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Abstract: The remote sensing satellite constellation based on micro-satellites is an important means
to construct a global and all-sky earth observation system in the future. Therefore, realizing the
recognition of aircraft activities on video micro-satellites is a key technology that needs to be solved
urgently. In this paper, an efficient algorithm for aircraft activity recognition that can be deployed on
video micro-satellites was proposed. First, aircraft detection was performed on the first incoming
remote sensing image using a robust DCNN-based object detection model. Then, a multi-target
tracking model incorporating geospatial information was built for aircraft tracking and activity
recognition. The algorithm was deployed on an embedded AI computer which was a COTS com-
ponent. The algorithm was verified using remote sensing videos from commercial micro-satellites.
Experimental results show that the algorithm can process aircraft targets of different sizes, and is
equally effective even with complex environmental backgrounds, lighting conditions, and various
movements of the aircraft, such as turning, entering, and exiting. Based on aircraft tracking results
and geospatial information, the motion speed of each aircraft can be obtained, and its activity can
be divided into parking, taxiing, or flying. The scheme proposed in this paper has good application
prospects in the realization of on-orbit event recognition in micro-satellites with limited computing
and memory resources.

Keywords: micro-satellite; staring-imaging; aircraft tracking; DCNN; embedded Al processor

1. Introduction

Aircraft activity recognition is of great significance in airport capability assessments
and military intelligence acquisition, among other applications. Compared with ground-
based monitoring methods, remote-sensing-based aircraft activity recognition can obtain
results with wider coverage and more comprehensive information. Video satellites are a
new type of earth observation satellite; compared with traditional remote sensing satellites,
they can continuously observe a certain area and obtain more dynamic information using
a staring mode. They are more suitable for tasks with time-sensitive characteristics, such
as the recognition of aircraft activities at airports. However, it is difficult to meet the time
requirements of emergency information acquisition with the traditional remote sensing
process of detection, downlink transmission, and then processing. As shown in Figure 1
(green), the traditional method has poor timeliness and brings a lot of pressure on satellite-
to-ground data transmission. It can cost hours to acquire remote sensing information,
and a huge amount of remote sensing data needs to be downloaded. In addition, due to
the constraints of orbital dynamics, a single satellite cannot achieve global monitoring, or
all-day monitoring, of a certain area.

To improve the coverage and duration of observations, satellite constellations are a
good solution. However, more satellites mean higher budgets. Micro-satellites, on the
other hand, have the advantages of low cost, a short development cycle, and the ability to
form a network. A remote sensing satellite constellation based on micro-satellites is a better
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way to construct a global and all-day earth observation system. Additionally, on-board
processing is the most straightforward way to improve the timeliness of observation tasks.
As shown in Figure 1 (blue), the remote sensing image was processed on-orbit before
the results were downloaded. As a result, the transmission volume is smaller, and the
timeliness is improved. In summary, based on the micro-satellite constellations and their
on-board processing capabilities, we can build a highly time-efficient global and all-day
earth observation system. Therefore, the on-board processing capability of a single video
satellite becomes very important.

For the recognition of aircraft activities at airports, the onboard processing of aircraft
detection and tracking must be solved first. However, this is not easy, as there are two
challenges: the accuracy and efficiency requirements of the algorithm.

In satellite imagery, objects of interest are often small and possibly densely clustered.
Typically, the image GSD of video micro-satellites is around one meter. This means that
the common civil aircraft will only be approximately 50 x 50 pixels large in extent. Thus,
targets have limited details in remote sensing images. Additionally, the objects can have
arbitrary orientations when viewed from overhead [1]. Considering the above aspects, the
performance requirement of an aircraft detection algorithm is relatively high. The algorithm
should have enough recall rate and precision, as well as good positioning accuracy.

data (GB) hours level

Ground
Receiver

Remote Sensing Satellite
Mission Planning Imaging
On-board  [EIEKOYIS)] Satellite-Earth
Processing 1 IDEIENMIEHSWIESTOM scconds level

Figure 1. Comparison of remote sensing methods between ground processing and on-orbit processing.

In recent years, deep learning models, especially deep convolutional neural networks
(DCNN ), have become state-of-the-art for many practical vision problems [2,3]. Many
DCNN-based detectors have been proposed in the research field of object detection. DCNN-
based detectors can be divided into two types: two-stage object detectors [4-7] and single-
stage object detectors [8-11]. Two-stage object detectors have achieved promising results
on common benchmarks; however, their training process is complex and computationally
expensive. In contrast, single-stage object detectors are currently state-of-the-art with
respect to the trade-off between speed and accuracy. For many practical applications,
objects with large aspect ratios, dense distributions, and various orientations need to be
detected; for example, in scene text detection or remote sensing object detection, objects
can be arbitrarily oriented. The above-mentioned horizontal detectors have fundamental
limitations for these applications. Thus, many rotation detectors [12,13] based on a general
detection framework have been proposed. In remote sensing object detection, many
rotation detectors have been proposed [14-17] and have achieved promising performances
on large-scale public datasets for aerial images, e.g., DOTA [18], HRSC2016 [19], and OHD-
SJTU [20]. Among these remote sensing targets, the detection of aircraft achieved almost
the best accuracy.

For object tracking, most modern computer vision approaches are based on tracking-
by-detection [21], where a set of possible objects are first identified via object detectors.
Based on the detection results from each frame, a Kalman filter, particle filter, and prob-
abilistic model are often used to accomplish accurate and consecutive object tracking.
Meanwhile, deep learning methods have also attracted considerable interest in the visual
tracking community as robust visual trackers. According to their architectures, state-of-
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the-art deep learning-based visual tracking methods are categorized as convolutional
neural networks (CNNs) [22,23], Siamese neural networks (SNNSs) [24,25], recurrent neural
networks (RNNSs) [26], or generative adversarial networks (GANSs) [27]. Although these
state-of-the-art methods have achieved significant progress, they are still not reliable for
real-world applications.

To achieve on-board detection and tracking of aircraft in a remote sensing video,
the usual tracking-by-detection methods are not feasible. This is because each detection
procedure is computationally intensive, and the computing and memory resources of
micro-satellites are limited. However, the excellent results achieved by rotation detectors
in aircraft detection can serve as a good initial input for the tracking procedure. Thus,
in this paper, an aircraft target tracking algorithm based on rotation detectors and image
matching is proposed. First, aircraft detection was performed on the first incoming remote
sensing image using a robust DCNN-based object detection model. Then, a multi-target
tracking model based on image matching was proposed for efficient aircraft tracking.
Finally, incorporating geospatial information, the aircraft activity was recognized in terms
of its motion speed.

The main contributions of this paper are as follows:

1. Since the high-value activities of aircraft at an airport usually occur on the runway, we
focus on detecting aircraft in the area around the runway. The smaller the detection
area, the faster the detection procedure. Aircraft detection was implemented using a
rotation detector named R3det.

2. The tracking algorithm can effectively cope with various challenging situations, such
as the negative influence of various backgrounds and lighting conditions, self-rotation
of aircraft, and aircraft entering and exiting.

3. Combining the results of aircraft tracking and geospatial information, aircraft activi-
ties were divided into parking, taxiing, and flying in terms of the aircraft’s motion
speed. The satellite can selectively save and download the video data of interest ac-
cording to the activity recognition results, reducing the amount of satellite-to-ground
data transmission.

4. The algorithm was verified to be efficient and effective using remote sensing videos
from commercial micro-satellites.

The remainder of this paper is organized as follows. In Section 2, we outline our
algorithm. In Section 3, the deep convolutional neural network (DCNN) based aircraft
detection is introduced. Aircraft tracking and activity recognition is introduced in Section 4.
In Section 5, we evaluate our algorithm on real-world datasets which contain a variety of
aircraft activities and provide the experimental results and a discussion. Finally, we present
the conclusion in Section 6.

2. Algorithm Overview

As shown in Figure 2, the algorithm is mainly composed of two parts: aircraft de-
tection (at the start, highlighted in yellow), and aircraft tracking and activity recognition
(highlighted in blue).

A DCNN-based rotation detector, named R3Det, was used for aircraft detection at
airports. Considering that the high-value activities of aircraft at airports usually occur on
the runway, we focused on detecting aircraft in the area around the end of the runway. For
satellites operating in staring mode, the location of the airport runway area in the image can
be easily determined by combining satellite orbit, satellite attitude, and ground geographic
information. The smaller the detection image size, the faster the detection speed. We can
effectively reduce the time-consuming nature of detection in the start frame by focusing on
detecting aircraft in the area around the end of the runway.
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Figure 2. Flow chart of the algorithm.

Due to the powerful rotation detector, the aircraft in the start frame are reliably
detected and located with accurate envelopes. An efficient image matching method is then
used to track the aircraft in subsequent frame images. The aircraft images detected in the
start frame are used as the reference templates. The tracking procedure aims to find a part
with the same size and the highest matching similarity as the template image within a
certain search area in the current frame image. There are generally two approaches to solve
this problem: grey value-based or feature-based matching. Compared with feature-based
matching methods, such as edge-based matching [28], grey-based matching methods can
maintain high robustness in the face of changing lighting and background conditions. Thus,
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the NCC-based [29] image matching method was used for tracking in this study. The
corresponding search area image of each template was rotated within a certain angle range
to generate multiple search area images. Matching of the template was then performed
within these search area images. This can help find accurate matching results for some
rotating aircraft targets, such as those that make turns.

The tracking process obtains the position of each aircraft in the image, as well as
its movement over time. Combined with the resolution of the satellite image and the
acquisition of time information, we can easily obtain the speed (km/h) of the aircraft.
Depending on the speed of each aircraft, its activity can be classified as parking, taxiing,
or flying.

Aircraft entry and exit detection is performed around the borders of the image. Aircraft
entry detection is performed through background segmentation and under a size constraint.
Aircraft exit detection is a comprehensive judgment based on the disappearance of the
aircraft, as well as its position and speed when it disappeared.

At the end of each loop, each template image and its corresponding search area are
updated. Templates are periodically updated to cope with the influence of a changeable
background. The next search area corresponding to each aircraft is instantly updated
according to its current tracking result. This cycle continues, completing aircraft target
tracking and activity recognition of subsequent images in turn.

3. DCNN-Based Aircraft Detection

DCNN-based rotation detectors have achieved good detection results on existing
remote sensing datasets, especially for aircraft object detection. In this study, a rotation
detector named R3Det [14] was used for aircraft detection in the start frame. Figure 3 shows
the flowchart of aircraft detection based on the R3Det detector. The ResNet network [30]
was used as the R3Det detector’s backbone. Upon this, the feature pyramid network
(FPN) and the feature refinement module (FRM) were constructed for rotation target
prediction. The R3Det detector was fine-tuned with the DOTA1.0 dataset upon the pre-
trained ResNet152 model. When detecting aircraft, an input image of an arbitrary size was
divided into manageable slices (1100 x 1100 pixels) and each slice underwent the detecting
process with our trained model [1]. Partitioning takes place via a sliding window with the
slice’s size and overlap (10% by default), as shown in Figure 3.

Image cropping

ResNet + FPN + FRM Final results

. g t

\iq

el Results on patch

v
<o <& +

#

/

bbox: NXJ5

Figure 3. Flowchart of aircraft detection (R3Det-based).

We tested the aircraft detection detectors with 10 remote sensing images of different
airports. The main parameters of the remote sensing images used for testing are shown in
Table 1. These remote sensing images have the following characteristics.
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Includes multiple ground sampling distance (GSD) metrics from 0.2 m to 1.0 m.

The images contain multi-type aircraft of different sizes. The orientation, distribution,
and painting type of the aircraft are arbitrary. Military and civil aircraft are all included.
The image includes areas such as airport runways, apron, etc.

Imaging conditions include no clouds and thin clouds.

Table 1. Properties of each test remote sensing image and its test results.

Properties of Test Remote Sensing Images Test Results
Image (1§i1:eel) ((;:1]):) Number of Instances TP FN FP
IMG1 3203 x 1370 <0.2 28 28 0 0
IMG2 4346 x 1199 <0.2 54 54 0 0
IMG3 3328 x 3072 <0.3 24 24 0 0
IMG4 3018 x 1065 <0.3 27 27 0 0
IMG5 2413 x 5118 <0.3 30 30 0 0
IMG6 3193 x 5540 <0.3 33 33 0 1
IMG7 2318 x 1914 <0.3 101 100 1 0
IMGS8 4347 x 1202 <0.3 154 152 2 1
IMG9 4096 x 3584 <0.5 54 54 0 0
IMG10 7168 x 4096 <1.0 113 110 3 4

The test results are shown in Table 1. TP (true positive) represents a correct detection
result. FN (false negative) represents a missed detection result. FP (false positive) represents
false detected results. Figure 4 shows the recall and precision for each test sample. Through
analysis of the results, we concluded that:

(1) The smaller the ground sampling distance (GSD), the better the detection performance
of aircraft targets.

(2) Missed detections mainly occurred in the detection of aircraft parked next to each
other on the tarmac.

(3) False positives are helicopters wrongly detected as aircraft in low-resolution images.

15 ‘
I MG 1 (GSD<0.2m) I IMG6 (GSD<0.3m)
I IMG2 (GSD<0.2m) [ IMG7 (GSD<0.3m)
[CTIMG3 (GSD<0.3m) [ IMGS (GSD<0.3m)
I 1MG4 (GSD<0.3m) [TMGY (GSD<0.5m)
I T™MGS (GSD<0.3m) [ ]TMG10 (GSD<1.0m)

111 11 1 0990987 1 (973

Precision Recall
Figure 4. Precision and recall results of each test remote sensing image.

Figure 5 shows some of the detection results. All aircraft in these images were ac-
curately detected with confidences larger than 0.8. Both military (red dotted ellipse) and
civilian aircraft (blue dotted ellipse) were accurately detected. Aircraft were also accurately
detected in remote sensing images affected by thin clouds and fog, as in Figure 5a,b. Aircraft
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densely parked on the tarmac (blue dotted ellipse), as well as aircraft taxiing on the runway
(white dotted ellipses) were also accurately detected. Additionally, partially occluded
aircraft in high-resolution remote sensing images were accurately detected (yellow ellipse).

Figure 5. Aircraft detection results (confidence larger than 0.8) in test remote sensing images.
(a) Aircraft detection results under thin cloud weather conditions; (b) Aircraft detection results
on the apron and runway under thin cloud weather conditions; (c) Detection results of different types
of military and civilian aircrafts; (d) Partially occluded aircraft can also be accurately detected.

As outlined in Figure 2, results from the detection procedure were used as the input for
the tracking and activity recognition procedure. At airports, high-value activities mainly
occur on the runway and its surrounding areas. The tests verified that the algorithm
has better detection performance on the runway and its surrounding areas. Therefore, in
follow-up research on aircraft target tracking algorithms, we can focus on processing only
the runway and its surrounding areas to ensure reliable detection of aircraft targets. This
can not only reduce the amount of calculation for remote sensing image processing, but
also improve the timeliness of aircraft activity recognition. The aircraft detector output
results with high recall and accuracy, providing excellent initial conditions for subsequent
aircraft tracking.
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4. Aircraft Tracking and Activity Recognition
4.1. Flow of Aircraft Tracking and Activity Recognition

Using the DCNN-based rotation detector to detect the start frame, we identified the
aircraft that needed to be tracked. To use the image matching method for aircraft tracking,
we first obtained the template image of the aircraft from the rotation detection results. The
aircraft in the template image is enveloped by a non-rotating bounding box, as shown
in Figure 6. The width and height of the rotation bounding box (purple rectangle) of the
detected aircraft are w® and hR, respectively. The width and height of its corresponding
horizontal bounding box (blue rectangle) are w' and k!, respectively. Thus, for the aircraft,
the width of its template image is w®! = wH — VwHKH — wRAR /2, and the height is
Pt = pH — wHRH — wRpR /2,

Figure 6. Determining the initial aircraft template image from the rotation detection results in the
start frame.

The next process is to locate each aircraft in subsequent images and recognize its
activity type. Figure 7 shows the algorithm for aircraft tracking and activity recognition.
The algorithm processes each frame image in turn. In each loop, the algorithm mainly
accomplishes four tasks.

Firstly, the algorithm searches for the best matching image for each aircraft within a
certain search area. The search area is calculated based on the previous tracking result of the
aircraft. The search area is centered on the aircraft and is twice its size. Before matching, the
search area image with a certain step size is rotated within a certain angle range to obtain a
batch of search area images. The best match for the aircraft target is then identified from
this batch of images and the matching result is located. Finally, we identify the position of
the matching result in the current input image and achieve tracking for the target aircraft.
This matching method is not only suitable for aircraft with translation and turning motion,
but can also effectively prevent mistaken tracking of nearby aircraft.

Secondly, the moving speed of each tracked aircraft is calculated using the multi-cycle
backward difference method. The recognition result of the aircraft activity is then given
according to its movement speed.

Thirdly, detection of newly entering objects at the edge of the field of view is performed
based on the background subtraction method and size constraint. If the bounding box of
the newly added target does not overlap with all the tracking results, it can be judged as
another aircraft that needs to be tracked.

Additionally, the template image of the aircraft is periodically updated using the latest
tracking results. Thus, the tracking procedure will have high adaptability to changeable or
complex backgrounds.

4.2. NCC-Based Template Matching for Aircraft Tracking

The normalized correlation coefficient (NCC) [29] based image matching method was
used to achieve aircraft tracking. The template matching algorithm consists of two steps.
First, both the aircraft template image and the image of the search area were normalized
according to the following equations.

T(x,Y) — o ( )N T(w))

0<x<wr,0<y<hr

\/ Y T(xy)’

0<x<wr,0<y<hr

T (x,y) = ¢y
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S(0Y) = weiis L Skoy)

0<x<ws,0<y<hg

S'(x,y) =
\/ Y Sy

()
0<x<wg,0<y<hg

Here, T(x,y) and S(x,y) are the pixel values in the aircraft template image and search
area image, respectively. T’(x,y) and S’ (x, y) are the pixel values in the normalized aircraft
template image and search area image, respectively. wr, i are the width and height of the
aircraft template image, and wg, hg are the width and height of the search area image. The
normalized correlation coefficients of these two normalized images were then calculated.

Input: {P;'}, {I;"}, I' and {P{}

Output: {P,},{Z'}

main()

{

updateCNT = 50

framelID =0

rotAngle = (-5,5)

bs = createBackgroundSubtractorKNN()

while (I'):
framelD = framelD+1
Iy mask = bs.apply(I')

for k in range (number of aircrafts):

for 6 in range (rotAngle):

R = { rotate (I'[P{] , 6) }

N = { tempaleMatch (I;'[Pi'], N) }
temp_Py, = argmax,(N) when N>0.5

Py, «~ temp_P;,

if framelD%25==0:
Vi =[PP

total

Z' < {Parking, Taxiing, Flying | V;, }

Lsir = erode( threshold(Ify mask) )
Liitarea = dilate( Loirr )
Peontours = findContours (Igijated)
if Sizey,< Size(contours)< Sizen.x and AR,i;<AR<AR.x :
if Peontows NOt overlap with {P,}
Add Peoniours to {Py} {Pr '}
Add T to {I/"}

if framelD%updateCNT==0:
P} = (P}, {1y} = {17}
else:
P} = (P}, {15} = {17}

{P''} < Calculate from {P;}

Figure 7. Algorithm for aircraft tracking and activity recognition.
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R(xo,y0) = Y (T'(%,9) % S'(x0 + £, 0 + 1)) ®3)

0<#<wr,0<§<hr

Here, (%,1) are the coordinates in the normalized aircraft template image, (xo, o) are
the coordinates of the upper left corner of the square matching area in the normalized
search area image, and R(x, o) is the value of the normalized correlation coefficient (NCC).
The closer the value R(xo, yo) is to one, the more similar the template image and the image
in the matching area of the search area image are.

On this basis, an aircraft tracking algorithm based on neighborhood search and match-
ing was proposed. Figure 8 shows the main flow of each tracking procedure, which consists
of four steps.

(gs)

¥
~ Step 2

Figure 8. Tracking procedure for matching aircraft in rotated search area images.

Step 1: To track aircraft in an airport, the matching algorithm needs to be able to
adapt to the matching of aircraft in translational and rotational motions. Thus, the search
area image was first rotated with a certain step size (2°) within a certain angle range
(—10°~10°) to obtain a batch of search area images. Then, NCC-based matching was
performed between the aircraft template image T and all obtained search area images. We
chose to rotate the search area image instead of rotating the aircraft template image, because
rotating the template image generates invalid data at its edges, which seriously affects the
matching result.

Step 2: The best match is identified as the matching result with the largest normalized
cross-correlation coefficient. The coordinates at the center point of the best matching
area in the search area image (the green center point) are identified according to the
matching result.

Step 3: The search area image that contains the best match is transformed back to its
original (non-rotated) state. Then, the coordinates at the center of the best matching area
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can be obtained, represented in the coordinate system of the original search area image (the
red center point). Finally, the center point and the size of the aircraft template image are
combined, and the matching result can be located in the original search area image (the
red rectangle).

Step 4: The position of the matching result (the red rectangle) in the current input
image is calculated; this is the tracking result of the aircraft in the current frame. According
to the current tracking result, the search area for the next tracking procedure (yellow dotted
rectangle) can be calculated. As outlined in Figure 7, the aircraft template image is updated
using the tracking result every 50 tracking cycles.

Based on the combination of rotated image matching and a neighborhood search, the
tracking process can achieve good performance. On the one hand, based on the design of
rotated image matching, the algorithm enables stable tracking of aircraft with translational
and turning motions. During the aircraft tracking procedure of our algorithm, the aircraft
search area is only twice the size of the currently tracked aircraft. Usually, there is a certain
safety distance between aircraft targets in their working state. Therefore, based on the
neighborhood search and the safe working distance requirement of aircrafts, nearby aircraft
do not enter the search area of the currently tracked aircraft. The algorithm can effectively
prevent false tracking of nearby aircraft.

4.3. Aircraft Activity Recognition

The velocity of each tracked aircraft was calculated every 25 frames using the multi-
cycle backward difference method. As shown in Figure 9, the current speed was taken to
be the total moving distance over the latest 50 frames divided by the total time, ;4. The
calculation formula is as follows.

P P

t
Vum n
total

4)
Here, V}, is the current speed, P}, is position of the tracked aircraft at the current
frame, Pltvf %0 s the position of the aircraft 50 frames away from the current frame, and #;,,;
is the time elapsed while the aircraft moved from position Py, %0 to P4;. Thus, we can obtain
a relatively stable speed measurement of the aircraft every other 25 frames. Finally, the
recognition result of the aircraft’s activity can be given based on the speed of the aircraft:

Parking 0 < Vi, < (2xGSD x 3.6) km/h
Taxiing (2 x GSD x 3.6) km/h < Vj; <230 km/h (5)
Flying 230 km/h < Vi; <1100 km/h

Here, we considered the possible positioning error caused by matching aircraft in
the rotated search area image. If the movement of the aircraft is less than two pixels, the
aircraft is considered to be in the parking state. If its speed exceeds 230 km/h, the aircraft is
considered to be in the flying state. In other cases, it is considered to be in the taxiing state.

}47 —
fm/u/ ‘

t=50 =25 t t+25 t+50
PM PM PM PM PM
V/

M

Figure 9. Aircraft activity differentiated according to its speed of movement.

4.4. Aircraft Entry and Exit Detection

For satellites operating in staring mode, the airport background changes slightly in
the acquired video images. Therefore, we use the background subtraction method [31] to
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detect new incoming aircraft. To further reduce the amount of computation, we only detect
new incoming aircraft around the edges of the image. The size of the edge range for the
detection operation is equal to the size of the largest aircraft in the current field of view.
Aircraft entry detection includes the following five operations:

1. Build a KNN-based background subtractor for background detection.

2. Obtain the foreground mask image and perform image binarization processing.

3. Morphologically process candidates in the foreground region based on the rectangular
kernel.

4.  Eliminate obviously wrong results within dimensional constraints. A target whose
size is smaller than 90% of the smallest aircraft size or larger than 110% of the largest
aircraft size in the current field of view is considered to be obviously wrong.

5. Judge whether the candidate result is the tracked aircraft that has moved into the edge
area. This can be easily achieved by judging whether their bounding boxes overlap.

Aircraft exit detection is simpler. If an aircraft fails to be tracked for 25 consecutive
frames, and its latest tracked position was in the image boundary area, the aircraft is
considered to have exited.

5. Experiments and Results
5.1. Platform and Datasets

The algorithm proposed in this paper is only suitable for video satellites working in
staring mode. Thus, we used remote sensing videos from commercial video satellites to
perform experimental validation of the proposed algorithm.

From Section 3 we know that the smaller the GSD (ground sample distance) of remote
sensing images, the better the detection performance of the algorithm. Considering the size
differences of different types of aircraft, we suggest that the GSD of video remote sensing
images should be approximately 1 m or less than 1 m. Therefore, two video instances of
high resolution with a GSD of less than 1 m (0.92 m), and low resolution with a GSD of
larger than 1 m (1.13 m), are used for verification here. Table 2 outlines the main parameters
of the two remote sensing videos. These two videos have a frame rate of 25 fps but are of
different image sizes. The scenes in both videos are at the end of an airport runway and its
surrounding environment.

Table 2. Parameters of remote sensing videos.

Parameters
Test Video GSD Image Size Frame Rate Lengt
(m) (pixel) (fps) H(s)
Video 1 1.13 1024 x 1024 25 14
Video 2 0.92 1100 x 1024 25 28

The complete algorithm was deployed and tested on an embedded Al processor called
NVIDIA Jetson AGX Xavier.

5.2. Experimental Results

Figure 10 shows some screenshots of the experimental results on test video 1. The
image shows the end of an airport runway and its adjacent farmland. There are five aircraft
in the image. The three aircraft parked at the top of the picture are relatively small in size.
Some of the aircraft have tones similar to their nearby environmental backgrounds and are
not clearly visible in the image.
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(d

Figure 10. Screenshots of the experimental results from test Video 1. (a) Aircraft detection results in
the first frame of the video; (b) Aircrafts detected in the starting frame are all tracked stably; (c) The
speed of each tracked aircraft is measured and from this the type of aircraft activity is determined;
(d) Each aircraft is stably tracked and its type of activity is determined.

Figure 10a shows the aircraft detection results in the start frame. The aircraft were
detected with the DCNN-based rotation detector described in Section 3. The five aircraft
were all correctly detected in the start frame and located with purple bounding boxes.
As shown in Figure 10b, the five detected aircraft were treated as targets that needed to
be tracked in the following frames. These aircraft were assigned different identification
numbers and were located using different colored bounding boxes. In subsequent frames,
the algorithm tracked the five aircraft using image matching and measured their speed
to identify the type of activity. The measured speed and recognized activity status of
each aircraft were updated every 25 frames. The current activity status of the aircraft was
displayed using different colors: parking was displayed in yellow, taxiing was displayed in
green, and flying was displayed in blue. As shown in Figure 10c,d, all five aircraft were
continuously and correctly tracked. Three aircraft (Aircraft 2, 3, and 4) that were parked on
the tarmac were correctly identified to be parking. Aircraft 0, taxiing on the runway, was
correctly recognized to be taxiing. Aircraft 1 was correctly recognized to be flying.

Figure 11 shows the speed vs. time curves for every tracked aircraft in Video 1. Curves
of five different colors represent the five different aircraft targets. The two horizontal
dashed lines in the figure represent the speed thresholds used to divide the three different



Aerospace 2022, 9, 414

14 of 19

aircraft activities. When the aircraft speed is in the lowest zone, the state of the aircraft is
parking. When the aircraft speed is in the middle zone, the state of the aircraft is taxiing.
When the aircraft speed is in the upper zone, the state of the aircraft is flying.
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Figure 11. Speed measurements for each aircraft in test Video 1.

From the experimental test results in Video 1, the algorithm is identified as having
the following advantages. Firstly, the algorithm supports the reliable detection and stable
tracking of weak and small aircraft targets (e.g., Aircraft 4). Secondly, the algorithm can
stably track aircraft at different speeds. Thirdly, the algorithm can accurately track aircraft
targets under complex and changeable backgrounds (e.g., Aircraft 1). Lastly, based on the
aircraft tracking and speed measurement, the algorithm can further identify the current
activity status of the aircraft.

In Figure 12, some screenshots of the experimental results from Video 2 are displayed.
The images show the end of an airport runway and its adjacent apron. There are more
aircraft in the remote sensing images, and they are of various shapes and sizes. In addition,
the motion of the aircraft in the remote sensing images is more complex.

Figure 12a shows the aircraft detection results in the start frame. All twelve aircraft in
the image were accurately detected and located with purple bounding boxes. As shown in
Figure 12b, the twelve detected aircraft were treated as targets that needed to be tracked in
the following frames. They were assigned different identification numbers and were located
using different colored bounding boxes. In subsequent frames, each aircraft was tracked,
and its activity status was given based on its velocity measurement. At the beginning, the
top eight aircraft (Aircraft O~Aircraft 7) were parked, and the bottom four aircraft (Aircraft
8~Aircraft 11) were queuing to take off (as shown in Figure 12c¢). Later, the first aircraft
on the runway took off, and the next aircraft turned around and was ready to take off
(Figure 12d). At the end of the video, two taxiing aircraft enter from the left side of the field
of view (Figure 12¢f).

Figure 13 shows the speed vs. time curves for every tracked aircraft in Video 2, similar
to Figure 11. Curves of fourteen different colors represent the fourteen different aircraft
targets in Video 2. At the 25th second, the algorithm obtains the speed measurement of the
newly entered Aircraft 12. Similarly, the algorithm obtains the speed measurement of the
newly entered Aircraft 13 at the 27th second.



Aerospace 2022, 9, 414 15 of 19

(@ (b)

Figure 12. Screenshots of the experimental results from test Video 2. (a) Aircraft detection results in
the first frame of the video; (b) Aircrafts detected in the starting frame are all tracked stably; (c) The
speed of each tracked aircraft is measured and from this the type of aircraft activity is determined;
(d) The aircraft is stable tracked even with complex environmental backgrounds, lighting conditions,
and various movements of the aircraft, such as turning (Aircraft 8); (e) A newly entering aircraft
(Aircraft 12) is also identified and stably tracked; (f) Another entering aircraft (Aircraft 13) is identified
and stably tracked.
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Figure 13. Speed measurements for each aircraft in test Video 2.

From the experimental results in Video 2, we can conclude that the algorithm has the
following advantages. Firstly, the algorithm supports the stable tracking of turning aircraft
(e.g., Aircraft 8) due to the improved rotation matching method. Secondly, the algorithm
has strong robustness, even under complex lighting conditions. As shown in Figure 12c,
there was a great deal of light reflected on the surface of Aircraft 8, but the algorithm can
still track it stably. Lastly, the algorithm supports the detection of newly entered aircraft.
As shown in Figure 12e,f, the newly entered Aircraft 12 and 13 were accurately detected.
They were then accurately tracked, and their activity status was identified.

We also tested and compared the time-consumption of the algorithm on an RTX2080Ti-
based server and on the embedded Al computing unit called Jetson AGX Xavier. Table 3
outlines the time-consuming statistics of the two experiments on different platforms. We
evaluated the time consumption of the two main parts of the algorithm separately. DCNN-
based aircraft detection takes approximately 4 s and 20 s on the server and embedded
Al unit, respectively. Aircraft tracking and activity recognition takes less than 200 ms on
both computing platforms. Video 2, which contains more aircraft targets, consumed more
time. Compared with the traditional ground processing methods, the method in this paper
significantly improves the efficiency of aircraft activity recognition and reduces the amount
of satellite-to-ground data transmission. Although there is a delay of tens of seconds, the
method in this paper can serve as an important reference for the exploration of on-board
intelligent processing and satellite intelligent decision-making.

Table 3. Time consumption comparison of the algorithm on different computing platforms.

Time Consumption

RTX2080Ti Jetson AGX Xavier
Test Data - . . . .
Detection Tracking anc.l .Act1v1ty Detection Tracking anc.l {\ct1v1ty
Recognition Recognition
Video 1 3.47s 4.84 ms 19.33 s 18.27 ms
Video 2 3.76 s 51.9 ms 19.78 s 172.76 ms

5.3. Discussion

The algorithm proposed in this paper offers a solution for the recognition of aircraft activity
at airports. By combining the DCNN-based object detection and an improved template matching
method, aircraft can be accurately detected and stably tracked, and its activity can be identified
based on its speed. The algorithm can process aircraft targets of different sizes, and is equally
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effective under different complex environmental backgrounds, lighting conditions, and various
movements of the aircraft, such as turning, entering, and exiting.

The algorithm’s time consumption has been evaluated on an embedded computing
platform, where it exhibited a delay of tens of seconds in the two testing videos. However,
compared with tracking-by-detection methods, the algorithm in this paper achieves a
relatively efficient performance under the premise of ensuring high accuracy. Nonetheless,
the algorithm can still effectively support applications in which short delays are acceptable,
such as monitoring whether an airport is operating or not. Based on on-board dynamic
event recognition, selective download of segment data of interest can be performed. Com-
pared with traditional ground processing methods, the proposed method significantly
improves the efficiency of event acquisition and reduces the amount of satellite-to-ground
data transmission.

With appropriate improvements, the algorithm is expected to be used for time-critical
tasks, such as real-time detection and tracking of take-off aircraft. These high-value dynamic
events usually occur at the end of the runway. Therefore, geographic information can be
incorporated to further narrow the range of images processed by the algorithm. By reducing
the detection range and the number of aircraft in the field of view, the time consumption of
the algorithm can be significantly reduced. Additionally, using satellites with on-board,
real-time processing capabilities to form a constellation would enable the continuous
real-time tracking of areas of interest and the relay tracking of moving targets.

6. Conclusions

The recognition of aircraft activity at airports is of great significance in both civil and
military fields. In this paper, an efficient aircraft activity recognition algorithm, which
supports deploying video micro-satellites, was proposed. Firstly, the aircraft in the start
frame was detected with a robust rotation detector. Then, aircraft tracking was achieved
using a neighborhood search and an improved rotating image matching method. Combin-
ing the tracking result and geospatial information, the speed of the aircraft was obtained.
Finally, aircraft activity was classified as parking, taxiing, or flying according to the speed
of the aircraft. We experimentally verified the algorithm on real remote sensing videos.
The experimental results demonstrated the effectiveness and efficiency of the algorithm.
When deployed on video micro-satellites with limited computing and memory resources,
the algorithm can still effectively support applications where short delays are acceptable,
such as monitoring whether an airport is operating. The scheme in this paper also provides
a general framework for on-orbit target tracking and event recognition.
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