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Abstract: Bio-inspired legged robots have the potential to traverse uneven terrains in a very efficient
way. The effectiveness of the robot gait depends on the joint symmetry of the robot; variations in
joint symmetries can result in different types of gaits suitable for different scenarios. In the literature,
symmetric and asymmetric gaits have been synthesized for legged robots; however, no relation
between the gait effectiveness and joint symmetry has been studied. In this research work, the effect
of joint symmetry on the robot gait is studied. To test the suggested algorithm, spider-like robot
morphology was created in a simulator. The simulation environment was set to a flat surface where
the robots could be tested. The simulations were performed on the PyroSim software platform, a
physics engine built on top of the Open Dynamics Engine. The quadrupedal robot was created with
eight joints, and it is controlled using an artificial neural network. The artificial neural network was
optimized using a genetic algorithm. Different robot symmetries were tested, i.e., diagonal joint
symmetry, diagonal joint reverse symmetry, adjacent joint symmetry, adjacent joint reverse symmetry
and random joint symmetry or joint asymmetry. The robot controllers for each joint symmetry were
evolved for a set number of generations and the robot controllers were evaluated using a fitness
function that we designed. Our results showed that symmetry in joint movement could help in
generating optimal gaits for our test terrain, and joint symmetry produced gaits that were already
present in nature. Moreover, our results also showed that certain joint symmetries tended to perform
better than others in terms of stability, speed, and distance traveled.

Keywords: quadrupedal robot; genetic algorithm; gait evolution; neural networks; robot morphology;
robot generations

1. Introduction

Legged robots (that have been inspired by the morphology of real animals) can
traverse uneven terrains in a more efficient way than their wheeled counterparts [1,2].
Among legged robots, quadrupedal robots are the most agile and the most stable [3–5].This
motivates to mimic nature and thereby adapting robots and vehicles to suit uneven terrains
rather than adapting the environment to cater to the needs of wheeled vehicle. However,
such legged robot morphologies can prove to be quite a challenge to control manually [6];
therefore, it is very common to automate the process of gait generation for such robots. A
robot gait is the movement of actuators that allows the robot to traverse an area [7]. The
gaits for quadrupedal robots are categorized into two types according to [8,9]: the first type
has joint symmetry and the second type has joint asymmetry. Joint symmetry occurs when
the movement of one joint is replicated by another joint in the robot, and joint asymmetry
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occurs when the movement of two is completely different from one another, i.e., there is no
correlation between the movement of one joint with the movement of another joint.

Quadrupedal animals in nature possess both aforementioned gait varieties. The three
most common quadrupedal robot gaits are walking, trotting and galloping [10]. Out of
these, the walking gait is asymmetric, and the movement of all the legs is different from one
another [11]. On the other hand, the trot and gallop gaits are symmetric. In the trot gait, the
diagonal legs of a quadruped are in symmetry [12], while in the gallop gait, the front and
rear leg pairs are in symmetry [13]. It should also be noted that the trot and gallop gaits are
used for running and, hence, among these mentioned gaits, running gaits are symmetric
while walking gaits are asymmetric [14].

Inspired by nature, multiple approaches have been taken to synthesize gaits for
quadrupedal robots. In [15,16], a static gait for a quadrupedal robot is developed that
allows it to traverse uneven terrains; the gait is asymmetric and the robot is controlled
using a path planning algorithm. The robot can successfully traverse a rough terrain.
Contrary to this, refs. [17–19] develop gaits for quadrupedal robots with joint symmetry.
Trotting gaits are developed in simulation, and then later the same gaits are tested on a
physical robot. The results show that the robot can traverse plain areas. In [20–22], running
and turning gaits are synthesized for an under-actuated quadrupedal robot; the gallop
gait is chosen for running, making the running gait symmetric, and the turning gait is
also symmetric.

All the methods stated above allow the robots to successfully traverse different terrains;
however, the gaits are all fixed and cannot change if the terrain is slightly altered. The
robots have no means of adjusting their gaits to match the environment that they are
in. Therefore, to adapt well to the environment, the gaits must be synthesized using an
optimization process. Some of the most common gait optimization methods used in the
literature are the genetic algorithm (GA) [23] and artificial neural networks (ANNs) [24].

As stated above, ANNs and the GA are often used to control robot gaits. The works
in [25–28] utilize the GA to evolve gaits for quadrupedal robots that are controlled by
ANNs. In [25,28] a comparative study is performed between different types of ANNs
to determine which one will produce a gait that is better than the rest of the ANNs. It
was evident from their result that the gaits that resulted in symmetric movement often
performed the best when their utility function favored speed; however, when faced with
uneven terrains, the symmetric gaits performed badly and the asymmetric gaits performed
well. Similarly, in [26], gaits were evolved for a quadrupedal robot, and the entire process
was performed on a hardware setup. The robot was configured in such a way that its
joints were symmetric about the center of the robot. The evolved gait performed very well
and the robot successfully traversed even surfaces. However, evolving gaits on a physical
robot is a slow process and it may take hundreds of hours to reach an optimal gait. The
work in [27] is an extension of [26], and it still employs the same joint symmetry; however,
the first few generations of the robot are simulated and, when the robot learns to walk
properly, the controllers are transferred to a hardware robot. This saves the time it takes to
evolve gaits for a complete hardware robot setup, and the loss of electronic components is
also avoided.

The studies mentioned above demonstrate how joint symmetry and asymmetry aid in
robot locomotion in different environments and on different terrains; however, no critical
analysis has been carried out that relates the effects of joint symmetry to a robot’s ability
to traverse its environment. Therefore, in this research, we contribute to the field by
experimenting with different joint symmetries and studying their effect on the ability of a
robot to traverse a flat terrain. We will be using the GA to optimize an ANN controller for
our robot. We have also designed a custom fitness function which allows us to evaluate the
robot controllers. The results of this study will help in determining whether joint symmetry
aids in robot movement or not; moreover, this study also aims to create a benchmark that
can help future researchers in deciding which joint symmetries to choose for their robots.



Technologies 2022, 10, 64 3 of 12

The rest of the paper is arranged in the following order: Section 2 will discuss our
methodology; our simulation will be detailed in Section 2.1; our controller will be discussed
in Section 2.2; our optimization algorithm will be discussed in Section 2.3; and in Section 2.4
our selection criteria will be overviewed. Finally, the results will be discussed in Section 3.

2. Methodology

The simulations were performed on the PyroSim [29] software platform, a physics
engine built on top of an Open Dynamics Engine [30]. To test the suggested algorithm,
robot morphology was created in the simulator. Ten individual robots were created in
the simulator: the so-called test-population. Every individual in the population was
controlled by a fully connected neural network. The designed neural network-based
controller could evolve itself using the GA. The robot morphology remained the same
for each joint symmetry that was experimented on; however, the controller (ANN) was
changed slightly each time to form different joint symmetries. A detailed explanation for
all the steps involved in evolving the controllers can be found in Figure 1.
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Figure 1. The block diagram of the controller evolution.

2.1. Simulation

As mentioned above, the simulations were performed in PyroSim. The robot body
was created using geometric shapes, and a cuboid was used to make the main body while
the limbs were made from cylindrical shapes. The robot body was completed by joining all
the shapes through hinge joints, hence making a degree of freedom. Each robot leg had
two joints, one for the hip and the second for the knee. A total of 4 limbs and 8 joints were
created, as shown in Figure 2. The simulation environment was set specifically to suit the
environment where the physical robot would be used, and the parameters are given in
Table 1.

Table 1. Simulation parameters used in the simulator.

Parameter Symbol Value

Robot body length l 0.2 m

Robot body width w 0.2 m

Robot body height h 0.05 m

Length of cylinder cL 0.2 m

Radius of cylinder cR 0.02 m

Mass of each robot body part in the simulation m 1 kg
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Table 1. Cont.

Parameter Symbol Value

Gravity g −9.8 ms−2

Number of joints J 8

Number of motors M 8

Motor impulse τ 0.15

Simulation world step time dt 0.05

Total number of timesteps for the simulation T 1000

ANN recall interval timesteps Rc 60

ANN inputs I 9

ANN outputs O 8

Number of individuals in the population P 10

Number of generations G 200
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Figure 2. The figure shows the single components that form the robot. The single segment is
represented by a capsule shape and the joining two of these capsules forms a joint. The figure at the
bottom shows these jointed segments further joining to a cube-shaped body.

2.2. Controller

As stated earlier, the controller used in this study was an ANN. ANNs are mathe-
matical models of the biological brain, and they are used to imitate the nervous system of
biological beings. The ANN controls the robot using a feedforward neural network with a
hyperbolic tangent activation function. The neural network has 9 inputs; the number of
outputs is determined by the joint symmetry used and will be further discussed in this
section. The first eight inputs of the neural network are the proprioceptive sensor values
that return the current joint positions of the robot, and the ninth input is a bias neuron [31].
The data are passed through the neural network, the values of the output neurons are
generated in the form of new joint positions, and the robot joints are actuated according to
the joint positions. We did not include any hidden layers to keep the solution space small.
The neural network was called once every 60 timesteps to avoid any jerky moment.
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The equation below gives the output of the neural network:

Oj = tanh ∑l
i=0 wij Jj (1)

where Oj is the output value for joint j, wij represents the weight that connects input neuron
i with output neuron j, and Jj is the current joint position of joint j.

To create different joint symmetries, the robot morphology is not altered; however, the
controller was altered slightly to form the following symmetries.

2.2.1. Diagonal Joint Symmetry

The diagonal robot legs shared the same joint angles in this symmetry. The ANN
controller, in this case, had 4 outputs, relating to 4 joint values. The ANN output angles
were assigned to the two front legs of the robot and the same angle values were used for
the legs that were diagonal to the front legs, i.e., the joint values of the front left leg were
duplicated to the joint values of the hind right legs, as seen in Figure 3b.
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Figure 3. Top view of the quadrupedal robot. (a) Joint asymmetry in the quadrupedal robot. (b) Diagonal
joint symmetry is shown in the quadrupedal robot. (c) Adjacent joint symmetry is shown in the robot.

2.2.2. Adjacent Joint Symmetry

For this joint symmetry, the ANN architecture still had 4 outputs; however, the leg
symmetry was changed. The ANN output joint values were applied to the left front and
left hind leg and the symmetry was formed between the front two legs and the hind two
legs. Therefore, the joint values of the front left leg were replicated to the front right leg and
the joint values of the hind left leg were replicated to the hind right leg, as seen in Figure 3c.

2.2.3. Diagonal Joint Reverse Symmetry

This joint symmetry was similar to the diagonal joint symmetry; the controller archi-
tecture remained the same (4 outputs), the only difference, in this case, was that when the
joint values were replicated they were multiplied by −1, which made the diagonal legs
move 180◦ out of phase.

2.2.4. Adjacent Joint Reverse Symmetry

The symmetric joints and the ANN controller remained the same as in the adjacent
joint symmetry; however, in this case, the joint values were multiplied by −1 when they
were replicated, shifting the phase of the symmetric legs by 180◦.

2.2.5. Joint Asymmetry or Random Joint Movement

The joints did not form any symmetry: every joint moved in an arbitrary direction.
This is shown in Figure 3a.

2.3. Algorithm

As mentioned before, we used the GA to optimize the neural network. The main steps
of our proposed algorithm are shown in Figure 4.



Technologies 2022, 10, 64 6 of 12Technologies 2022, 10, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 4. Flowchart of the algorithm used in this paper. 

The simulator and the GA were coded in python. The simulation was run for 10 in-
dividual robots at a time where each robot had a random weight matrix that allowed the 
neural network to control the robot, and each simulation lasted for 1000 timesteps. When 
the simulation ended, the GA selected the best-performing individual based on the selec-
tion criteria, as mentioned in the next section. This individual was allowed to make copies 
of its weight matrix and the weight matrix of each copy was slightly changed to introduce 
some variation that would allow the child to perform slightly different from the parent. 
The different behavior could result in a child performing better than the parent; in such a 
case, the child becomes the new parent and the process continues until a set number of 
generations is completed, which in this case was 200. 

2.4. Selection Criteria 
After one simulation cycle was terminated, the robots from all the simulations were 

evaluated and the best performing controllers were selected using a mathematical func-
tion that was user-defined. This function was called the fitness function and is provided 
below: 𝐹 = (ඥ𝑥ଶ + 𝑦ଶ)(  𝐽௧ୀ௧்ୀଵ −  𝐽(௧ିଵ))(1 − 𝑇𝑆) (2)

where x and y are the distances traveled by the robot in the x and y directions, respectively. 
Jtj and J(t−1) represent the positions of joint j at time t and t − 1, respectively. TS is the value 
of a touch sensor attached to the back of the robot’s body, such that TS remains one ‘1′ 
when the robot flips itself over. 

3. Results and Discussion 
Once the simulations ended, the results from all the joint symmetries were analyzed. 

This section will deal with displaying and discussing the results obtained. 

Figure 4. Flowchart of the algorithm used in this paper.

The simulator and the GA were coded in python. The simulation was run for
10 individual robots at a time where each robot had a random weight matrix that allowed
the neural network to control the robot, and each simulation lasted for 1000 timesteps.
When the simulation ended, the GA selected the best-performing individual based on the
selection criteria, as mentioned in the next section. This individual was allowed to make
copies of its weight matrix and the weight matrix of each copy was slightly changed to
introduce some variation that would allow the child to perform slightly different from the
parent. The different behavior could result in a child performing better than the parent; in
such a case, the child becomes the new parent and the process continues until a set number
of generations is completed, which in this case was 200.

2.4. Selection Criteria

After one simulation cycle was terminated, the robots from all the simulations were
evaluated and the best performing controllers were selected using a mathematical function
that was user-defined. This function was called the fitness function and is provided below:

F = (
√

x2 + y2)(∑T
t=1 ∑J

j=0 Jtj − J(t−1)j)(1 − TS) (2)

where x and y are the distances traveled by the robot in the x and y directions, respectively.
Jtj and J(t−1) represent the positions of joint j at time t and t − 1, respectively. TS is the
value of a touch sensor attached to the back of the robot’s body, such that TS remains one
‘1’ when the robot flips itself over.

3. Results and Discussion

Once the simulations ended, the results from all the joint symmetries were analyzed.
This section will deal with displaying and discussing the results obtained.
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3.1. Adjacent Joint Symmetry and Reverse Symmetry

The result of the adjacent joint symmetry is shown in Figure 5. For two trials, the robot
did not score a high fitness value; however, for the rest of the trials the robot scored a high
value, showing that the robot could travel a notable amount of distance. This symmetry
made the robot very stable, and the robot was able to gallop. This can be used to develop
galloping gaits for robots.
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Figure 5. Adjacent joint symmetry fitness for five simulation runs, showing that the majority of the
robots reached a high fitness value.

The fitness values for five evolution trials of adjacent joint reverse symmetry are shown
in Figure 6. Note that most of the robots achieved high fitness values. This gait exhibited a
jerky robot movement and sent the robot in arbitrary directions occasionally. However, this
joint symmetry achieved the highest fitness values on average.
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3.2. Diagonal Joint Symmetry and Reverse Symmetry

The result for diagonal joint symmetry is shown in Figure 7. This joint symmetry
had the least fitness score per evolution run, as well as on average. This is because when
the diagonal joints were symmetrical, the forces applied by the robot’s leg had the same
magnitude but the direction was opposite, causing the forces to cancel each other out.
Consequently, the robot stayed in the same spot.
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Figure 7. Diagonal joint symmetry fitness for 5 simulation runs.

The fitness graph for diagonal reverse symmetry is shown in Figure 8. The maximum
fitness score and the average fitness score of this joint symmetry was the second highest.
This high fitness value is attributed to the robot’s joint movements that allowed it to walk
stably by taking turns in using diagonal leg pairs to locomote. The gaits produced with
this method resembled the creep gait, which is very common in nature.
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3.3. Random Joint Movement

The fitness for random joint movement is shown in Figure 9. The fitness values
achieved by the robot were all caused by jerky movements that threw the robot around,
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causing the robot to gain a high fitness score. This robot gait was the least stable and pro-
duced gaits that were not optimal for a flat terrain. However, this random joint movement
could be helpful over uneven terrains.
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Figure 10 shows the average fitness scores of all the joint symmetries. As discussed
above, the joints with adjacent reverse symmetry and diagonal reverse symmetry achieved
the highest fitness scores, on average. The adjacent joint symmetry produced stable gaits
that resembled a galloping motion, which could be useful in developing high-speed gaits.
The gaits produced with adjacent joint reverse symmetry were able to generate the highest
fitness score; however, these gaits were unstable and they would send the robot in arbitrary
directions, which led to a high fitness score and no usable gaits. The diagonal joint
symmetry produced the lowest fitness scores because the robot would stay at the origin,
and the gaits produced were not useful at all in propelling the robot. The diagonal joint
reverse symmetry produced useful and stable movements that resembled the creep gait.
The robot was able to traverse the flat terrain with ease with this joint symmetry. Moreover,
the gait speed was slow, which further made the robot more stable. The robot with no
joint symmetry was able to achieve high fitness values and the robot mostly produced a
jerky movement that would move the robot in arbitrary directions. Although the gait was
useless for traversing a flat terrain, it could prove useful in moving over uneven terrain or
an environment with obstacles.

Figure 11 shows a sequence of frames that show the robot movement in the simulator
for all the joint symmetries used. Figure 11a shows the adjacent reverse symmetry; the robot
travelled far, however, the robot body was very jerky and threw itself around. Figure 11b
shows that the gaits produced by adjacent symmetry could jump high and were very stable.
Figure 11c shows the diagonal joint reverse symmetry. The gaits produced mimicked
nature, and they were the most stable gaits produced. Figure 11d shows the diagonal joint
symmetry; in this case, the robot stayed near the origin. Finally, Figure 11e shows the robot
with no joint symmetry. The robot was thrown around to an arbitrary position.

The importance of leg symmetry in gait generation has been highlighted in our research
and our results agree with the literature that we reviewed. The gaits produced by [17–19]
were symmetric and produced the best results for the authors. The gait that they generated
was the trotting gait. Similarly, the authors in [20–22,32] produced galloping gaits that
were also symmetric, and our experiments proved that the galloping gaits could be very
fast and stable when we developed these gaits with adjacent joint symmetry. Finally, our



Technologies 2022, 10, 64 10 of 12

results showed that gaits with no symmetry are not optimal for flat terrains due to the
high variability in the joint movements; therefore, we also conclude that random joint
movements are more suitable for uneven terrains, which agrees with [15,16,33].
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Our results give an idea about the joint symmetries that can produce the best results
for a quadrupedal robot. The results showed that the wrong joint symmetry can result
in unstable gaits that can damage a robot in the real world; moreover, the wrong joint
symmetry can produce gaits that are suboptimal for a given terrain. In contrast to this, the
right joint symmetry can produce agile and stable gaits that are optimal for a given terrain.
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4. Conclusions

This paper performed a novel study to determine whether joint symmetry in quadrupedal
robots could improve their locomotion gaits. The results showed that joint symmetry
can help robots to evolve stable gaits. Our results showed that adjacent joint symmetry
produces the fastest gaits, while the diagonal joint reverse symmetry produced gaits that
were the slowest; however, both gaits exhibited qualities of gaits found in nature and
were stable. The rest of the joint symmetries produced gaits that were not optimal and
unstable. Moreover, symmetric gaits can travel greater distances. Therefore, choosing the
right type of joint symmetry is important when generating robot gaits. This study can
be further expanded to examine the effect of joint symmetry on a physical robot. It will
also be interesting to experiment with evolving symmetric and asymmetric gaits for other
robot morphologies.
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