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Abstract: Additive manufacturing (AM) processes offer a good opportunity to manufacture three-
dimensional objects using various materials. However, many of the processes, notably laser Powder
bed fusion, face limitations in manufacturing specific geometrical features due to their physical
constraints, such as the thermal conductivity of the surrounding medium, the internal stresses, and
the warpage or weight of the part being manufactured. This work investigates the opportunity to
use machine learning algorithms in order to identify hard-to-manufacture geometrical features. The
segmentation of these features from the main body of the part permits the application of different
manufacturing strategies to improve the overall manufacturability. After selecting features that are
particularly problematic during laser powder bed fusion using stainless steel, an algorithm is trained
using simple geometries, which permits the identification of hard-to-manufacture features on new
parts with a success rate of 88%, showing the potential of this approach.

Keywords: SLM; LPBF; scanning strategies; machine learning; segmentation

1. Introduction

Laser powder bed fusion has shown great potential to change the way metallic parts
are produced, allowing a freedom in part design not achievable with conventional manu-
facturing. However, the process requires supporting structures in overhanging areas, and
the user must follow certain strict design guidelines to successfully manufacture the final
complex component. Such guidelines were presented by Klahn et al. [1] on function-driven
modeling and by Leutenecker-Twelsiek et al. [2] on the requirements to be considered
when designing for AM. In this respect, Calignano [3] presented guidelines for support
optimization for both aluminum and titanium alloys, representing an additional manual
step in the build preparation process, requiring know-how in the whole AM process chain.

The current state-of-the-art commercial machines support a wide variety of processing
parameters and scanning strategies. However, the selected set of manufacturing parameters
will be applied with no distinction to all layers during the manufacturing process, and
to all geometrical features. Hence, a productive parameter set (i.e., with a high energy
input) could be used for its obvious advantages. This kind of parameter set will neverthe-
less display difficulties in resolving fine details such as lattice structures, and will cause
severe degradation in overhanging areas, even with the use of contour scans, as shown by
Staub et al. [4].

This is mainly due to the low thermal conductivity of the surrounding powder within
the powder bed, as supported by the experiments involving process monitoring and
simulation presented by Dursun et al. [5]. However, different parameter sets, even if
suboptimal for the manufacturing of the whole part, could be beneficial to reduce the
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use of supporting structures, improve the surface quality, and allow lower overhanging
angles with respect to the build plate. Notably, Chen et al. [6] showed through simulations
using the finite volume method and experimental results the opportunity to improve the
overhanging surface quality by tuning the scanning parameters. Ultimately, such process
improvements could improve the productivity of the process, and more generally of the
process chain, as the removal of the supporting structure is a costly task in several AM
processes, including LPBF. Hence, there is a necessity to allow for parameter modification
within certain features of a 3D model.

So far, the different commercial solutions for the preparation of build jobs do not
offer the option to freely allocate specific manufacturing strategies to individual 3D part
features. Even though some basic geometries have been identified, such as overhang, this
does not allow the segmentation of the part or the tailoring of manufacturing parameters at
these specific locations. The efforts made by Siemens towards a path optimizer [7] led to
improved surface quality on a single demonstrator, yet this is far from being a standard
tool. The application of core–shell strategies, as presented by Niendorf et al. [8], is not
considered sufficient, as some features require specific scanning strategies considering
not only the type of a feature, but also its orientation regarding the build direction, its
thickness, or its volume. On the other hand, other commercial solutions such as Aconity3D
GmbH (Germany) rely on a completely open architecture and allow the user to modify
every single vector of the scanning path for each layer. This is also not satisfying for the
treatment of large 3D files, as the tailoring of the scanning path should be done by taking
the 3D geometry into account rather than single layers, one after the other. The recent work
by Chen et al. [9] highlighted the efficiency of a part-specific scanning strategy by showing
reductions in residual stresses due to the optimized scanning path.

Druzgalski et al. [10] highlighted the necessity of software that pre-corrects build files
by adapting the process parameters. The authors proposed the extraction of features based
on the sliced data, by analyzing scanning vectors, extracting risky vectors, and adapting
parameters to these vectors and the 3 subsequent layers. This tailoring is supported by
previous process monitoring data and a database of pre-simulated scanning strategies.

Shi et al. [11] proposed an approach for a manufacturability analysis and feature
identification based on the heat kernel signature. This approach considers the loss of
heat over time of a known source, e.g., the geometry to be manufactured, completely
independently of the AM process. This method can describe the shapes and topological
characteristics of a feature through its heat diffusion potential. The work showed promising
results yet did not elaborate on the necessary time for computing the heat kernel signatures
on complex geometries.

Finally, the literature presents an extensive overview of possible methods of process
parameter tuning for the improvement of specific critical features but lacks scientific inputs
on the recognition and segmentation of these feature from a complete part. The aim of
this work is to identify specific features, segment them from the original geometry, and
allow for an automated treatment for further parametrization in the build processor. The
developed method can take into account complex 3D geometries based on the STL file
standard. Throughout this work, the part orientation is considered as fixed from the
beginning. The output is a set of different features, which altogether represent the part to
be manufactured. This heuristic approach focuses on LPBF-critical features but can be used
for the improvement of any AM process.

2. Materials and Methods
2.1. Features Definition

Specific scanning strategies to improve the part quality for specific features have been
successfully tested, notably in early the work by Clijsters [12], where the first scanning
adaptation strategies were successfully implemented to manufacture free-overhanging
structure with limited down-face surface degradation. In the most recent work by Illies [13],
a thermal process simulation showed potential process parameter modifications to improve
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the quality of critical features. The lack of opportunity to recognize and segment the features
from the core geometries has led these studies to become dead ends. To demonstrate the
use of a novel approach for feature recognition and segmentation, different critical features
must be defined, such as those proposed by Wegener et al. [14] and described in Table 1.
The last column of Table 1 presents the parameter ranges in which the geometry is allowed
to be modified for the machine learning approach presented in the following section. The
criterion for criticality is defined for a standard grade of steel used in LPBF (e.g., SS316L,
17-4PH, maraging steel 300). Outside of the parameter range defined here, the features
are either not critical or require a supporting structure, as an adaptation of the scanning
strategy will not be enough to overcome the manufacturing difficulty. Even though this
work is centered on limitations encountered while manufacturing steel in LPBF, it could
be transferred to other metals and materials easily, as well as other processes, such as
direct metal deposition. In such cases, the range of each feature, as well as its criterion for
criticality, will need to be adapted.

Table 1. The features considered in this study and their parameters.

Feature Type 3D Model Parameters Used

Overhanging surface
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different features that should be recognized

2.2. Suitable Approaches for 3D Feature Identification

For the detection of critical features, multiple methods can be applied. However,
the focus of this work is on identifying the 3D features in the 3D geometry and reducing
the computational resources needed to a minimum. Hence, layer-by-layer approaches,
double slicing, and the like are eliminated due to their high complexity and excessive
computing time.
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As most of the geometries used in AM are mostly available in the STL file format (i.e., a
surface description of the 3D part, discretized with triangles), classifying triangles as critical
in the triangle mesh by only taking the triangle-normal into account could be an option.
However, complex parts are composed of thousands to millions of triangles and cannot
be handled properly. Such approaches will result in successful results for overhanging
structures but will not allow the identification of more complex features, such as fine walls
and helix tubes, as they deliver no information on the overall geometry and the feature.

A second approach assumes the existence of a database with known critical features.
Iterative cloud point (ICP) registration, as proposed by Besl and McKay [15], is a technique
used to match clouds of points by sequentially changing the orientations of both clouds
until the points match together. The main applications for this method are the mapping
of 3D scans on ideal objects and the recognition of the forms of known dimensions. This
method could be used to match objects in a database onto a complex object. However,
this method has limitations in the scalability of each feature. Indeed, depending on the
overall size of the 3D model as well as the size of each feature, the scaling down or up of
each feature of the database will be suboptimal in terms of the computing time, which will
become exponential. In addition, pre-study tests showed that even at a constant scale, the
identification of certain features would remain unsuccessful using ICP when presented
with numerous features to be recognized.

Finally, it is proposed to study the opportunity to train a machine learning algorithm
based on the simplest geometrical description of each individual feature (Table 1). This
would allow for a simple definition of the features and an easily upgradable algorithm for
new features depending on the material and process. Hence, materials that can be difficult
to manufacture using LPBF such as Al- or Cu-based alloys will represent good candidates
for the further implementation of this framework. A workflow combining the automatic
generation of a database of geometries as per the definition in Table 1, the training of the
machine learning algorithm based on the criticality of each feature, and the recognition and
segmentation of an unknown geometry is presented in Figure 1. It is worth underlining
that the goal of the recognition process is not to identify a 3D feature but rather a critical
surface, which is further inflated in the direction of the part to apply segmentation.
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It is not possible to work with the 3D representation of a part as a geometry input
for the machine learning approach, because there is no systematic representation of a 3D
object (e.g., triangle mesh quality, orientation). Hence, it is necessary to be able to register
each geometry by applying mathematical methods. These methods presented below will
turn the 3D object into a repeatable and comparable description of the geometry. For this
purpose, a random walk algorithm is implemented on the triangle mesh. A random walk
is a mathematical process that consists of exploring a mathematical space by going from
neighbor to neighbor in a succession of random steps in that direction. In that case, the
algorithm will consider the triangle mesh as the mathematical space and will jump to a
neighboring triangle randomly (out of the 3 adjacent triangles). To collect the local features
of a triangle mesh, the dual graph of the geometry is then created, i.e., a graph composed
of nodes, each representing a face of mathematical body, and the link (edge) between the
nodes representing adjacent faces. This dual graph is such that every triangle face of the
STL file becomes a node, and the neighboring faces are connected with an edge. Note that
every node of the dual graph has three degrees (i.e., having three edges) in this construction
method, as only watertight objects are considered. To predict if a face is critical, a random
walk is started at its node in the dual graph. The random walk outputs the concatenation of
the face features. Each face is represented through the 3D coordinates of its corners and the
face-normal vector. The face-normal is used to capture angles between neighboring faces.

2.3. Database Generation

A machine learning algorithm needs a training data set, consisting of thousands of
individual points, some of them being critical and some not, to ensure a good training
and validation process. The training dataset for the machine learning algorithm consists
of simple geometries, which can be easily labeled as critical or non-critical. To generate
a diverse set of samples, the features are sampled uniformly within the range of valid
parameters defined in Table 1. An exception is made for the helix tube, which should be
recognized by the intersection of other features. Additional geometries are generated as
intersections of the features defined in Table 1, such as intersections of 3-mm-high random
walls for walls with thicknesses ranging from 0.2 to 1.5 mm and with lengths ranging
between 3 and 10 mm. Such wall intersections contain up to 12 intersecting elements.
The generation of this dataset is completely automatized and randomized, and as such
the data are representative of a complex geometry, as they consist of thousands of single
features. However, the 3D representations of these geometries are not generated, only their
mathematical description, as presented in the section above. This dataset, thus, represents
a compilation of simple features and a total of 0.5 million random walk starting positions.
This dataset is further randomly subdivided into a learning set (90%) and independent
validation set (10%). A single training sample consists of a label indicating whether a
triangle is critical and 20 random walks with lengths of 20 nodes in the dual graph starting
from this triangle.

3. Results and Discussion
3.1. Machine Learning Efficiency

A convolutional neural network (CNN) architecture is trained with the goal of reaching
a critical feature detection rate higher than 85%. To train deeper networks, residual layers
(Resnet), as proposed by Szegedy et al. [16], are implemented. As a loss function, the
binary cross entropy function is used. To model the problem as a regression predicting how
critical a face is, the mean squared error is used as a predictor. The modeling as a regression
problem is especially suitable for an additional manual step, where the final user can adjust
the critical region by manually tuning an additional parameter indicating the cutoff for
the critical region. An illustration of a geometry with surfaces of different critical levels is
shown in Figure 2, where red represents highly critical and blue represents non-critical, as
per Table 1. To accomplish better training, the batch normalization approach proposed by
Ioffe and Szegedy [17] is implemented.
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To ensure repeatability between geometries, the 3D geometry is not used in the CNN,
and only the registered transcription of it, namely the dual graph, is used. The CNN
architecture takes the dual graph parameters of the indexed geometry as an input layer.
It is composed of the different parameters of the triangle mesh (3D coordinates of each
triangle corners, the triangle normal vector, and the angles between neighboring triangles),
as well as the random walk parameters (number of walks, length of walks). The input layer
in this case has dimensions of (20,20,12), according to the description of the random walk
in Section 2.2.

Multiple convolutions are applied in successive steps to create a map of the activation,
so as to identify where the feature is located. The multiple convolutions are successively ap-
plied on the following parameters of the dual graph to create an activation map (also called
the feature map in machine learning language, not to be confused with the geometrical
features of this work):

1. On the parameters of a single triangle (3D coordinates of each triangle corner, the
triangle normal vector and the angles between neighboring triangles);

2. On the random walk length;
3. On the random walk number of walks;
4. On the feature space (created by the first convolutions).

The last dimension is reduced to 8 in step 2 and to 16 in step 3. The tensors from
the walk length, the number of walks, and the feature dimension are reshaped between
each layer. Finally, an operator with multiple dense layers is applied for the prediction.
The continuous reduction of the dimensionality of the hidden space leads to a network
achieving a final detection rate of 88% on the validation set presented above, without
overfitting, calculated on the validation data set (known critical features to be detected). In
addition, a geometry composed of all trained features and an untrained feature (the helix
hole) is successfully recognized and segmented (Figure 3).
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Figure 3. (a) The identified critical areas are shown in yellow. (b) The marching cubes before Boolean
operation are shown in red. (c) The developed solution used for segmentation.

The number of random walks and their lengths are set as fixed parameters to avoid any
lack of data for the training. However, this produces a relatively large dataset, which needs
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to be reduced to optimize the training time. Regarding the indexation of the geometry
before the machine learning algorithm, an alternative to the random walk approach would
be to eliminate the randomness by building a feature tree, as presented by Classen et al. [18].
Such a feature tree would consist of every face rooted at its corresponding triangle in the
STL file. The root degree of the feature tree equals three, and all other degrees equal two
(some faces might be included multiple times), as the third neighboring triangle can be
found on the path to the root. This approach is worth evaluating for further research, as
it might capture the local topology without producing a dataset that needs to be reduced
afterwards for training.

3.2. Segmentation of the Goemetry and Final Output

In addition to the validation from the generated dataset, the trained neural network is
used for the recognition of features on parts containing multiple critical features. A suc-
cessful geometry with recognition and segmentation, including a free overhang, horizontal
hole, helix tube, and long overhanging surface, is presented in Figure 3a,c. This allows us
to draw conclusions on the efficiency of the strategy in recognizing critical features on parts
containing multiple critical features.

The validation of several other parts shows good recognition for the different features,
yet some artifacts (e.g., neighboring triangles in hole openings) or instances of misrecogni-
tion are experienced, as per Figure 4. In such cases, the triangles that are not part of the
hole (the critical feature to be recognized) are marked as critical. As the machine learning is
only effective at 88%, these false positives are typically the margin of error.
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Figure 4. The neighboring triangles of a critical hole are recognized as critical (yellow triangles,
outside the hole) when using single-pass recognition.

Because the random walk process is in fact random, the results for different evalu-
ations of the same triangles and their probabilities of being critical can change, but the
critical areas always have triangles being recognized as critical. The answer is to conduct
multiple evaluations and use the maximum from all evaluations or to filter the results by
redistributing the critical behavior among the neighboring triangles to solve such issues.
In addition, further training on more geometries and the validation of the results by the
user will help the algorithm to avoid such false positives. These false positives are not
present anymore in Figure 3, showing the efficiency of the multiple evaluation strategy.
The recognition time increases with the increasing numbers of triangles on the model’s
surface from a few seconds for the part presented in Figure 4 to several minutes for larger
models, allowing for multiple evaluations at a reasonable cost.

The application of different process parameter settings to different features while
knowing which faces are critical, as per Figure 3a, is insufficient, and the 3D objects are
needed. This is accomplished by first generating a 3D volume from the critical surface and
by applying Boolean operations between the original geometry and generated features.
One object is the non-critical volume, i.e., the blue volume in Figure 3c, while the others are
critical, which can be further treated in an AM build processor.
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To generate the critical object from the critical surface, a ball cloud pivoting surface
reconstruction algorithm, as presented by Bernardini et al. [19], is implemented. This allows
the reconstruction of a triangle mesh from the mathematical description of the geometry
by rotating a fictive “ball” around the first point selected until it reaches 3 points, then
the triangle is formed and the ball is switched to the next point in the cloud of points. It
is interesting to note that the marching cubes approach, as per the definition proposed
by Lorensen and Cline [20], could represent a suitable and drastically faster solution, but
smaller cubes result in gaps on the critical surface or require larger critical regions. As per
Figure 3b, this method is not regular and not implementable for the clean resolution of
each feature. A stair case effect is present on the overhanging surface, and the holes are
poorly defined.

Finally, the implemented method eliminates the above problems by extruding each
triangle individually if the number of triangles connected to each other is less than 100
triangles, while otherwise it uses a convex hull (smallest convex shape containing the
number of points considered) algorithm-based method to fit the larger amount of critically
connected triangles. This technical solution is fast and efficient. A complex structure such
as the helix hole is easily modeled with a regular volume from the surface identified as
critical, as per Figure 5.
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4. Conclusions

The final results of this work can be summarized as follow:

• A database of basic and hard-to-manufacture geometries was randomly generated
from a known description with limits;

• A CNN algorithm was implemented and fed with the database;
• The final tuned algorithm permitted a success rate of 88% of recognition of typical

hard-to-manufacture features in LPBF;
• Untrained complex features (helix tube) can be successfully recognized;
• The segmentation of any feature can be successfully achieved.

Hence, the machine learning approach presented here is suitable for the complex
problem of geometry segmentation. However, some process optimization approaches
can still be used, notably for the topology indexation and the definition of the algorithm
input space. The output of this classification of features is a collection of three-dimensional
geometries representing the uncritical volume part, as well as the critical manufacturing
features. For processes other than LPBF or other materials than standard steels in LPBF,
a new definition of the features and their parameters (i.e., Table 1) is necessary. A new
database could then be generated and the model could be retrained. This work is in favor
of a richer file format for handling complex 3D models in the AM world, such as the 3mf
format. This open-source, XML-based file format would be able to take into account the
different features in a single file and let them be further treated by an AM build processor
in an automated way. The further development of build processors is necessary to adapt to
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this new way of handling complex 3D parts. Further research on this topic should include
processing capabilities to assign specific scanning strategies to each feature and more
complex features recognition tools, such as lattice structures, on which tailored scanning
strategies could also be proposed.
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