actuator, however, requires a positional feedback.
This type of a sensor is not free of its own drawbacks, in particular the noise increased by
taking the derivatives of its signal, but still some type of position feedback is required for
all the joints of the robot in any case.

5. Conclusions

The simulations of both schemes of the free-floating robotic manipulator impedance
control showed that it is possible to achieve the impedance control behavior along the axis
of interest using a simplified architecture with one compliant prismatic joint at the expense
of slightly higher loads and disturbances. The proposed method was demonstrated in a
simulation of a 7-DoF robot, and can be used with any manipulator with a suitable number
of degrees of freedom to allow the tracking by the end effector the trajectory along the line
of the dominant direction of contact. The room for improving the performance has not been
explored in the frame of this study, and would likely lead to good performance. The sim-
plification in construction and lower computational load of the proposed architecture are
relevant aspects in the design of equipment intended to be used in the space environment,
making this kind of architecture potentially worth further detailed development.
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