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Abstract: Identifying safety anomalies and vulnerabilities in the aviation domain is a very expensive
and time-consuming task. Currently, it is accomplished via manual forensic reviews by subject matter
experts (SMEs). However, with the increase in the amount of data produced in airspace operations,
relying on such manual reviews is impractical. Automated approaches, such as exceedance detection,
have been deployed to flag safety events which surpass a pre-defined safety threshold. These
approaches, however, completely rely on domain knowledge and outcome of the SMEs’ reviews and
can only identify purely threshold crossings safety vulnerabilities. Unsupervised and supervised
machine learning approaches have been developed in the past to automate the process of anomaly
detection and vulnerability discovery in the aviation data, with availability of the labeled data being
their differentiator. Purely unsupervised approaches can be prone to high false alarm rates, while a
completely supervised approach might not reach optimal performance and generalize well when the
size of labeled data is small. This is one of the fundamental challenges in the aviation domain, where
the process of obtaining safety labels for the data requires significant time and effort from SMEs and
cannot be crowd-sourced to citizen scientists. As a result, the size of properly labeled and reviewed
data is often very small in aviation safety and supervised approaches fall short of the optimum
performance with such data. In this paper, we develop a Robust and Explainable Semi-supervised
deep learning model for Anomaly Detection (RESAD) in aviation data. This approach takes advantage
of both majority unlabeled and minority labeled data sets. We develop a case study of multi-class
anomaly detection in the approach to landing of commercial aircraft in order to benchmark RESAD’s
performance to baseline methods. Furthermore, we develop an optimization scheme where the model
is optimized to not only reach maximum accuracy, but also a desired interpretability and robustness
to adversarial perturbations.

Keywords: anomaly detection; semi-supervised learning; explainable AI; aviation safety

1. Introduction

In real world applications, obtaining high quality labels for a dataset is a challenge
that requires significant effort from subject matter experts (SMEs). On the other hand,
supervised learning methods (the most commonly used method in the data science and
machine learning domains) require fully labeled datasets to train a model that generalizes
well on unseen data. Depending on the application and the complex nature of the data, a
subset of data can be reviewed and labeled by the SMEs. However, if the data is exceedingly
complex, it takes significant amount of time to label them, and as a result, a high number of
labeled examples can be unrealistic to obtain. Furthermore, advanced machine learning
models (e.g., deep learning) can contain an extremely large number of trainable parameters.
This requires a significant amount of labeled data to reach optimum performance and
prevent the model from overfitting. Techniques such as crowd sourcing, a term coined in
2005 [1], can help alleviate this problem, constrained by the “crowd’s” skill level. If the
objective is to label images of dogs and cats, the available pool of labeling workforce can be
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broad since the majority of the population can easily identify these animals in a variety of
photographic conditions. Other applications may require some degree of training, and this
can be incorporated into the labeling process. In such setting, a level of trust or confidence
based on monitoring a user’s known experience can be assigned for each label. This helps
track the quality of the labels such as in the Nemo-Net [2] and Galaxy Zoo [3] citizen science
projects. While this works well for intermediate levels of expertise, in domains requiring
more specific and technical knowledge, the pool of SMEs with relevant background and
experience to validate each data instance may be drastically decreased. Furthermore, the
data might be considered proprietary and sensitive (as is the case in the aviation safety
domain) and hence cannot be shared with citizen scientists.

The lack of available SMEs is particularly compounded in aviation safety by the fact
that not all events that occur are purely threshold crossings. They may involve reviewing a
variety of actions, conditions, and sequences of events corroborated across various data
sources before it can qualify as an operationally significant event. As a result, to properly
assign the data labels, a forensic analysis for an hour of review may only yield a dozen or so
labels [4]. Moreover, an increasingly important area of focus in this domain is vulnerability
discovery or anomaly detection—especially detection of unknown anomalies. In this case,
there is no pre-defined notion of the anomalies that the algorithm has learned to detect.
These types of anomalies also add time to the review process because there may not be
precedent to categorize these anomalies. In addition to this, it may take more time to fully
consider the scenario’s significance, its proximity to the safety margins, and the impact it
may have had on the operations.

In the realm of machine learning algorithms that can be used to address this problem,
there exist three main approaches: unsupervised, supervised, and semi-supervised learning.
Purely unsupervised approaches can be prone to high false positive rates and do not
perform as well as supervised approaches when labels are present. On the other hand, as
discussed above, a completely supervised approach might not reach optimal performance
when the size of labeled data is small. Furthermore, any supervised model can only
detect known (labeled) anomalies and hence suffer from the inability to discover unknown
vulnerabilities. Semi-supervised learning combines the two approaches and has the ability
to leverage the known labeled data as well as the patterns found in the vast pool of
available unlabeled data [5]. This gives the semi-supervised approaches an advantage
that can potentially address drawbacks of both unsupervised and supervised models,
especially those associated with the lack of labeled data (when only a small set of labels
can be acquired).

In addition to the performance improvements from semi-supervised learning where
both the labeled and unlabeled data are leveraged, the algorithm yields useful structuring
of the data in the learned feature space (i.e., latent space). By examining labeled examples
that are collocated within this arrangement of data, it can be inferred that the unlabeled
data instances have similar characteristics. This provides some level of model explainability
in how the data is organizing in this space and can be used to find other similar events
within the unlabeled data.

In the aviation safety domain, cases such as unstable approaches [6] are well defined
and use threshold crossings to detect the occurrence and level of severity for known events.
In this paper, we leverage these known anomalies from commercial aircrafts’ approach to
landing data to help bootstrap and guide a novel semi-supervised learning approach. We
benchmark performance of the model based on three synergistic criteria: (1) classification
accuracy, (2) interpretability of the extracted/learned features, and (3) robustness to ad-
versarial perturbations. These criteria are compared against several baseline methods in
aviation and machine learning literature. Furthermore, as we will discuss later in the results
section, the similarities among the extracted features from the data can be exploited to help
identify samples that may contain previously unknown anomalies by having the SMEs in
the loop. This sets out the next step to design an active learning mechanism, where these
newly discovered anomaly categories can be refactored into the training set. This allows us
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to begin to build previously unknown classes in the data, and further guide the algorithm’s
ability to classify the categories and discover new anomalies over subsequent iterations.

In a deployed operational environment, imagine a situation where borderline events
that may not meet the strict criteria currently being used to define an event, are labeled
nominal and are therefore unmonitored. This approach can assist in identifying these
borderline events since they share similar patterns with the labeled events. Uncovering and
understanding an expanded events category can provide operators a clearer assessment to
their risk exposure. This can also offer a means for crafting more accurate event definition
logic that encompasses the more comprehensive event category. In other words, this
technique can add new insights into the modes of operation that previously had been
limited in scope and help improve the overall safety of the operations.

2. Related Work

Machine learning has been widely applied in the aviation domain for anomaly de-
tection and safety improvement applications [7–10]. Due to the lack of properly labeled
aviation data, the majority of the literature on aviation safety and anomaly detection has
focused on unsupervised learning [11]. Unsupervised approaches can roughly be catego-
rized into: (1) distance-based [12–15], (2) kernel-based [9], and (3) deep learning–based
methods [11,16]. Distance-based models (nearest neighborhood and clustering approaches)
are proven effective by using a distance metric to identify anomalous events. This category
of models, however, is less popular due to their quadratic computation complexity [11].
Bay and Schwabacher [12] made one of the early attempts to reduce the computational
complexity of distance-based anomaly detection, defining anomalies as points with far-off
nearest neighbors. Kernel-based approaches such as One-Class Support Vector Machine
(OC-SVM) are frequently used for unsupervised anomaly detection applied to the aviation
domain. NASA’s Multiple Kernel Anomaly Detection (MKAD) model [9] uses OC-SVM
as a part of the overall framework and demonstrates significant proficiency in finding
operationally significant anomalies in heterogeneous time-series of commercial flights.

More recently, deep learning has become popular in anomaly detection literature.
Specifically, methods based on deep generative models such as Auto-Encoders (AEs) [17],
Variational Auto-Encoders (VAEs) [18], and Generative Adversarial Networks (GANs) [19]
have been widely adopted for anomaly detection purposes in many science and engineering
domains. A popular subset of these approaches is reconstruction-based anomaly detection.
In this approach, a deep generative model is used to reconstruct/generate the input data
by sampling from a lower-dimensional latent feature space. The main intuition is that since
the majority of the training data are nominal, the reconstruction error for those data would
be lower compared to the minority anomalous data present in the training. In other words,
reconstruction-based models bet on the noticeable inconsistency of anomalies in subspace
representation resulting in high reconstruction errors. This approach has been widely used
for identifying anomalies in time-series data [20–25] as well as aviation data [7,16,26,27].
Janakiraman and Nielsen [7] have implemented an extreme learning models AE to learn the
nominal distribution. The anomalies are predicted based on surpassing the reconstruction
error for a nominal boundary. Wang et al. [26] developed a transfer learning-based AE
that forces the latent space to learn useful data aspects. The authors applied this model to
flight track anomaly detection problems on data from multiple airports and reported high
performance and high capability for the model to reduce data processing requirements.
Memarzadeh et al. [16] have developed a Convolutional Variational Auto-Encoder (CVAE)
to detect flight track anomalies. The model used an `2 distance reconstruction error as a
metric to identify anomalies.

Despite the compelling case of no labeling requirement for unsupervised approaches,
their performance is not competitive compared to supervised models. Lee et al. [28] intro-
duced a framework called Safety Analysis of Flight Events using classic supervised machine
learning models. They showcased the versatility of the framework using Flight Operational
Quality Assurance (FOQA) data in identifying multiple anomalies in the approach to
landing of commercial aircraft. In another study, Janakiraman [29] developed a supervised
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precursor mining algorithm: Deep Temporal Multiple Instance Learning (DT-MIL). This
algorithm finds anomalies by correlating incoming events to anomalous multi-dimensional
time-series. The author used deep recurrent neural networks in a multi-instance learning
structure to efficiently track temporal behavior. Despite the significant predictive capabili-
ties of supervised methods, developing such an approach can be expensive and infeasible
at times. This is especially true in aviation safety datasets, since acquiring reliable and
accurate labels for data requires significant time and effort from SMEs and is largely im-
practical. On the other hand, unsupervised methods are cheaply available, so long as you
assume an operationally significant aviation anomaly is equivalent to a statistical one. This
assumption is not consistently correct and results in poor performance of unsupervised
approaches compared to supervised methods in application to the aviation domain. This
leads to a significant number of false positives (false alarms) that bring into question the
reliability and applicability of unsupervised methods.

There are limited studies in aviation safety literature to fill the gap between unsuper-
vised and supervised methods. Active learning [30–33] has been developed to tackle this
problem, where different information-theoretic or uncertainty-based methods are used to
identify the most informative data (among the vast pool of unlabeled data) to be reviewed
and labeled by SMEs. Although this approach improves the performance and efficiency
of the supervised methods (by incorporating the smart labeling strategies into account), it
does not tackle the shortcomings of the supervised learning approaches completely and
still requires SMEs in the loop.

Semi-supervised methods are potential approaches to fill the gap where the labeled
data exist but are not sufficient for fully supervised modeling. These approaches have
been applied in the anomaly detection of time-series [34,35]; however, they have not yet
been truly explored in the aviation safety domain. To our knowledge, the only exist-
ing semi-supervised aviation anomaly detection is a study done by the authors of this
paper [36] where two recent semi-supervised approaches have been used for detection of
aviation anomalies.

3. Method

In this paper, we develop RESAD, a Robust and Explainable Semi-supervised deep
learning model for Anomaly Detection in aviation data that addresses the shortcomings of
both supervised and unsupervised learning. The semi-supervised mechanism allows the
decision makers to make inference based on minimally available (but extremely valuable)
labeled data as well as the vast amount of unlabeled data. As a result, it overcomes the main
disadvantages of these two families of methods: (1) supervised learning not performing
optimal due to scarcity of labeled data, and (2) unsupervised learning not showcasing great
accuracy and reliability by not leveraging operational domain knowledge from SMEs. The
proposed semi-supervised model is also superior to active learning as it does not rely on
the availability of SMEs for data labeling; however, it can be easily fit within an active
learning framework.

We build the model upon two existing methods in machine learning literature [37,38],
and show that it is superior to multiple baseline methods from literature in flight multivari-
ate time-series anomaly detection. Specifically, we train RESAD based on a loss function
that: (1) takes advantage of both labeled and unlabeled sets of data to extract informative
features for accurate classification of multi-classes of anomalies; (2) uses graph theory-based
label propagation and enforces a compact clustering of data belonging to each class in
the latent feature space, which improves the interpretability of extracted features and its
application for down-stream tasks; and (3) uses the reconstruction fidelity of the input data
based on its generative capability to improve the robustness of the learned latent features
to adversarial perturbations.

Let us imagine that the available data is grouped into two sets: the minority labeled
set, (XL, yL), and the majority unlabeled set, XU , where the size of the unlabeled set is
significantly larger, i.e., |XU | � |XL|. It should be noted that any supervised learning
technique would ignore XU , while any unsupervised learning method would ignore yL.
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As depicted in Figure 1, RESAD consists of three components: (1) an encoder, (2) a decoder,
and (3) a classifier. The encoder, qφ(z | x), is a deep convolutional neural network (exact
architectures are reported in Appendix A) that maps the input data X to a latent feature
space Z. The decoder, pθ(x | z), is also a deep convolutional neural network that recon-
structs the data X̂ from the latent features Z. The classifier, cψ(y | z), is a fully connected
neural network with dropout regularization that classifies the data in the latent feature
space. Parameters φ, θ, and ψ represent the weights of the neural network for the encoder,
the decoder, and the classifier, respectively.

Figure 1. Graphical illustration of RESAD’s architecture and its components.

We train the entire network end to end and use all available data (labeled and unla-
beled). The overall objective of the optimization is to find a set of weights (i.e., φ∗, θ∗, ψ∗)
that minimizes the following loss function:

L = wsLcls + wcLcclp + wrLrec (1)

The first term is the classification loss and is defined as a cross entropy (H) between
the prediction of classifier and the true labels on the labeled set:

Lcls = E(XL ,yL)
[H
(
yL, cψ

(
y | qφ(z | XL)

))
] (2)

The second term in Equation (1) corresponds to the compact clustering via label
propagation (CCLP) loss. We have adopted this loss term from [38] and it is defined
as follows:

Lcclp = EZ∈{ZL
⋃

ZU}[
1
S

S

∑
s=1

1
N2

N

∑
i=1

N

∑
j=1
−T(zi, zj) log H(s)(zi, zj)] (3)

where N = |XL|+ |XU | is the total number of training data, T is the optimal transition
matrix between data instances in the latent feature space, H is the actual transition matrix
estimated via dynamic graph construction and label propagation, and S is the step of the
Markov chain on the graph. Equation (3) is the cross-entropy between the desired optimal
transition function T and the estimated one H.

To estimate H, we first calculate the adjacency matrix, A, which is estimated based on
the similarity of the data instances in the latent space. We define the adjacency matrix as
follows using Cosine similarity,

A(zi, zj) = exp
(

zi.zT
j

)
∀zi, zj ∈ {ZL ∪ ZU} (4)

where T is transpose operation. It should be noted that the results are not affected by the
choice of similarity measure, and any other metric (such as negative Euclidean distance)
can also be used as a similarity metric. The Markovian random walk along the nodes of
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this graph is defined by the transition matrix H, which is obtained by row-normalizing the
adjacency matrix A,

H(zi, zj) =
A(zi, zj)

∑k A(zi, zk)
(5)

Once the graph is constructed according to the transition matrix H, label propagation
uses H to propagate the class confidence from the labeled to unlabeled samples and estimate
the optimal transition function T. This is an iterative process until the process converges at
an equilibrium. The class posteriors for the unlabeled data, ΦU at this equilibrium can be
computed in closed form [38] as follows,

ΦU = (I−HUU)
−1HULYL (6)

where H is re-arranged to its labeled and unlabeled elements as follows,

H =

[
HLL HUL
HLU HUU

]
(7)

As a result, Φ =

[
YL
ΦU

]
∈ RN×nc is the class posterior estimated by the label propaga-

tion at convergence, and nc is the number of known classes.
Finally, the optimal transition function between data instances, T, is calculated based

on the class posterior, i.e., Φ. The equilibrium denotes an optimal state in which transition
probability between any two data instances of the same class is the same, and it is zero for
inter-class transitions. Kamnitas et al. [38] provides the following formula for calculating
this optimal transition function,

T(zi, zj) =
nc

∑
c=1

φ(zi, zc)
φ(zj, zc)

mc
, mc =

N

∑
i=1

φ(zi, zc) (8)

where φ(zi, zc) is the posterior for node i to belong to class c, and mc is the expected mass
assigned to class c.

Finally, the third term in Equation (1) is the reconstruction loss, which ensures that
the latent feature space is informative and robust enough that we can reconstruct the input
data accurately from it. We define the reconstruction loss as the binary cross entropy (BCE)
between the input data and the reconstruction; however, any other metric such as mean
squared error (MSE) can be used as well. Our experiments have shown that when the input
data is normalized using MinMax scaling, meaning that all the features take ranges between
0 and 1, the time-step level (or pixel-level in case of imagery data) BCE loss captures the
variability in the reconstructed data compared to the input data much better than the MSE
loss. However, it should be noted that if the data is scaled using standard scaling, and, as
a result, features are not necessarily bounded between 0 and 1, only MSE loss should be
used. The reconstruction loss is formalized as follows:

Lrec = EX∈{XL
⋃

XU}[H
(
X, pθ

(
X | qφ(Z | X)

))
] (9)

ws, wc, and wr in Equation (1) are the hyper-parameters that tune the importance of
each loss term in the overall loss function.

4. Results and Discussion

We compare the performance of RESAD with two baseline semi-supervised models:
(1) Compact Clustering via Label Propagation (CCLP) [38] and (2) Auto-Encoder + Classifier
(AE+C) [37]. Kingma et al. [37] proposed a generalization of deep generative models such as
VAEs (which is a widely used deep learning method for representation learning, nonlinear
dimensionality reduction, and anomaly detection in many domains and in our previous
work [16]) to a semi-supervised version by adding a classifier to the VAE structure that is
mainly trained based on the minimally available labeled data. They showed that such a
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semi-supervised deep generative model is superior to classic semi-supervised methods
such as transductive support vector machines [39], especially when the size of unlabeled
data is huge. Later, Kamnitsas et al. [38] developed the CCLP formulation, a discriminative
model with a novel cost function for semi-supervised learning based on deep learning
and graph theory, and showed that it is superior to developed architectures based on deep
generative models such as [37]. These two models can be seen as simpler models compared
to ours. CCLP only contains an encoder and classifier and is trained only based on the first
two terms in Equation (1), while AE+C has an encoder, decoder, and a classifier, but does
not enforce compact clustering, and is only trained based on the first and the third terms in
Equation (1).

We quantify the comparison according to three metrics: (1) classification performance,
(2) latent space configuration, and (3) robustness to the adversarial perturbations. For
classification performance, we also include a comparison with DT-MIL [29] to show the
superiority of semi-supervised learning over supervised methods when the labeled data is
scarce. DT-MIL is chosen as the most recent supervised anomaly detection model based on
deep learning architecture that has been validated on the FOQA data (similar data that has
been used in this study). For the second metric, we qualitatively and quantitatively show
how interpretable and useful the learned features in the latent space are for the downstream
tasks (e.g., active learning, clustering). Lastly, the third metric evaluates the robustness of
the inference made by the models to noise and adversarial perturbations in the input data.

The next subsection describes a real-world multi-class anomaly detection dataset
during approach to landing of commercial aircraft. We have developed this dataset to
benchmark performance of our proposed method, i.e., RESAD, against the baseline methods
mentioned above.

4.1. Multi-Class Anomaly Detection during Approach to Landing of Commercial Aircraft

In this section, we introduce a multi-class anomaly-detection dataset based on FOQA
data from a commercial airline https://c3.nasa.gov/dashlink/projects/85/ (accessed on
1 March 2021). This data is primarily comprised of 1-Hz recordings for each flight and
covers a variety of systems. These include the state and orientation of the aircraft, positions
and inputs of the control surfaces, engine parameters, autopilot modes, and corresponding
states. The data is acquired in real time on-board the aircraft and downloaded by the airline
once the aircraft has reached the destination gate. These time series are analyzed by SMEs
to flag known events and create labels. Each data instance is a 160-second-long recording
of 20 variables during the approach of the aircraft to landing—from a few seconds before
an altitude of 1000 ft, to a few seconds after an altitude of 500 ft. It should be noted that, for
many flights, depending on the landing runway and airport geometries, the duration from
1000 to 500 ft altitude is less than 160 s. In this case, we expand the data window to include
an additional period directly before reaching 1000 ft altitude.

We processed and labeled 30,522 overall data instances, which is comprised of four
classes: (1) nominal, where no anomaly of the other three classes is known to be present
(∼66.7% of the total data); (2) speed anomaly, where the anomaly is identified based on
a deviation from the target landing airspeed during approach (∼22.9% of the total data);
(3) path anomaly, where the path of descent for landing are flagged as being anomalous
and deviated significantly from the glide slope (∼7.2% of the total data); and (4) control
anomaly, where the flaps (specific control surface on the wings of the aircraft) are flagged
anomalous if there is a delay in extension as compared to the expected nominal deployment
during approach to landing (∼3.2% of the total data). These events were chosen because
they are all relevant metrics used to measure unstabilized approaches. Figure A4 in
Appendix C visualizes the flight time-series in the training set in 2D using t-Stochastic
Neighbor Embedding (t-SNE) [40] color-coded based by their true class. It appears that
there are some distinct modes/clusters in the input space, but none are corresponding to
the known classes of anomaly present in the data. This makes the task of anomaly detection
in the input space difficult, since the data is not easily separable and organized. We aim
to utilize our proposed semi-supervised method, RESAD, to efficiently generate latent

https://c3.nasa.gov/dashlink/projects/85/
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representations with easily separable boundaries and with an interpretable configuration
that down-stream tasks can leverage.

Each data instance is either nominal or contains only one type of anomaly: a restriction
that simplifies the validation process. Testing on data that contains multiple types of
anomalies per instance will be part of our future work. Figure 2 shows the distribution of
the data based on the landing airport. As it can be seen, majority of the data is for landing in
Minneapolis–Saint Paul International Airport, Detroit Metropolitan Wayne County Airport,
and Memphis International Airport.

Figure 2. Distribution of the data across landing airports. The sizes of the circles are proportional to
the amount of data for each airport.

We divide the data into three sets of training (60%), validation (20%), and testing
(20%). The training set is used for training the models. The validation set is used to select
an optimal choice of hyper-parameters (discussed in the next section). The testing set is
used to report an unbiased estimate of the models’ performances. All the figures presented
throughout the paper are based on the results obtained by applying the models to the
testing set (an unseen set during training, validation, and hyper-parameter tuning).

4.2. Implementation Details

All three semi-supervised models are implemented in Python using the PyTorch
library. The architecture of the encoder, the decoder, and the classifier in all of them are
identical and are reported in Appendix A. The DT-MIL model was used the way it was
originally implemented, using the Keras library (for details refer to [29]). DT-MIL is a binary
classification model. Since we intended not to alter the original model, we implement
DT-MIL as a one-versus-all scheme for the case of multi-class classification.

All models were trained for 200 epochs; the Adam optimizer [41] was used for all
models with a learning rate equal to 3× 10−4 and default momentum parameters. We
performed hyper-parameter tuning based on the validation set to identify reasonable
choices for the hyper-parameters. Based on our comprehensive experimentation, the latent
space dimension of all three semi-supervised models is fixed to 256 dimensions (Z ∈ R256),
the number of steps in the Markov chain in Equation (3), S is fixed to 3, and the weights
of different loss terms in Equation (1), i.e., {ws, wc, wr} are fixed based on the size of
the labeled set, i.e., |XL|. We report these values in the next section, where we discuss
the findings.

4.3. Classification Performance

Figure 3 compares performance of the classification in terms of average accuracy
(mean +/− standard deviation) of classification among our proposed model, RESAD,
(green) with the baseline models. This is based on 20 independent trials of training, where
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the labeled set is sampled uniformly across classes and randomly within each class. For
example, in the case of a 100-sample labeled set, 25 samples are randomly selected from
each of the four classes. The x-axis shows the number (and percentage) of the labeled set
in the training. It should be noted that the results presented in the figure are based on the
performance on the testing set that was not seen by the algorithms in either training or
validation phases (hyper-parameter tuning). As mentioned before, we set aside a validation
set to perform hyper-parameter tuning and find the right combination of weights in the loss
function in Equation (1) for our approach. Based on our comprehensive experimentation,
the following general rules emerged: for the classification loss (the first term), we found that
having a higher weight for the case of small labeled set (e.g., 100 and 200 samples) improves
the performance, while a small weight might be sufficient when the size of labeled set
grows (e.g., 500 and 1000 samples). A large weight for CCLP loss (the second term) was
found to improve the performance. The weight of the reconstruction loss (the third term)
did not play a major role in the classification task, but was very crucial in the robustness
to the adversarial perturbation (we will discuss this later in this section). Based on the
experimentation, we fixed the values of the weights to ws = 100 for NL ∈ {100, 200} and
ws = 1 for NL ∈ {500, 1000}, wc = 100, and wr = 10. It should be noted that we performed
hyper-parameter tuning only for our proposed model. For the baseline methods, we kept
the loss function of training and corresponding weights of the terms identical to the ones
obtained by the original authors.

Figure 3. This figure compares performance (average accuracy of classification) of our proposed
model (colored green) with multiple baseline methods, such as DT-MIL (red), AE+C (yellow), and
CCLP (blue).

A major finding in Figure 3 is that all the semi-supervised models significantly out-
perform the supervised DT-MIL method. This emphasizes the superiority of the semi-
supervised learning when the size of the labeled set is small. Among the semi-supervised
models, RESAD performs slightly better than the baseline models. Figures A5 and A6 in
Appendix C show the precision and recall values per class for each method. Semi-supervised
methods perform significantly close in recall of identifying anomalous classes. RESAD has a
higher precision in the minority anomaly classes (path and control in Figure A5) and a higher
recall for the majority nominal class (Figure A6).

Furthermore, we calculate precision, recall, F1-score, and AUROC (Area Under ROC
curve) for the binary anomaly detection problem, where we evaluate how accurately the
model can distinguish between nominal versus anomalous classes. These performance
metrics are reported in Table A1 in Appendix C. Although the difference between the
semi-supervised models might not seem significant in the classification performance, we
shall see later that the differences are significant with respect to other metrics.
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4.4. Latent Space Configuration

Figure 4 visually compares the configuration of the latent feature space for the three
semi-supervised models, i.e., AE+C, CCLP, and RESAD. All of the figures are showing
the best example out of the 20 independent trials of training for each model, based on
a 1000-sample labeled set. All figures are visualizing the 256-dimensional latent feature
space of each method in 2D using t-SNE, initializing it with Principal Component Analysis
(PCA), and setting the perplexity parameter to 50. The left column color-codes the data
instances based on the true class that they belong to (blue: nominal, orange: speed anomaly,
green: path anomaly, and red: control anomaly). As it can be seen, RESAD and CCLP
show significant improvement over the AE+C in compactly clustering the data of each
class together and far away from other classes. This distinction is less realized in the AE+C
approach. This is an intuitively justified result, since both CCLP and RESAD use graph
theory to enforce such compact clustering in the latent feature space, while AE+C does not
enforce that.

Figure 4. This figure visualizes an example of the learned latent feature space for AE+C, CCLP, and
our approach. The left column is color-coded based on the actual class that each data instance belongs
to, the middle column is color-coded based on the clusters found in the latent feature space, and the
right column illustrates data instances that the classifier has the highest amount of uncertainty in
classifying them. All plots are illustrating the 256-dimensional latent space in 2D using t-SNE.

To both make sure that this compact clustering is not an artifact of t-SNE’s nonlinear
embedding from 256D to 2D, as well as to understand the structure and configuration of
the latent feature space better, we perform unsupervised clustering in the 256D latent space
of these models. The middle column in Figure 4 shows the result of applying KMeans
clustering with K = nc + 1 (nc being the number of classes in the training data) and
Euclidean distance as a distance metric in the 256D latent space, visualized in 2D using
t-SNE. In order to associate each cluster with true classes, we use the classifier’s prediction
for the data in the cluster. For example, if the majority of the data in the cluster are classified
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as nominal, we associate that cluster with the nominal class. We use the color purple to
show the (nc + 1)-th cluster (fifth cluster in here), which we call the uncertain cluster. As
illustrated, both CCLP and RESAD confirm that data of each class are compactly clustered
together, while they are far away from data of other classes, with a central cluster (the
purple cluster) merging them together. However, we can see that in the case of AE+C
approach, the clusters that are found using KMeans do not necessarily correspond to the
actual classes of the data. For example, we can see that the data of both path and control
anomalies are clustered together (green cluster in the middle column, top panel), which is
not a desired structure of the latent feature space. Moreover, the data of the nominal class
is clustered into multiple smaller ones, and the purple cluster does not play a role of central
merging cluster between different classes of the data.

Right column of Figure 4 visualizes data instances, where the classifier has the highest
amount of uncertainty in classifying them. In order to quantify the uncertainty of the
classifier’s prediction, we use the entropy of the output of the Softmax layer of the classifier.
The output of this layer is a nc-dimensional vector, each component i of which denotes the
probability that the data belongs to class i, for i ∈ {1, 2, . . . , nc} (please note that nc = 4 in
this example). The entropy is then given as

H(X) = −
nc

∑
i=1

ŷi log(ŷi) (10)

where ŷ is the classifier’s prediction for input X. In this figure, the points that are higher
in color intensity are associated with a higher prediction uncertainty (i.e., entropy). As
it is evident in the figure, the central purple cluster for CCLP and RESAD consists of the
most uncertain data instances in the testing set. This is a significant finding and benefit
of enforcing the CCLP loss: the method automatically forms a cluster, where the data
instances that are hard to classify will be compactly clustered together. On the other hand,
data instances that are easier to classify are compactly clustered away from this central
cluster and into their own class-specific cluster. This important formation of the uncertain
cluster is completely lost in the AE+C approach (top panel, right column), and we can see
that hard-to-classify data instances are spread throughout the entire latent feature space.

One major benefit of the formation of such uncertain cluster is that we can design
an active learning strategy to automatically identify the most informative subset of the
unlabeled set. This set can be further reviewed and properly labeled by the SMEs and
is part of our future work. This aspect emphasizes an important superiority of RESAD
compared to CCLP, which is the size of the central purple cluster. This represents the
number of data instances that the classifier has a high uncertainty about. In the case of
CCLP approach, 21.87% of the data in the testing set are mapped to the central purple
cluster, while the number for RESAD is 9.34%. This means that not only does our approach
force the classifier to make more confident predictions on the unlabeled set (and a more
accurate prediction according to Figure 3), but also reduces the size of the uncertain cluster
significantly (1350 versus 570 data based on the size of the testing set). This means that
SMEs have fewer data to review and label. Given how expensive and time-consuming the
review process of each data is, this will result in significant savings in SMEs time and the
data labeling cost.

In Figure 5, we further quantify the purity of the class-specific clusters by calculating
the entropy of the class-distribution of the data instances that are mapped to each one of
the class-specific clusters. Lower values mean that the class-specific clusters are purer and
contain fewer data from other classes in them; we visualize the average value across the
nc = 4 class-specific clusters in the figure. Both RESAD and CCLP improve the purity of
the clusters as more labeled data is provided, which is an intuitive result. AE+C, however,
does not improve the purity of the clusters at all. This drawback of the AE+C approach is
also evident in Figure 4, where the class-specific clusters are not compact and distant from
one another.
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Figure 5. This figure shows the purity of the class-specific clusters in the latent space. The lower
values indicate purer clusters.

4.5. Robustness to the Adversarial Perturbation

In this section, we investigate the robustness of our proposed approach, as well as
the baseline methods against small but misguiding noise (i.e., adversarial perturbations).
This is an important experimentation that shows the reliability of model predictions in
the presence of unwanted noise and is a crucial factor for operational models. We do this
by implementing a perturbation scheme called the fast gradient sign method (FGSM) [42].
FGSM is a white-box adversarial perturbation method and generates adversarial examples
in the presence of model parameters [43]. This perturbation scheme hypothesizes that
neural networks are designed in a linear fashion (i.e., the components of neural networks,
such as dot product, convolution, etc. are linear), and are vulnerable to linear adversarial
noise. Such linear perturbation can be derived from

X̃ = X + ε sign(∇X J(η, X, y)) (11)

where ε is the magnitude of error, sign(.) is the sign function, η is the set of model parame-
ters that affect the classification of X, i.e., η = {φ, ψ} (since input data X is first mapped to
the latent feature space with the encoder, qφ(z | x), and then is classified by the classifier,
cψ(y | z)), and J(η, X, y) is the loss function used for model training, which is depicted in
Equation (1). Based on Equation (11), the adversarial noise is obtained by applying the
sign function to the gradient of the loss function with respect to the input data. Based on
our robustness evaluations of adversarial examples using the FGSM, Figure 6 shows that
RESAD consistently and significantly outperforms the baseline CCLP and AE+C models for
different percentages of perturbation. CCLP takes the second rank in average classification
accuracy, and AE+C is the worst performing model. This figure shows the results for the
case of a 1000-sample labeled set. However, the superiority of our approach holds over
baselines with smaller labeled sets as well (Figure A3 in Appendix C).

We also report the effect of adversarial perturbation on the per-class F1-score of
classification in Figure A7 in Appendix C. Please note that F1-score is the harmonic mean
of precision and recall and is defined as follows,

F1-score = 2× precision× recall
precision + recall

(12)

As it is evident, RESAD’s superiority over the baseline methods is consistent across
class-specific performance metrics (i.e., F1-score). CCLP, on the other hand, performs better
than AE+C for majority classes (nominal and speed anomaly) and worse for minority
classes (path anomaly and control anomaly).
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Figure 6. Comparison of average accuracy of classification for our proposed model, CCLP, and AE+C
for different perturbation percentages.

In order to further improve the robustness of RESAD, we augmented the training
optimization objective in Equation (1) based on two innovative ideas posed in the machine
learning community recently: autoencoding variational autoencoder (AVAE) [44] and inter-
polation consistency training (ICT) [45]. Both of these approaches have been developed
to improve the consistency and robustness of the mapping from the input data to the
latent feature space for down-stream tasks such as the one here (i.e., multi-class classifica-
tion). Details of these approaches are depicted in Appendix B. However, we observed in
Figure A3 (in Appendix B) that none of these augmentations result in any improvement
in the robustness of RESAD to adversarial perturbation. We actually show that, in the
case of a 1000-sample labeled set, AVAE and RESAD perform significantly close to each
other and outperform ICT, while, in the case of a 200-sample labeled set, RESAD dominates
both AVAE and ICT in the average accuracy of classification with different percentages
of perturbation.

5. Conclusions

We proposed RESAD, a Robust and Explainable Semi-supervised learning model
for Anomaly Detection in aviation data. Our proposed model is novel in several aspects,
as follows: (1) It is semi-supervised: it addresses the shortcomings of supervised and
unsupervised models in the aviation literature by taking into account both the majority un-
labeled data and the minority labeled data sets. (2) It is explainable: the model incorporates
graph-theoretic methods to propagate labels from the labeled set to the unlabeled set and
form a compact structured feature space. This improves the interpretability of the learned
latent feature space, where more information can be extracted for down-stream tasks such
as active learning. (3) Lastly, it is robust to adversarial perturbations that significantly
improves its reliability and applicability in the domain.

We evaluated the classification performance of RESAD against three existing methods
in the literature. For this purpose, we developed a real-world case study of multi-class
anomaly detection using commercial aircraft flight data during approach to landings. First,
we illustrated the superiority of the semi-supervised learning over a supervised method
in the aviation literature (Figure 3) when the size of labeled data is small. We specifically
showed that, with 5.5% of training data labeled, the supervised model (DT-MIL) finds
anomalies with 54.2% accuracy, while the semi-supervised models are significantly more
accurate with 77.2% (AE+C), 80.1% (CCLP), and 86% (RESAD) average accuracy.
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We further quantified the interpretability of the learned latent feature space by the three
semi-supervised models. We show qualitatively (Figure 4) and quantitatively (Figure 5)
that methods which induce supervision into their feature learning and encoding (CCLP
and RESAD) build an interpretable latent feature space. This well-structured latent space is
advantageous because it explains which regions in this space are compactly populated by
each of the labeled anomaly classes. This is observed when clusters with high class purity
were formed using unsupervised clustering and corroborated with the t-SNE visualization.
This important trait allows for intelligent sampling from each region to select the most
informative data for future labeling efforts (i.e., active learning). On the other hand, the
AE+C approach learns a latent feature space that is not compact and representative for
more advanced down-stream tasks. This is due to the fact that AE+C does not induce
any supervision in the feature learning. Moreover, the purity of the class-specific clusters
shaped in the latent feature space does not improve in the AE+C method with an increase
in the size of the labeled set (Figure 5).

Lastly, we quantified the robustness of the three semi-supervised methods against
adversarial perturbations induced in the input data space and show that RESAD signifi-
cantly outperforms CCLP and AE+C (Figure 6). We specifically show that with a relatively
high level of adversarial perturbation at 10% (according to Equation (7)), RESAD’s perfor-
mance is at 65.3% average accuracy (a drop of 20.6 percentage point (pp) compared to no
perturbation), while CCLP and AE+C performances are at 56.8% and 53% average accu-
racy, respectively (drop of 23.3pp for CCLP and 24.2pp for AE+C). We further compared
the robustness of RESAD against augmentations based on two recent studies in machine
learning literature (Figure A3), and showed that none of those augmentations result in an
improvement in the robustness of our model and it results in a loss of performance (ICT for
both smaller and larger labeled sets and AVAE for smaller labeled set).

Potential future directions: One potential direction of future work is to extend the
semi-supervised model to an open-set recognition model. In a testing scenario, this model
would be capable of rejecting a new data as belonging to any of known classes and labeling
them as unknown. This would be an important step forward in detecting unknown vulner-
abilities and anomalies. Different metrics obtained by the model such as the reconstruction
error, entropy of the classifier’s prediction, and/or distance to the centroid of the assigned
cluster in the latent feature space can be used to develop such capability. Another more
practical extension of the model is to examine methods that shed light on the inference
made by the model such as integrated gradients [46] or SHAP values [47]. These methods
propagate back the output of the model’s classifier to the input space to identify what
features at what specific time window were influential in the model’s decision making.
These explanations from the original input space can help with model validation and
promote acceptance within the domain.

Author Contributions: M.M. and B.M. conceived the idea together. B.M. provided domain expertise
and set up the FOQA case study. M.M. developed the methodology and implementations of the
method and performed validations and obtained the results. A.A.A. developed the comprehensive
literature review and implemented the validation of robustness to perturbation. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the NASA Airspace Operation and Safety Program and
the NASA System-wide Safety Project.

Data Availability Statement: The raw data that is used to obtain the results in this paper is available
at https://c3.nasa.gov/dashlink/projects/85/, accessed on 1 August 2022. The processed version of
the data is currently under review and will be shared at the same link as above.

Acknowledgments: Authors acknowledge the funding of this research from NASA System-wide
Safety Project under contracts 80ARC020D0010 and NNA16BD14C.

Conflicts of Interest: The authors declare no conflict of interest.

https://c3.nasa.gov/dashlink/projects/85/


Aerospace 2022, 9, 437 15 of 21

Abbreviations
The following abbreviations are used in this manuscript:

SME Subject Matter Expert
VAE Variational Auto-Encoder
FOQA Flight Operational Quality Assurance
NTSB National Transportation Safety Board
DT-MIL Deep Temporal - Multiple Instance Learning
BCE Binary Cross Entropy
MSE Mean Squared Error
CCLP Compact Clustering via Label Propagation
AE+C Auto-Encoder + Classifier
t-SNE t-Stochastic Neighbor Embedding
ICT Interpolation Consistency Training

Appendix A. Model Architecture

Figure A1 shows the exact architecture of the encoder. The input data goes through
three parallel branches of 1D convolution operation with different filter sizes (the first
numeric) and kernel sizes (the second numeric) followed by batch normalization (BN) and
ReLU activation function, and finally a max pooling with size 2. The decoder is identical to
the encoder by just swapping the 1D convolution with 1D transpose convolution and the
max pooling with the up-sampling.

Figure A2 shows the architecture of the classifier. It consists two fully connected
layers with 100 neurons each and ReLU activation function, and a dropout with 50% rate
in between. The output of the second layer goes into a linear layer with Softmax activation
and nc number of neurons, where nc is the number of classes in the training data.

Figure A1. Exact architecture of the encoder.



Aerospace 2022, 9, 437 16 of 21

Figure A2. Exact architecture of the classifier.

Appendix B. Methods to Improve Robustness

In order to further improve the robustness of RESAD, we augmented the training
optimization objective in Equation (1) based on two innovative ideas posed in the machine
learning community recently, named Autoencoding VAE (AVAE) [44] and interpolation
consistency training (ICT) [45]. Here, we first shortly summarize these approaches and
then compare their performance with our proposed model.

Appendix B.1. Autoencoding Variational Auto-Encoder-AVAE

One of the approaches that was recently proposed to improve the consistency of
the encoding obtained by the VAEs is AVAE [44]. The overall idea is to improve the
consistency and robustness to perturbation that is lacking in the VAEs. In order to do that,
Cemgil et al. [44] defines a reconstruction of the original data input X as a delusion (or
auxiliary observation) X̃ and the encoding of the delusion in the latent space as Z′. Then, in
the optimization objective of training, they add an extra term to maximize the correlation
of the encoding of the input data (i.e., Z), and the encoding of the delusion (i.e., Z′). The
main idea is that by enforcing a high correlation between these two encodings (one coming
from original data and one from a sample of its reconstruction), the VAE would be more
consistent in the encoding and more robust to adversarial perturbations. They evaluate
the effectiveness of this approach compared to VAE based on supervised down-stream
classification tasks in the latent feature space.

Appendix B.2. Interpolation Consistency Training-ICT

ICT is a semi-supervised classification approach that improves performances by mov-
ing the decision boundaries to regions with low data density [45]. Such configuration is
achieved through encouraging a prediction of interpolated unlabeled data to be in harmony
with the interpolation of corresponding predictions. The interpolation step is computed by

Mixλ(a, b) = λ · a + (1− λ) · b (A1)

where λ is the interpolation coefficient, and a and b are the inputs. Using Equation (A1),
we can define a prediction model fζ that provides similar predictions at interpolations of
unlabeled data:

fζ

(
Mixλ

(
Xi

U , X j
U

))
≈ Mixλ

(
fζ ′(Xi

U), fζ ′(X j
U)
)

(A2)

where ζ ′ is a moving average of ζ. The study uses a mean teacher–student architecture
to train a model on the unlabeled data and, in parallel, uses the limited labeled data to
train the classifier fζ . The overall model is trained based on minimizing the classification
objective combined with a weighted consistency loss. In the original paper [45], ICT
outperformed supervised and mean teacher methods, demonstrating effectiveness in
delineating optimum boundaries.



Aerospace 2022, 9, 437 17 of 21

Figure A3. Average classification accuracy comparison for our proposed model compared to AVAE and
ICT, with 200-sample and 1000-sample labeled data, with respect to increasing perturbation percentages.

Appendix C. Additional Tables and Figures

Table A1. Average performance of the models on the binarized anomaly detection problem (numbers
show mean (standard deviation) based on 20 independent trials of training). Bold text shows the best
performance in each column.

Method Precision Recall F1-Score AUROC

100 (0.55 %) labeled data

DT-MIL 0.38(0.02) 0.80(0.08) 0.51(0.02) 0.62(0.05)
AE+C 0.52(0.03) 0.86(0.03) 0.64(0.02) 0.81(0.02)
CCLP 0.59(0.07) 0.71(0.14) 0.63(0.07) 0.76(0.06)

RESAD 0.63(0.04) 0.71(0.12) 0.66(0.05) 0.79(0.04)

200 (1.1 %) labeled data

DT-MIL 0.41(0.05) 0.77(0.1) 0.53(0.03) 0.66(0.03)
AE+C 0.55(0.03) 0.89(0.02) 0.68(0.02) 0.85(0.01)
CCLP 0.60(0.03) 0.84(0.04) 0.70(0.02) 0.83(0.02)

RESAD 0.64(0.04) 0.84(0.03) 0.72(0.03) 0.85(0.02)
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Table A1. Cont.

Method Precision Recall F1-Score AUROC

500 (2.7 %) labeled data

DT-MIL 0.46(0.05) 0.74(0.07) 0.57(0.04) 0.72(0.04)
AE+C 0.61(0.02) 0.92(0.03) 0.73(0.02) 0.91(0.01)
CCLP 0.66(0.03) 0.92(0.03) 0.77(0.02) 0.90(0.01)

RESAD 0.70(0.04) 0.90(0.05) 0.78(0.03) 0.88(0.03)

1000 (5.5 %) labeled data

DT-MIL 0.49(0.05) 0.78(0.07) 0.60(0.02) 0.76(0.02)
AE+C 0.64(0.02) 0.94(0.01) 0.76(0.01) 0.93(0.01)
CCLP 0.67(0.03) 0.95(0.01) 0.78(0.02) 0.92(0.01)

RESAD 0.75(0.02) 0.94(0.01) 0.83(0.01) 0.93(0.01)

Figure A4. This figure shows the 2D visualization of the flight time-series using t-SNE, color-coded
based on the true class to which each data belongs.

Figure A5. This figure compares performance (precision per class) of our proposed model (colored
green) with multiple baseline methods, such as DT-MIL (red), AE+C (yellow), and CCLP (blue).
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Figure A6. This figure compares performance (recall per class) of our proposed model (colored green)
with multiple baseline methods, such as DT-MIL (red), AE+C (yellow), and CCLP (blue).

Figure A7. Comparison of our proposed model, CCLP, and AE+C for per-class F1-score with respect
to increasing percentages of adversarial perturbation.
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