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Abstract: The production of L2 lexical tone has proven difficult for learners of tonal languages, lead‑
ing to the testing of different tone training techniques. To test the validity of these techniques, it
is first necessary to capture the differences between L1 and L2 tone datasets. The current study ex‑
plores three analyses designed to compare L1 and L2 tone: (1) using a single deviation score, (2) using
deviation score calculations for specific regions of tone productions, and (3) applying a complexity‑
invariant distance measure to the two time series datasets. These three analyses were tested using
datasets sampled from a previous study testing the effects of a visual feedback paradigm on the pro‑
duction of L2Mandarin tone. Results suggest the first two analyses, although useful for providing an
overall evaluation of how L2 speakers’ pretest versus posttest productions compare to L1 speakers,
lose critical information about tone, namely pitch height, contour, and the timing of the production.
The third analysis, applying the complexity‑invariant distance measure to the datasets, can provide
the pertinent information lost from the first two analyses in a more robust manner.

Keywords: quantitative tone analysis; L1/L2 tone comparison; distance measures

1. Introduction
Lexical tone, a phonemic feature for tonal languages (e.g., Mandarin), is mainly mani‑

fested through F0 (pitch) modulation (Singh and Fu 2016; Yip 2002). Pitch contour (i.e., the
pitch shape throughout a production) and pitch height are arguably the two most impor‑
tant components of differentiating tones (Yang and Chan 2010). For example, Mandarin
employs four contrastive lexical tones, described by Chao (1948) as a high‑level tone (Tone
1), a mid‑rising tone (Tone 2), a low dipping tone (Tone 3), and a high falling tone (Tone 4)
(see Figure 1; Chun et al. 2015). As lexical tone is a critical part of pronunciation in tonal
languages, it is crucial in pronunciation training for second language (L2) learners.

The production of L2 lexical tone is particularly challenging for learners of tonal lan‑
guages (e.g., Chen 1974; Shen 1989). There have been many training methods created to
help learners better produce L2 tone, including explicit perception and production practice
(e.g., Li and DeKeyser 2017), imitation of gestures and head nods (Zheng et al. 2018), high
variability phonetic training (i.e., exposure to one vs. multiple speakers) (e.g., Wiener et al.
2020), explicit pitch direction (i.e., contour) and pitch height training (He et al. 2016). Ad‑
ditionally, visual feedback, a method where learners look at visualizations of their speech
and compare them to native speakers’ productions (for a discussion of visual feedback
types, see Olson and Offerman 2021), has become a popular method because of its ability
to help L2 learners ‘notice’ their productions (see Schmidt 1995). Visual feedback is ef‑
fective as a training method for suprasegmental features like tone (e.g., Chun 1989; Chun
et al. 2015; Wang 2012). Yet, although there has been a significant recent development in
methods for training L2 lexical tone, any examination of the effectiveness of such meth‑
ods requires a systematic comparison of tonal contours (e.g., L1 vs. L2 productions; L2
productions before training vs. after).
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development in methods for training L2 lexical tone, any examination of the effectiveness 
of such methods requires a systematic comparison of tonal contours (e.g., L1 vs. L2 pro-
ductions; L2 productions before training vs. after). 

 
Figure 1. Acoustic visualization of the Mandarin tones. From Chun et al. (2015, p. 87). © John Ben-
jamins. Reprinted with permission. 

Currently, tonal comparisons typically consist of perceptual approaches in the form 
of native speaker judgements (e.g., He et al. 2016; Li and DeKeyser 2017; Wiener et al. 
2020) or quantitative comparisons of acoustic data (e.g., Wang et al. 2003; Zhou and Olson 
2023). Yet, there does not appear to be a consensus in the literature on the best type of 
analysis for comparing L1 and L2 tones. Moreover, both the perceptual and quantitative 
comparisons of L1 and L2 tone lack information about tone's temporal (i.e., time) dimen-
sion, a fundamental component of lexical tone that provides information on pitch height 
and contour shape throughout the production. Perceptual comparisons are based on 
judgements, and previous quantitative comparisons have relied on a single measurement 
of how close or far a production is from a native speaker, ignoring the temporal dimen-
sion. Addressing this key issue in the field, the current study explores previous analyses 
of L1 and L2 tone and proposes a new analysis that retains the temporal dimension of 
tone. From a pedagogical perspective, retention of the temporal dimension in the analysis 
of L1 and L2 tone is crucial, as the pitch height and contour information provided can 
inform learners about which aspects (pitch height or contour) and where their tone pro-
ductions can be improved, which can be adapted into classroom training of tone. Further-
more, it is possible to adapt this analysis for testing Mandarin proficiency, particularly 
tone production, with other proficiency measures. From a methodological perspective, 
this analysis may also prove useful for evaluating the efficacy of pronunciation training 
across a wide range of linguistic features. 

1.1. Perceptual Approaches to L2 Tone Analysis  
When comparing lexical tone productions, one common method in previous research 

is the use of perceptual (auditory) analysis. Generally, perceptual approaches consist of 
native speaker judgements (e.g., Chen 2022; He et al. 2016; Li and DeKeyser 2017; Wang 
2012). For example, Chen (2022) used judgements to describe the effects of visual feedback 
training on L2 Mandarin tones produced in words before and after training, using a 4-
week visual feedback paradigm. Chen (2022) and other previous studies (He et al. 2016; 
Li and DeKeyser 2017) used accuracy rates to judge L2 productions, typically by assigning 
points for correct productions. Other studies (e.g., Wang 2012) have judged L2 produc-
tions using Likert scales. While this type of analysis provides important information from 
a listener’s perspective (i.e., perceptual information), it does not provide detailed infor-
mation on the nature of L2 contours (height, shape, and timing), which can give learners 

Figure 1. Acoustic visualization of the Mandarin tones. From Chun et al. (2015, p. 87). © John
Benjamins. Reprinted with permission.

Currently, tonal comparisons typically consist of perceptual approaches in the form
of native speaker judgements (e.g., He et al. 2016; Li and DeKeyser 2017; Wiener et al. 2020)
or quantitative comparisons of acoustic data (e.g., Wang et al. 2003; Zhou and Olson 2023).
Yet, there does not appear to be a consensus in the literature on the best type of analysis
for comparing L1 and L2 tones. Moreover, both the perceptual and quantitative compar‑
isons of L1 and L2 tone lack information about tone’s temporal (i.e., time) dimension, a
fundamental component of lexical tone that provides information on pitch height and con‑
tour shape throughout the production. Perceptual comparisons are based on judgements,
and previous quantitative comparisons have relied on a single measurement of how close
or far a production is from a native speaker, ignoring the temporal dimension. Address‑
ing this key issue in the field, the current study explores previous analyses of L1 and L2
tone and proposes a new analysis that retains the temporal dimension of tone. From a
pedagogical perspective, retention of the temporal dimension in the analysis of L1 and L2
tone is crucial, as the pitch height and contour information provided can inform learners
about which aspects (pitch height or contour) and where their tone productions can be im‑
proved, which can be adapted into classroom training of tone. Furthermore, it is possible
to adapt this analysis for testing Mandarin proficiency, particularly tone production, with
other proficiency measures. From a methodological perspective, this analysis may also
prove useful for evaluating the efficacy of pronunciation training across a wide range of
linguistic features.

1.1. Perceptual Approaches to L2 Tone Analysis
When comparing lexical tone productions, one commonmethod in previous research

is the use of perceptual (auditory) analysis. Generally, perceptual approaches consist of
native speaker judgements (e.g., Chen 2022; He et al. 2016; Li and DeKeyser 2017; Wang
2012). For example, Chen (2022) used judgements to describe the effects of visual feedback
training on L2Mandarin tones produced inwords before and after training, using a 4‑week
visual feedback paradigm. Chen (2022) and other previous studies (He et al. 2016; Li and
DeKeyser 2017) used accuracy rates to judge L2 productions, typically by assigning points
for correct productions. Other studies (e.g., Wang 2012) have judged L2 productions using
Likert scales. While this type of analysis provides important information from a listener’s
perspective (i.e., perceptual information), it does not provide detailed information on the
nature of L2 contours (height, shape, and timing), which can give learners important infor‑
mation about where their contours differ from native speakers’ contours. Also, this type
of analysis does not provide a reliable measure of how close or far apart the productions
are to native speakers’ contours.1
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1.2. Acoustic Approaches to L2 Tone Analysis
Some studies have compared the acoustic productions of L1 and L2 tone through qual‑

itative (e.g., Chun et al. 2015) or quantitative analysis (Wang et al. 2003; Zhou and Olson
2023). Broadly, this type of analysis consists of two steps. First, the duration of the two
contours to be compared is normalized. L1 and L2 tone datasets, and any other acoustic
measurements taken over a period of time, can be categorized as a time series, a group of
values extracted from sequential measurements over time (Esling and Agon 2012). Apply‑
ing this to tone, L1 and L2 tones are time series datasets, consisting of resampled time and
F0 normalized points. Resampling and normalizing these values allows for comparison of
productions that are not the same duration (see Section 2.2).

Second, normalized time is plotted against T values, calculated by converting normal‑
ized F0 values to their logarithms, resulting in a value from 1–5 (e.g., see Wang et al. 2003).
For example, Chun et al. (2015) extracted 11 sample F0 points from the tone productions
in their study and converted them to their logarithms, resulting in 11 T values for each
word. An example of a time series plot from Zhou and Olson (2023, p. 10) can be seen
below in Figure 2 for Mandarin Tone 1. These time series visualizations provide a char‑
acterization of exactly how aspects of different contours may diverge (e.g., in pitch height
or contour), which differs significantly from the binary “correct/incorrect” result gained
from the native speaker judgements often used.
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As a result, data from time series plots can be used in qualitative and/or quantitative
analyses. In terms of qualitative analyses, previous studies have typically focused on de‑
scriptions of how L1 and L2 productions differ. For example, when describing the changes
in L2 speakers’ Mandarin tone productions through an analysis of time series plots before
and after visual feedback training, Chun et al. (2015) describe problems in the L2 speakers’
productions in terms of pitch height and contour. Chun et al. (2015) note that the L2 speak‑
ers’ Tone 1 “began with lower pitch height” relative to native speakers’ productions in the
pretest, but learners “produced higher pitches” relative to the native speakers’ productions
in the posttest (p. 100).

In terms of quantitative analyses, previous studies have used T values to calculate
overall deviation scores (Wang et al. 2003; Zhou and Olson 2023) by taking the absolute
value difference in T values between the native norm and the L2 speakers’ productions at
the pretest or posttest, averaged across all points in a contour. Worth noting, in contrast
to the proposed complexity‑invariant distance (CID) measurement analysis detailed be‑
low (Section 1.5), the difference between the two contours is calculated at each normalized
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point in the time series, comparing the normalized F0 values for L2 speakers with L1 speak‑
ers without accounting for timing (phase), or how ‘on‑time’ the productions are compared
to native speakers. The calculation of these overall deviation scores results in a single value
to compare pretest and posttest productions, with values closer to zero corresponding to
more “native‑like” productions. For example, when testing the effects of perceptual train‑
ing on L2 Mandarin tone production, Wang et al. (2003) found that the posttest deviation
score (0.34) was closer to the native speakers’ productions than the pretest deviation score
(0.50), indicating a more native‑like production at the posttest (p. 1039).2

Although overall deviation scores provide a way to compare pretest and posttest pro‑
ductions, their calculations result in a single value, thus losing information about contour
shape, height, and the temporal dimension. These aspects of tone production are crucial
for comparing L1 and L2 tones. Illustrating the importance of maintaining this informa‑
tion, consider Figures 3–5. In Figure 3, the overall shape of the L1 and L2 contours are
different (i.e., matched at the beginning but not at the end). In Figure 4, while the over‑
all shape and timing of the two contours are identical, they differ with respect to pitch
height. In Figure 5, the shapes and heights are identical but differ with respect to timing
(i.e., phase). It is worth noting that in each of these sample scenarios, a deviation score
analysis produces identical overall deviation scores (T = 1.00).

In these scenarios, the key information about contour, height, and timing is lost when
using a single overall deviation score in the analysis. Acknowledging this lack of detail,
previous studies have tried to address this issue by supplementing deviation scores with
qualitative analysis of time series plots (Wang et al. 2003; Zhou and Olson 2023). However,
quantitative pitch height and contour analysis are necessary for statistical analyses com‑
paring L1 and L2 tone datasets. A new type of analysis to compare tone data that includes
information about these three aspects of tone (height, contour shape, timing) is necessary
to capture detailed differences in tone contour comparison.
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1.3. Defined Region Approach
Taking the overall deviation score as a point of departure, it is worth exploring how

this calculation can be expanded to give more information about pitch height and contour.
Some studies have taken a defined region approach to tone, dividing productions into
specific sections or regions. For example, Liao et al. (2010) divide tones into three regions
and analyze the mean F0 value for each region in their feedback system. Even though
this study does not compare L1 and L2 tone productions, the defined region analysis can
expand the deviation score approach.

Dividing the T value data into three regions would provide more information about
where in the production the L2 tone differs from the L1 tone. Deviation scores could then
be calculated for each portion of the contour, giving a quantitative measure of differences
between the two datasets. This application would be useful for tone, particularly for Tone
2 and Tone 3 in Mandarin, as they vary significantly in F0 height and contour throughout
their productions. This analysis would output three different scores, indicating whether
the L2 productions deviated in height by producing tones higher (positive deviation score)
or lower (negative deviation score) than native speaker productions.
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The defined region deviation score analysis included in the current study, based on
Liao et al. (2010), builds on the traditional overall deviation score calculation by providing
additional information about the differences in pitch heights between productions. Yet,
this analysis still fails to account for the temporal dimension, losing information about
contour, and only provides an overall view of pitch height differences.

1.4. Measures for Time Series Data
To capture information about contour, height, and timing information when analyz‑

ing two sets of time series data (L1 and L2 tone), it is useful to investigate previously estab‑
lished algorithms for time series data outside the fields of linguistics and phonetics. Time
series datasets can be found in various fields (e.g., medicine, anthropology), which has
created many different algorithms for comparison (Ding et al. 2008). An integral part of
comparing time series data is choosing the correct distance measure (Batista et al. 2014;
Keogh et al. 2009) that captures the invariances of the specific data being explored (for a
discussion of the types of invariances, see Batista et al. 2014). Invariance can be described
in terms of whether or not a generalization about how variables are related is invariant
or would be true if other factors changed (Woodward 2000). With respect to the current
study, the distance measure would indicate the deviation between the L1 and L2 tone con‑
tours for a specificMandarin tone. The idea of complexity invariance, which can be simply
described as data that has “more peaks, valleys, and features” (Batista et al. 2014, p. 635),
is a characteristic of the type of data analyzed in the current study, as tone has significant
F0 movement during production, even for tones that have traditionally been described as
“flat” (e.g., Tone 1 in Mandarin).

Knowing that the time series data explored in the current study is complex, the ques‑
tion remains about how to best measure the distance between the L1 and L2 tone time
series. One particularly promising measure is known as a CID measure, proposed by
Batista et al. (2014) and based on Euclidian distance (ED). ED is a popular measure to
compare two‑time series datasets, as it can be used to measure the similarity of two‑time
series datasets. Not only does ED consider the deviations between the two datasets, but it
also accounts for warping effects, where two datasets exhibit the same general shape (e.g.,
peaks and valleys), though they are mismatched in timing. The CID measure, which adds
to the traditionally‑used ED measurements, provides an efficient way to compare time
series data without ignoring the complex nature of these datasets, thus mitigating errors
that would occur by oversimplification (Batista et al. 2014). This measure has been suc‑
cessfully applied to different time series datasets (for air pollutants, see Amato et al. 2020;
for traffic signals and financial stock indexes, see Shang et al. 2019; for acceleration data,
see Souza 2018). Without the correction factor (see Section 2.3.3) that the CID measure em‑
ploys, errors and biases can be introduced from complex data being treated as simple data
(Batista et al. 2014), causing data to seem more similar in terms of the measure used (i.e.,
ED). In terms of L1 and L2 tone, the EDs calculated for the datasets could suggest that the
L2 data is closer to the L1 data than it is, leading to possible misinterpretations of how sim‑
ilar productions are before and after training, effectively underestimating training effects.
The use of CID measures is a possible way to capture the true differences between L1 and
L2 tones, without losing pertinent information about the heights, contours, and timing of
productions.

1.5. The Current Study
Given the shortcomings described above with current analyses for lexical tone com‑

parison, notably the failure of quantitative measures to account for differences in height,
contour shape, and timing, this study aims to (a) explore the applicability of the CID mea‑
sure proposed by Batista et al. (2014) for comparing L1 and L2 lexical tone datasets and
(b) compare the applicability of this analysis to two other analyses. As such, three differ‑
ent analyses will be applied to existing datasets consisting of lexical tones produced by
learners before (i.e., pretest) and after (i.e., posttest) a pedagogical intervention (i.e., visual
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feedback paradigm). The first analysis employs the calculation of single deviation score
analysis, following previous studies (Wang et al. 2003; Zhou and Olson 2023). Drawing
on work that has quantitatively described multiple key tonal regions (Liao et al. 2010), the
second analysis consists of calculating deviation scores by region (i.e., defined region anal‑
ysis). Finally, a complexity‑invariant distance analysis (Batista et al. 2014) for the two‑time
series (L1 and L2 tone) is considered. Outcomes from these three different types of analysis
will be compared.

2. Materials and Methods
2.1. Datasets

The datasets consisted of tones extracted from real disyllabic Mandarin words pro‑
duced by five (four female, one male) L2 speakers (Mage = 21.2; SD = 2.0) of Mandarin
(L1 = English).3 TwoL1 speakers ofMandarinwere also recruited to provide native speaker
comparisons (Mage = 25, SD = 1).

All participants participated in a visual feedback paradigm consisting of a pretest,
four interventions (one per Mandarin tone), and a posttest, completed over the course of
seven weeks. Following (Offerman and Olson 2016), each intervention consisted of an
initial recording, a visual comparison of the L2 lexical tone contour with a native speaker
tone contour, and a re‑recording in which participants attempted to produce more target‑
like contours. For full details of the intervention, see Zhou and Olson (2023).

The data extracted for the current studywas produced during the pretest and posttest
of the visual feedback study. Stimuli produced as words in isolation consisted of three
repetitions of 20 real disyllabic Mandarin words with each possible tone combination rep‑
resented, totaling 60 productions of the stimuli at the pretest (120 syllables) and 60 produc‑
tions of these same words at the posttest (120 syllables) per speaker. All four Mandarin
tones were analyzed as they are all different shapes and heights, providing a variety of
productions to test the three analyses. The four syllables produced as the Neutral Tone
were excluded due to their high variability (Zhang 2017). This led to 216 syllables (240–24
Neutral Tone productions) produced by each L2 speaker (108 at the pretest + 108 at the
posttest). The L1 speakers also produced the target stimuli one time only, as they did not
take part in the visual feedback paradigm. A sample set of stimuli can be seen below in
Table 1 for Tone 1. A total of 1028 syllables were included in the final analysis (870 pro‑
duced by L2 speakers + 158 produced by L1 speakers), with ~21% eliminated due to noisy
data (n = 268).

Table 1. Sample stimuli for Tone 1.

Tone Combination Chinese Characters Pinyin Translation

T1‑T0 心思 xīnsi thoughts
T1‑T1 开工 kāigōng go into operation
T1‑T2 天文 tiānwén astronomy
T1‑T3 经理 jīngľı manager
T1‑T4 医院 yīyuàn hospital

2.2. Data Pre‑Processing
For each target item, F0measurements (Hz) were extracted at 10‑millisecond intervals

for each syllable using Praat’s (Boersma andWeenink 2022) autocorrelation algorithmwith
default input parameters and inputted intoMATLAB v.R2023a (TheMathWorks Inc. 2023).
Following previous studies (Wang et al. 2003; Zhou andOlson 2023), data resampling, time
normalization, and F0 normalization were performed to account for individual differences
in pitch range, speech rate, and syllable context.

2.2.1. Data Resampling and Curve Fitting
To ensure the same temporal resolution (i.e., duration) for all contours, the data were

resampled to have an equal number of F0 points. Contours containing more than 20 F0
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points were downsampled to 20 points, while other contours with less than 20 points were
only used in the analysis if they had the following: 10 or more points and points existing at
the beginning and end of the production. This allowed contours with a lower but sufficient
number of data points to be included in the datasets through interpolation. Some possible
reasons for contours having less than 20 points are the absence of quasi‑periodic structures
at some points or pauses/breaks due to different speech phenomena (e.g., creaky voice).
The data was interpolated using the Fourier series with seven terms, which preserves the
periodic nature of tones. The formula used in MATLAB for this type of curve fitting can
be seen below in Equation (1).

∼
F0(t) = a0 +

3

∑
i=1

ai cos iωt + bisin iωt (1)

2.2.2. Time Normalization
To normalize time, also known as nondimensionalizing time, the following formula

(Equation (2)) was used, where t corresponds to a particular point in time, and tinitial and
tfinal correspond to the starting and ending points of the production, respectively.

t∗ =
t − tinitial

t f inal − tinitial
(2)

2.2.3. F0 Normalization
F0 values were converted to their logarithms using the formula below (Equation (3)),

which has been used in previous studies (e.g., Rose 1987). Fmax and Fmin correspond to the
highest and lowest F0 for a speaker, respectively, and F is a specific point of a contour. The
resulting metric, referred to as the T value here on out (ranging from 0 to 5), corresponds
to a 5‑point pitch scale (Chao 1948).

T = 5 × log(F)− log(Fmin)

log(Fmax)− log(Fmin)
(3)

The ‘native norm’ (see Wang et al. 2003) was calculated to be used compared to L2
speakers’ productions. The data extracted from productions of the stimuli by the two na‑
tive speakers was used to calculate this native norm, specifically by averaging the produc‑
tions across each tone using the calculated T values.

2.3. Analyses
Following the calculation of the native norm, the three types of analyses explored in

the current study were applied.

2.3.1. Deviation Score Analysis
The first analysis to be tested is the calculation of single overall deviation scores for

each L1–L2 tone comparison based on previous studies (Wang et al. 2003; Zhou and Ol‑
son 2023). The calculation of overall deviation scores consisted of calculating the relative
difference in T values between the native norm and the L2 speakers’ pretest or posttest
productions at a particular point, then averaging these scores across all 20 points.

2.3.2. Defined Region Analysis
The second analysis defines different regions of normalized tone productions and

then calculates deviation scores for each region, following the process described in
Section 2.1. The productions were divided into three regions, beginning, middle, and end,
following Liao et al. (2010), by dividing the productions into three equal nondimensional‑
ized time regions.
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2.3.3. CID Measure Analysis
The third analysis consisted of the calculation of CID measurements for each tone,

comparing either pretest or posttest to the native norm. Before calculating the CID mea‑
surements, EDs for the time series datasets were calculated first. The formula to calculate
ED for a two‑time series can be seen below (Equation (4)). The two‑time series datasets
are represented by Q and C (their elements are qi and ci respectively), with a length repre‑
sented by n.

ED(Q, C) = 2
√

∑n
i=1(qi − ci)

2 (4)

The calculation of ED by itself was not sufficient for comparing time series datasets
precisely due to the complexity invariance described previously. After the calculation of
ED, the data remains distorted, requiring a correction factor (Batista et al. 2014). The ED
between the time series is made “complexity‑invariant” by adding a correction factor (CF)
(Batista et al. 2014), shown below in Equation (5). CE represents a complexity estimate of
a time series (Q or C).

CF(Q, C) =
max(CE(Q), CE(C))
min(CE(Q), CE(C))

(5)

This was then used to solve for CID, using the formula below (Equation (6)).

CID(Q, C) = ED(Q, C)× CF(Q, C) (6)

CID measures for each tone were then used with time series plots to visualize the
distance between the L1 and L2 datasets. Two additional features were analyzed from the
data used in these plots—magnitude, and phase. Magnitude corresponds to pitch height,
while phase corresponds to timing. The magnitude and phase for each comparison (L2 at
pretest vs. L1 or L2 at posttest vs. L1) were calculated using the process below.

Themagnitudewas calculated by taking the sumof the absolute value of eachwarping
vector. This calculation gave an overall indicator of deviation of the pitch height for the
comparisons (L2 pretest vs. L1 or L2 posttest vs. L1). The phase was calculated by taking
the sum of the absolute value of the angle of thewarping vectorswith respect to the vertical
axis. This calculation gave an overall indicator of deviation of the production shape (i.e.,
timing) for the tone comparisons.

3. Results
3.1. Deviation Score Analysis Results

The results of the deviation score calculations per Mandarin tone, or the absolute dif‑
ference in T values between the native norm (L1) and L2 speakers’ T values averaged across
all points in a contour (at pretest or posttest), are shown below in Table 2.

Table 2. Pretest and posttest mean deviation scores per tone.

Pretest Posttest

Tone 1 −0.52 −0.46
Tone 2 0.10 −0.05
Tone 3 −0.14 −0.21
Tone 4 −0.70 −0.67

For Tone 1, the calculated deviation scores for the L2 speakers’ pretest productions
(deviation score: −0.52) and posttest productions (deviation score: −0.46) suggest that the
posttest productions were more L1‑like than the pretest productions, as the posttest devi‑
ation score was closer to zero. Regarding Tone 2, the calculated deviation scores for the
L2 speakers’ pretest productions (deviation score: 0.10) and posttest productions (devia‑
tion score: −0.05) suggest that the posttest productions were more L1‑like. Tone 3 results
indicate that the pretest productions (deviation score: −0.14) were more L1‑like than the
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posttest productions (deviation score: −0.21). Tone 4 results suggest that the posttest pro‑
ductions (deviation score: −0.67) were more L1‑like than the pretest productions (devia‑
tion score: −0.70). Taken as a whole, deviation scores are closer to zero at the posttest for
Tone 1, Tone 2, and Tone 4, indicating they are more L1‑like. However, these scores miss
fundamental information about the pitch height and contour across productions.

3.2. Defined Region Analysis Results
The results of the deviation score calculations for each tone per region (beginning =

region 1, middle = region 2, end = region 3) can be seen below in Table 3. Visualizations of
the three regions for each L1–L2 tone comparison are presented in Figures 6–9 below. The
addition of the regions in this analysis differs from the first analysis (i.e., deviation score
analysis) in that it provides more information about where the L2 speakers are deviating
from the L1 speakers.

Figures 6–9, with green lines representing the matched points between two datasets
(L1 and L2 tone), further illustrate differences in the datasets.

Table 3. Pretest and posttest mean deviation scores per region.

Region 1 Region 2 Region 3
Pretest Posttest Pretest Posttest Pretest Posttest

Tone 1 0.67 0.69 −1.05 −1.03 −1.23 −1.06
Tone 2 0.96 0.62 −0.14 −0.54 −0.52 −0.25
Tone 3 −1.24 −1.19 −0.60 −0.80 1.42 1.37
Tone 4 −1.43 −1.46 −1.27 −1.27 0.57 0.65

Languages 2023, 8, x FOR PEER REVIEW 11 of 19 
 

 
(a) (b) 

Figure 6. Tone 1 deviation plots. (a) L1 vs. L2 pretest averages; (b) L1 vs. L2 posttest averages. 

For Tone 1, the deviation scores presented in Table 3 indicate that the L2 speakers 
were more L1-like at the posttest in regions 2 and 3 but marginally more L1-like at the 
pretest in region 1. Negative scores in regions 2 and 3 at the pretest and posttest indicate 
a pitch height lower than the L1 speakers, while positive scores in region 1 indicate higher 
pitched tones. A visualization of these results can be found in Figure 6. While the first 
analysis showed improvement from pretest to posttest, the second defined region analysis 
refines this analysis by showing that improvement was limited to the middle and end of 
the productions.  

 
(a) (b) 

Figure 7. Tone 2 deviation plots. (a) L1 vs. L2 pretest averages; (b) L1 vs. L2 posttest averages. 

Tone 2 results show that the L2 speakers were more L1-like at the posttest for regions 
1 and 3 but more L1-like at the pretest in region 2, visualized in Figure 7. Additionally, 
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For Tone 1, the deviation scores presented in Table 3 indicate that the L2 speakers
were more L1‑like at the posttest in regions 2 and 3 but marginally more L1‑like at the
pretest in region 1. Negative scores in regions 2 and 3 at the pretest and posttest indicate
a pitch height lower than the L1 speakers, while positive scores in region 1 indicate higher
pitched tones. A visualization of these results can be found in Figure 6. While the first
analysis showed improvement from pretest to posttest, the second defined region analysis
refines this analysis by showing that improvement was limited to the middle and end of
the productions.
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Tone 2 results show that the L2 speakers were more L1‑like at the posttest for regions
1 and 3 but more L1‑like at the pretest in region 2, visualized in Figure 7. Additionally,
results from Table 3 show L2 speakers’ pretest and posttest pitch heights were produced
lower than the L1 speakers for regions 2 and 3 but higher than L1 speakers in region 1.
This second analysis provides information onwhere the posttest is closer to the L1 speakers
(regions 1 and 3) compared to the first analysis, which only states that the posttest deviated
less from the L1 speakers than the pretest.

The results for Tone 3 presented in Table 3 show that the L2 speakers were more L1‑
like in regions 1 and 3 for the posttest but were more L1‑like in region 2 for the pretest
productions. Also, the pretest and posttest pitch heights were produced lower than the
L1 speakers in regions 1 and 2 but higher than the L1 speakers in region 3 (Figure 8). Like
Tone 1 andTone 2 results, Tone 3 results aremore nuanced than the single overall deviation
score calculation.

Tone 4 results in Table 3 show that L2 speakers were marginally more L1‑like at the
posttest in region 2 but more L1‑like at the pretest for regions 1 and 3. Pretest and posttest
pitch heights were produced lower than L1 speakers for regions 1 and 2 and higher than
L1 speakers for region 3, as shown in Figure 9. With the addition of the deviation scores
for the three regions, more information is provided on where the L2 tone is more L1‑like
at the pretest (regions 1 and 3) compared to the first analysis.

3.3. CID Measure Analysis Results
Results from the application of the CID measure to the two‑time series are shown

below in Figures 10–13 for the pretest and posttest productions. Both the ED and CID
measure (corrected ED) are presented in the legends of the time series plots. Green lines
correspond to the distance between L1 and L2 T values at a given point matched for mag‑
nitude and phase. Information on magnitude and phase are also presented for each tone
in Table 4, with scores closer to zero indicating more L1‑like production.
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Table 4. Magnitude and phase calculations for pretest and posttest per tone.

Magnitude Phase
Pretest Posttest Pretest Posttest

Tone 1 8.58 7.69 48.84 78.63
Tone 2 3.63 2.82 113.04 96.68
Tone 3 17.65 17.94 44.00 43.17
Tone 4 18.37 19.91 62.99 46.66

For Tone 1, the calculated CIDmeasures shown in Figure 10 for the pretest (21.83) and
posttest (24.09) productions indicate that the L2 speakers’ pretest productions were closer
in distance to the L1 speakers’ productions. Notably, the original ED calculations for Tone
1 resulted in the posttest (ED: 18.19) productions being closer to the L1 productions than
the pretest (ED: 19.39) productions. The calculatedmagnitudes for Tone 1 shown in Table 4
indicate that the pitch heightwasmore L1‑like at the posttest (7.69) than at the pretest (8.58).
However, the phases suggest that the timing was more L1‑like at the pretest (48.84) than at
the posttest (78.63). The results from the CIDmeasure analysis provide additional informa‑
tion when compared to the first two analyses, specifically a more accurate measurement
of distance that shows pretest productions deviated less than posttest productions, which
was the opposite of the findings from the first two analyses. This third analysis also pro‑
vided information about which aspect the L2 tone deviated in more at the posttest, namely
phase (timing).

TheCIDmeasures for Tone 2 shown in Figure 11 indicate that the L2 speakers’ posttest
productions (CID measure: 10.23) were closer in distance to the L1 speakers than the
pretest productions (CID measure: 10.85). The calculated magnitudes and phases for
Tone 2 shown in Table 4 indicate that the pitch height and timing were more L1‑like at
the posttest (magnitude: 2.82, phase: 96.68) than at the pretest (magnitude: 3.63, phase:
113.04). This provides more information when compared to the first two analyses, specifi‑
cally that the timing and pitch height were more L1‑like at the posttest.

For Tone 3, the CIDmeasures shown in Figure 12 indicate that the L2 speakers’ pretest
productions (CID measure: 23.82) were closer in distance to the L1 speakers than the
posttest productions (CID measure: 26.77). Regarding the magnitude (pitch height) for
Tone 3 shown in Table 4, the pretest productions (17.65) were marginally more L1‑like
than the posttest productions (17.94). However, for phases, the Tone 3 posttest produc‑
tions (43.17) were more L1‑like than the pretest productions (44.00). Similar to Tone 1 and
Tone 2 results, the third analysis shows a more detailed analysis, specifically showing that
the lack of improvement at the posttest was due to magnitude, not phase, even though the
changes were marginal.

The CIDmeasures for Tone 4 shown in Figure 13 indicate that the L2 speakers’ pretest
productions (CID measure: 29.87) were closer in distance to the L1 speakers than the
posttest productions (CID measure: 45.65). Results for Tone 4 in Table 4 show that the
magnitude wasmore L1‑like at the pretest (18.37) than the posttest (19.91), while the phase
was more L1‑like at the posttest (46.66) than at the pretest (62.99).

The CID measure analysis results indicate an improvement in the distance between
the L1 and L2 productions at the posttest for Tone 2 only. In magnitude (pitch height),
calculated magnitudes were closer to zero (more L1‑like) at the posttest for Tone 1 and
Tone 2 but closer to zero at the pretest for Tone 3 and Tone 4. Regarding phase (timing),
phases were closer to zero at the posttest for Tone 2, Tone 3, and Tone 4 but closer to zero at
the pretest for Tone 1. The CID measure analysis suggests that L2 learners improved with
respect to timing, with mixed results for pitch height. The CID measure analysis gives
information about the general distance between the productions, magnitude, and phase
information.
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4. Discussion
The current study investigated (a) the applicability of the CID measure proposed by

Batista et al. (2014) to L1 and L2 tone datasets and (b) the comparison of three types of
analyses for comparing L1 and L2 tone.

4.1. Exploration of the Analyses
The deviation score analysis gave a single score for each comparison. From these

overall deviation scores, one can analyze how close or far L2 speakers’ pretest or posttest
productions are from the L1 speakers’ productions or how close the pretest and posttest
productions are to each other. Applying these results to the testing of the visual feedback
paradigm, the results can showwhich tones were produced in a more L1‑like way (Tone 1,
Tone 2, and Tone 4 in the current example study). However, averaging the T scores across
time for a given tone erases the temporal dimension of the productions, failing to provide
any information about pitch height or contour. This previously used method (e.g., Wang
et al. 2003) is insufficient for describing differences between L1 and L2 tone, particularly
in specifying where and in which aspects L2 productions deviate from L1 productions.

The second analysis, performed by calculating deviation scores for three regions of
the productions, resulted in three scores for each comparison. This analysis gives infor‑
mation on which regions L2 speakers are L1‑like and in which direction the pitch height
differs (positive value = higher pitch than L1 speakers, negative value = lower pitch than L1
speakers). The results of the defined region analysis suggest that the change from pretest
to posttest differed by region. Specifically, participants showed improvement in regions 2
and 3 for some tones (Tone 1 and 4), and improvement in regions 1 and 3 for other tones
(Tone 2 and 3), showing that L2 speakers became more L1‑like in their productions (Tone
1, Tone 2, and Tone 3), with improvement being found in the aforementioned regions.
Although the results of this analysis give more information than the first analysis, informa‑
tion about pitch height and contour is still lost from the loss of the temporal dimension. The
deviation scores calculated for each region can only provide information aboutwhether the
pretest or posttest was closer to the L1 data in specific areas but does not provide detailed
information about contour.

The third analysis tested, performed through the calculation of CID measures, pro‑
vides critical information about the timing of the productions. While the overall CID anal‑
ysis showed improvement for Tone 2 only, a more nuanced analysis of magnitude (height)
and phase (timing) suggests that magnitude improved for Tones 1 and 2 while timing im‑
proved for Tones 2, 3, and 4. Without the correction factor introduced in the CID measure
calculation, the ED calculated for one of the tones (Tone 1) would have indicated the op‑
posite results (posttest being more L1‑like instead of pretest being more L1‑like). The lack
of this correction factor in the first two analyses can yield incorrect assumptions about the
improvement (or lack of improvement) for Tone 1 from pretest to posttest, as the overall
deviation score showedmore L1‑like productions at the posttest, with the deviation scores
by region supporting this (more L1‑like at posttest for two regions). This may provide ev‑
idence for the strength of the CID measure analysis, as this more robust analysis provides
a more detailed and accurate measurement, leading to a more accurate depiction of the
learners’ improvement. Additionally, the calculation of magnitude and phase is critical
to this analysis as it provides information about pitch height and timing, providing more
information on how native‑like learners were in their productions, which was lost in the
first two analyses.

4.2. Conclusions from the Current Study
As more research focuses on the development of methods for teaching L2 supraseg‑

mental features, which are important for comprehensibility and intelligibility (Munro and
Derwing 1995), there is a growing need for quantitative methods to analyze and compare
tone contours. This paper details three approaches (deviation scores, defined region anal‑
ysis, and CID measure analysis). While the overall number of participants in the current
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study is limited, these participants produced many tokens, which served as a test case
for the novel CID measure analysis. Future research may seek to compare these analy‑
ses across larger numbers of participants, further highlighting the differences in analyses.
Returning to the first objective of the paper (i.e., exploring three different types of anal‑
yses), although these calculations are fundamentally different, it is important to note the
difference between the conclusions that can be drawn from the first analysis and the third
analysis, specifically that the deviation scores indicate the L2 speakers’ posttest scores be‑
ing more L1‑like for a different set of tones (Tone 1, Tone 2, Tone 4) than the CIDmeasures
indicate in terms of distance (Tone 2 only). As the CID measure calculation considers the
complexity invariance of the data (i.e., through the introduction of a correction factor dis‑
cussed above), it is more robust than the calculation of deviation scores, which disregards
the temporal dimension and the complex nature of the data. Results from the CIDmeasure
analysis show amoremathematically powerful depiction of the level of tone improvement,
while the first two analyses show a less accurate depiction of tone improvement, leading
to differing results between the three types of analyses.

Returning to the study’s second objective, whether this measure could be applied to
the comparison of L1 and L2 tone datasets, results show that the CID measure analysis
can be applied and provide a measure of difference that is mathematically more power‑
ful than previous analyses. Results from this study suggest that the analysis using the
CIDmeasure provides a more nuanced analysis of the differences between L1 and L2 tone
datasets. Specifically, along with the valuable information gained from the CID measure‑
ments themselves, the output of the analysis also provided information onmagnitude (i.e.,
pitch height) and phase (i.e., timing). This information on timing can provide learnerswith
an understanding of how ‘on‑time’ they were with the native speakers’ productions.

From a methodological perspective, the paper has demonstrated that the CID mea‑
sure provides significant benefits over the other two analyses. For research analyses that
seek to document or assess the development of L2 lexical tone over time, either resulting
from instruction or naturalistic acquisition, the CID measure significantly improves over
prior quantitative methodologies. Accounting for the role of phase in contour production,
rather than assuming that F0 data are necessarilymatched at a given normalized timepoint,
provides a more faithful representation of the differences between the two contours. Tra‑
ditional methods, such as the deviation score analysis may lead to incorrect assumptions
about the tone improvement after the intervention, as evidenced by this analysis showing
improvement in more tones than the CID measure analysis. Moreover, while outside the
scope of the current paper, this method lends itself to statistical analyses that account for
phase more so than the traditional qualitative analyses.

From a pedagogical perspective, the utility of the visualizations and quantitativemea‑
sures presented here should be carefully considered. With respect to the visualization of L2
lexical tone, Olson (2014) argues that visual feedback may rely on the inherent ‘intuitive‑
ness’ of a visual representation. Applying the concept of intuitive interpretation to the
methods used here, it is possible that the matched time series plots, with lines indicating
the overall shift in phase (e.g., Figure 6), may provide better information for learners about
the overall timing of their tone contours. Concerning the quantitative measures presented
here, there appears to be a clear trade‑off between interpretability (by learners) and com‑
plexity. While the deviation score provides a fairly easy‑to‑understand measure (closer
to zero = more native‑like), it lacks significant detail about how the two contours differ.
In contrast, the CID measure provides detailed information about distance, height, and
timing but may be hard for learners to interpret. While future research should study this
question in more depth, it is possible that the main benefit to learners comes from the vi‑
sualization, rather than quantitative measurement, of L2 contours. Future research should
also explore applying this novel analysis to types of training paradigms other than visual
feedback. The third analysis may provide pedagogical benefits for other methods of tone
training that do not rely on visualizations alone.
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Notes
1 Also, it is worth noting emerging research on L2 tone evaluations via machine learning. This research has mainly focused on

the development of networks or models for identifying mispronounced L2 tone (e.g., Cheng 2012; Li et al. 2019).
2 Although both prior analyses and those examined in the current paper use native speaker productions as a benchmark for L2

comparisons, it should be noted intelligibility and comprehensibility (for a discussion, seeMunro andDerwing 1995) rather than
native‑like production should be the aim for most L2 learners.

3 Data from four speakers was previously presented in Zhou and Olson (2023).
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