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Abstract: COVID-19 patients require effective diagnostic methods, which are currently in short
supply. In this study, we explained how to accurately identify the lung regions on the X-ray scans of
such people’s lungs. Images from X-rays or CT scans are critical in the healthcare business. Image
data categorization and segmentation algorithms have been developed to help doctors save time and
reduce manual errors during the diagnosis. Over time, CNNs have consistently outperformed other
image segmentation algorithms. Various architectures are presently based on CNNs such as ResNet,
U-Net, VGG-16, etc. This paper merged the U-Net image segmentation and ResNet feature extraction
networks to construct the ResUNet++ network. The paper’s novelty lies in the detailed discussion
and implementation of the ResUNet++ architecture in lung image segmentation. In this research
paper, we compared the ResUNet++ architecture with two other popular segmentation architectures.
The ResNet residual block helps us in lowering the feature reduction issues. ResUNet++ performed
well compared with the UNet and ResNet architectures by achieving high evaluation scores with the
validation dice coefficient (96.36%), validation mean IoU (94.17%), and validation binary accuracy
(98.07%). The novelty of this research paper lies in a detailed discussion of the UNet and ResUNet
architectures and the implementation of ResUNet++ in lung images. As per our knowledge, until
now, the ResUNet++ architecture has not been performed on lung image segmentation. We ran
both the UNet and ResNet models for the same amount of epochs and found that the ResUNet++
architecture achieved higher accuracy with fewer epochs. In addition, the ResUNet model gave us
higher accuracy (94%) than the UNet model (92%).

Keywords: nCoV; COVID-19; CNN; lung image; segmentation; deep neural networks

1. Introduction

At the end of 2019, the novel coronavirus began spreading among people, resulting in
a pandemic crisis. COVID-19 is the name of the 2019-nCoV illness. According to current
evidence, it spreads through speaking, coughing, or breathing at a close range of nearly
one meter [1].

The 2019-nCoV virus infects the lungs of a specific person, so we commonly use
computed tomography images of the lungs to check how this virus infected them. Com-
puted tomography scan analysis can be divided into three categories: classification, object
detection, and semantic segmentation. The first tactic, CT scan classification, yields a binary
result of 0 or 1, indicating whether the patient has COVID-19. In the event of a positive
detection, the second technique generates bounding boxes that identify the symptomatic
areas. In the third example, the symptomatic areas in each CT scan slice are detected at
the pixel level. In [1], they proposed a deep-learning semantic segmentation approach
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to annotate symptomatic lung areas for COVID-19 patients using computed tomography
images.

Authors are motivated by the success story of image segmentation architectures [2–4];
they have studied how these architectures are used to improve the performance of the
segmentation process.

Using chest X-ray images for COVID-19 detection can be a viable and efficient alterna-
tive or auxiliary strategy for the identification and control of the COVID-19 disease when
compared with other types of testing. If the necessary resources are available, a reverse
transcription–polymerase chain reaction (RT-PCR) test, for example, takes about 48 h to
complete. We will be able to detect COVID-19 early if we develop a reliable approach that
uses chest X-ray. Wrong medication and diagnosis can cause other severe problems, and
that is why correct diagnosis of lung X-ray is needed.

The contribution of this paper could be stated as a review of various image seg-
mentation techniques and the implementation and result analysis of five specific image
segmentation techniques, i.e., UNet, ResUNet, SegNet, FCN, and ResUNet++, by compar-
ing these techniques based on various performance metrics.

1.1. Background

Effective diagnostic strategies for COVID-19 patients are now in great demand. One
of the most successful strategies for diseased tree trimming is predicting the problem [5].
The number of people infected with SARS-CoV-2 is currently increasing. Thus, a trusted
automated system to identify the infected part of the lungs through X-ray is needed. It is
simple to build a deep-learning system that acts in real time as a person. Ref. [6] studied
brain tumor image segmentation and used UNet and SegNet to achieve excellent accuracy.
Many deep-learning algorithms are currently being utilized to detect sickness early on.
In [7], designing a lung carcinoma screening tool based on DL structures was carried out to
reduce the false-positive rate in low-dose CT scan lung carcinoma screening. Moreover,
in [8], existing deep neural network frameworks were compared for breast cancer image
segmentation, and a new framework was also introduced. The liver, brain, kidneys, bones,
tissues, and other biological parts were subjected to picture segmentation algorithms.

In [9], researchers implemented a so-called fully connected convolutional layer, and
in [5], they extended the architecture of FCCNs to the next level. Many deep-learning
researchers devised an algorithm to classify data into COVID-19 positive or negative and
multiclass classification (COVID-19, pulmonary inflammation, NO data, NO data). In [1],
the FCN and UNet algorithms were tested on computed tomography images, and they
were found pretty accurate. Their algorithms performed well in terms of accuracy and
precision but not in terms of recall.

In [10], researchers proposed the dense UNet network and compared it with the
multiresolution U-Net (multi-ResUNet) and conventional UNet networks on three separate
datasets. The testing results reveal that the dense UNet network outperforms the multi-
ResUNet and conventional UNet networks by a wide margin.

In [11], researchers presented the UNet and ResUNet architectures in this study on
landslide detection. Employing openly accessible Sentinel-2 data and digital elevation
mode (DEM) demonstrated the usefulness of these systems in landslide detection.

In [12], using edge detection and morphological approaches, the authors developed
a lung segmentation architecture. The Euler number approach is used to enhance edge
detection. The morphological approach is then employed to improve the lung edge to
create the lung region’s final output.

The goal of the ML architectures is to achieve high performance. There is always
potential to improve the current architectures.

1.2. Our Work

We proposed utilizing a convolutional neural network architecture for lung segmenta-
tion from chest X-ray pictures in this research study. UNet, ResUNet, FCN, SegNet, and
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ResUNet++ are the architectures that we presented. We analyzed these two designs and
attempted to discover the best solution for chest X-ray image segmentation using GPU
training.

This proposed ResUNet++ architecture takes advantage of the ASPP layer, attention
block, residual block, squeeze block, and excitation block and gives us better results.

2. Methodology

We compared image segmentation methods such as UNet, ResUNet, FCN, SegNet,
and ResUNet++. We thoroughly examined these models and calculated their accuracy, dice
loss, and recall. We examined these three structures using X-ray images of the chest and
attempted to determine whether one architecture was superior to the other.

2.1. Dataset

The X-ray pictures for this dataset came from the Department of Health and Human
Services’ TB control program in Montgomery County, MD, USA. This dataset contains 138
X-ray images, out of which 80 are in the normal category, and the remaining data are in
the tuberculosis infection category. All the pictures are in DICOM format and have been
de-identified. Among the oddities in the collection are effusions and militaristic motifs [13].

The mask pictures are included in all the chest X-ray images in the dataset. There are
800 chest X-ray pictures and 704 mask images in all.

2.2. Preprocessing

All the images in the dataset are in different shapes, so it will throw an error while
passing the images through the CNN architecture. We made all the photos into (256 and
256) forms to solve this problem.

Because all these photographs were in RGB format, we converted them into gray scale
to save time. It implies that the we modified the shape of the photographs from (256 × 256
× 3) to (256 × 256 × 1).

Here in Figure 1 we can see the image size is (256 × 256 × 3) which is the actual size
of the image and Figure 2 is the modified image which is (256 × 256 × 1).
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Figure 2. Chest X-ray gray-scale image with shape (256 × 256 × 1).

2.3. Segmentation Models

There are various segmentation models available for medical image processing such
as DeepLab v1, ResUNet, UNet, UNet++, V-Net, SegNet, etc. In this research, we chose five
segmentation algorithms—UNet, ResUNet, SegNet, FCN and ResUNet++—considering
that their features such as UNet show highly accurate results in a wide area of biomedical
images. It has become the gold standard for biomedical image segmentation [14]; in the
ResNet architecture, a residual block allows more accessible network training [15], and the
researcher preferred UNet based on residual unit semantic segmentation because it works
with very few samples and provides better performance for the segmentation task [16]; the
ResUNet++ architecture takes advantage of the residual block, ASPP layer, squeeze block,
excitation, block and attention block, and this model works well with a small number of
images [17].

2.3.1. UNet

The UNet architecture is based on the fully convolutional network and aims to improve
medical imaging segmentation outcomes. It is in the shape of a U. There are two pathways
in the UNet: one for encoding and one for decoding [18], both of which are remarkably
similar. They obtain the same shape in the UNet as the output that we entered as the
input. There are three indispensable structures in UNet: (1) scale down, (2) bottleneck,
and (3) scale up. In autoencoders, the neural network’s encoder squeezes the input into
a latent space representation, and the decoder derives the output from the squeezed or
encoded representation. However, unlike traditional encoder–decoder arrangements, the
two portions are not dissociated in this case. Skip connections are accustomed to moving
fine-grained data from low-level analysis paths to a synthesis path’s high-level layers. This
information is needed to create correct fine-grained reconstructions.

Figure 3 shows the architecture of UNet. In this architecture, we have implemented
two convolutional layers of kernel_size = (3 × 3) followed by a MaxPool layer of size (2 × 2)
for the contraction until they obtain the image’s form (32 × 32). After that, they started
upsampling the image to transpose the layer and concatenate the transpose layer and the
corresponding feature map. In addition, for the output, we used (1 × 1) as the kernel_size
of the convolutional layer. Because the activation function of the final network layer is
sigmoid, the network training procedure employs the cross-entropy cost function [19].
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Figure 3. UNet architecture.

2.3.2. ResUNet

We have proposed the ResUNet architecture based on the advantages of the ResNet
and UNet architectures. The ResUNet architecture is a hybrid of the ResNet and UNet
technologies. They have applied the residual block of the ResNet architecture into the
UNet architecture. The convolutional layer, pooling layer, and residual unit have all been
tweaked. Before fusing the feature map of the downsampling layer, a residual unit was
introduced after two convolutional layers to recover the feature space and an upsampling
layer from accommodating the segmentation of complicated lung structures.

The residual block has no meaning, without the skip association. Here, in Figure 4, X
denotes the input of the convolutional layer, and, therefore, f(X) denotes the training from
the two convolutional layers; rather than permitting layers to be told of the underlying map-
ping, we let the network to match the residual mapping rather than the victimization H(x)
because in the initial mapping, we use F(x): = H(x) − x, which provides H(x): = F(x) + x.
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In ref. [11], a stacked sequence of residual units is used to explain the architecture of a
residual neural block, with a single residual unit being defined as

yi = h(xi) + F(xi, Wi)xi+1 = f(yi)

We can see the architecture of ResUNet in Figure 5. The ResUNet architecture enhances
learning efficiency and even mitigates vanishing gradient issues. ResUNet lacks the 2 × 2
max-pooling layer and instead obtains the downsampling with a convolution stride of 2.
Before each convolutional layer, a batch normalization (BN) process is added. The identity
mapping h(xi) adds a block’s input to its output in the end.
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In [11], ResUNet led to higher performance in the majority of the cases on Sentinel-2
data.

2.3.3. SegNet

SegNet is a system that is intended to be effective in semantically segmenting im-
ages at the pixel level. It comprehends how various classes are spatially related [20].
SegNet’s encoder network and VGG16’s convolutional layers have the same topological
structure [18,21]. By removing the fully linked layers from VGG16, the authors in [18]
greatly reduced the size and complexity of the SegNet encoder network. The decoder
network, which consists of a hierarchy of decoders with one for each encoder, is the main
part of SegNet.

As shown in Figure 6, SegNet consists of an encoder network, matching decoder
network, and pixel-wise classification layer at the bottom. The decoder network contains
13 levels since there is a matching decoder layer for each encoder layer.

Convolution is performed between an encoder block and a filter to create a collection
of feature maps. Translation invariance is attained using the 13 max-pooling convolutional
layers that are not fully linked. When used with subsampling, it results in pixels controlling
massive input feature maps.

Decoder filter banks are convolved with upsampled feature maps in decoder blocks
using maxpooling indices that have been learned from the associated encoder feature map
to create a dense feature map. Following this, the classifier categorizes each pixel and
outputs a channel probability picture.
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2.3.4. FCN

In [9], the authors showed that without additional equipment, a fully convolutional
network (FCN) trained end-to-end and pixels-to-pixels on semantic segmentation outper-
forms the state of the art. In the FCN, enabling the implementation of localization and skip
connections restores the precise spatial information lost during the downsampling.

We can see the architecture of FCN in Figure 7. In this architecture, a three-dimensional
array of size h × w × d, with h and w being spatial dimensions and d being the feature or
channel dimension, makes up each layer of data in a convnet. The picture that has color
channels and pixels with a size of h × w is the first layer. These functions produce the
outputs yij by writing xij for the data vector at position (i,j) in a specific layer and yij for the
subsequent layer [9].

yij = fks·({Xsi+δi,sj+δj} 0 ≤ δi,δj ≤ k)

where s is the stride or subsampling factor, fks specifies the layer type, and k is known as
the kernel size.
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2.3.5. ResUNet++

In ResUNet++, residual networks are used to benefit the architecture [4,20–22] and
the UNet architecture [3]. As shown in Figure 8 architecture consists of the residual
network, excitation block, ASPP block, attention block, squeeze block, and excitation block.
The architecture combines the ReLU activation function, convolutional layer, and batch
normalization layer.

In the architecture, there are two main parts: UNet is the contracting path, and the
second is the expanding path, which helps recover the original resolution similar to [22].
The encoder part consists of two 3 × 3 convolutional layers in this architecture. Each Conv
layer includes the batch normalization layer and ReLU activation function. The output of
the encoder block passed through the squeeze-and-excitation block. The ASPP functions as
a link, allowing the filter’s field of vision to be expanded to cover a larger environment.
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Similarly, residual units are present in the decoding route. The attention block, which
comes before each unit, boosts the efficiency of feature maps. Following that, the feature
maps from the lower level are the nearest neighbor upsampled, and the feature maps from
their associated encoding route are concatenated. Here we discussed each layer of the
ResUNet++ architecture.

Residual block: [23] showed consistent improvement using the residual block rather
than the traditional CNN architecture. The network can learn residuals with a variable
adequate number of processing steps before adding them back into the residual stream with
this architecture. The deep residual unit makes the profound network simple to train. The
skip connection within the networks aids in information propagation without degradation,
enhancing the design of the neural network by lowering the parameters while continuing to
improve the performance on the semantic segmentation task. Here we have used ResUNet
as our backbone architecture because of these advantages [2,20].

Atrous spatial pyramidal pooling (ASPP): in [20,24,25], the contextual information is
gathered at several scales in ASPP, and the input feature map is fused using many parallel
atrous convolutions with varied rates. The ASPP layer acts as a bridge between the encoder
and decoder blocks in this architecture

The ASPP layer captures the information at various scales. Controlling the field of view
via atrous convolution enables the precise capture of multiscale details. In our suggested
design, ASPP serves as a link between the encoder and decoder. The ASPP layer gave
promising results on various segmentation methods. Therefore, the authors proposed the
ASPP layer in this architecture.
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Squeeze and excitation layer: after each residual block, we have employed the squeeze
and excitation layer in the encoding component of the design. The authors in [26] devel-
oped the squeeze and excitation layer to increase the quality of representations produced
by a network by explicitly modeling the interdependencies between the channels of its
convolutional features.

The equation for the squeeze layer is Zc = Fsq(uc) = 1
H×W

H
∑

i=1
(

W
∑

j=1
(uc(i, j))) [26]; the

authors proposed the squeeze of global spatial information into a channel descriptor. This
is achieved by using global average pooling to generate channel-wise statistics.

The equation for the excitation layer is s = Fex(z,W) = σ(g(z, W)) = σ(W2δ(W1z)).
Here, δ denotes the ReLU activation function [27]. The authors [23] proposed the above
equation to aggregate the information from the squeeze layer. They followed it with
Equation to fully capture the channel-wise dependencies.

3. Result and Analysis

This research paper compared three architectures: ResUNet++ with UNet and Re-
sUNet, as all three architectures are preferred for semantic segmentation tasks. We have
tried different sets of hyperparameters (i.e., learning rate, number of epochs, optimizer,
batch size, and filter size) to optimize UNet, ResUNet, and ResUNet++ architectures.

From the above results, we can say that the loss in the ResUNet++ architecture is
minimum compared with those in the ResUNet and UNet architectures, and the ResUNet++
architecture has a higher dice coefficient than those of the other two architectures. This
section compares the performance of the models employed in this study. We trained
three segmentation models on the Shenzhen and Montgomery datasets and obtained the
following results: loss, precision, sensitivity, specificity, recall, precision, mean_iou, and
dice coefficient.

Tables 1–5 display the ResUNet++, ResUNet, UNet, SegNet and FCN findings. The
suggested model has the most excellent dice coefficient, mean_iou, recall, and competitive
accuracy for the dataset, as shown in Tables 1–5. The maximum sensitivity, specificity, and
recall are reached.

Loss adequately predicts how well the model performs and forecasts the model error.
As you can see in the picture, loss decreases and accuracy increases per epoch. Looking at
the mean_iou, we can see that it is constant through the epochs for the UNet and ResNet
models but increases in the ResUNet++ model; it is also higher in the ResUNet++ model
than in the other two models.

From Figures 9–23 we can see the comparative graphs of models results on training
data and validation data of various matrics like Accuracy, Loss, Precision, Recall, mean_iou
and specificity.

Table 1. UNet Model performance training and validation results.

Model Loss Dice Coef Specificity Mean_iou Sensitivity Recall Precision

UNet Train 0.3216 0.6785 0.9822 0.3739 0.9779 0.9776 0.9512
UNet Val 0.3232 0.6775 0.9797 0.3735 0.9719 0.9711 0.9439
Difference −0.0016 0.001 0.0025 0.0004 0.006 0.0065 0.0073

Table 2. ResUNet Model performance training and validation results.

Model Loss Dice Coef Specificity Mean_iou Sensitivity Recall Precision

ResUNet
Train 0.2159 0.7842 0.9871 0.3739 0.9719 0.9709 0.9642

ResUNet Val 0.2115 0.7892 0.9892 0.3735 0.9575 0.9557 0.9693
Difference 0.0044 −0.005 −0.0021 0.0004 0.0144 0.0152 −0.0051
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Table 3. SegNet Model performance training and validation results.

Model Loss Dice Coef Specificity Mean_iou Sensitivity Recall Precision

SegNet Train 0.3265 0.6734 0.9788 0.3739 0.9748 0.9742 0.9418
SegNet Val 0.3333 0.6674 0.9749 0.3735 0.9590 0.9576 0.9298
Difference −0.0068 0.0060 0.0039 0.0004 0.0158 0.0166 0.0120

Table 4. FCN Model performance training and validation results.

Model Loss Dice Coef Specificity Mean_iou Sensitivity Recall Precision

SegNet Train 0.4606 0.5393 0.4826 0.3739 0.4865 0.4863 0.9060
SegNet Val 0.7308 0.2694 0.9982 0.3735 0.0023 0.0023 0.3406
Difference −0.2702 0.2699 −0.5156 0.0004 0.4840 0.4840 0.5654

Table 5. ResUNet++ Model performance training and validation results.

Model Loss Dice Coef Specificity Mean_iou Sensitivity Recall Precision

ResUNet++
Train 0.0374 0.9626 0.9897 0.9427 0.9565 0.9551 0.9706

ResUNet++
Val 0.0412 0.9595 0.9881 0.9371 0.9545 0.9524 0.9656

Difference −0.0038 0.0031 0.0016 0.0056 0.002 0.0027 0.005
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4. Discussion

We used a variety of loss functions to train the model, including binary loss and dice
loss. The ResUNet++ model was shown to have a higher dice coefficient value. With all
other loss functions except the dice coefficient loss function, mean_iou was much lower.
Based on our empirical research, we chose the dice coefficient loss function. We also
discovered that the number of filters, batch size, optimizer, and loss function all impacted
the outcome.

The test dataset is used to assess the overall performance after using the training
dataset and modifying the hyperparameters to improve the performance on the validation
set. According to the results listed in the tables above, they range from 1 to 5.

Ground truth is measured by sensitivity. We can see from Table 1 that the sensitivity
and accuracy from Figure 9B are almost similar for the validation dataset. UNet gave good
accuracy compared with FCN and SegNet.

In UNet, loss is decreasing and accuracy is increasing per epoch on the validation
dataset. This can be seen from Figure 9A,B. It shows that UNet is doing a good job for
image segmentation.

We can say that the ResUNet architecture performed well compared with the UNet
architecture. In the ResUNet architecture, sensitivity, recall, and precision matrix are slightly
higher than those in the UNet architecture. However, we can see that the loss and accuracy
from Figure 11A,B for ResUNet for starting a few epoch validation metrics are unstable,
but as the epoch increases, the stability increases.
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When comparing SegNet and the FCN based only on the results, it was shown that
SegNet performed better than the FCN, but if we compared them with the remaining
architectures, both poorly performed. If we see the results of the FCN, the loss is 0.7308
for the validation dataset, which is very poor and we cannot consider it for medical image
segmentation.

Checking the results of ResUNet++ for the validation dataset, we can see that it gave
good results for each metric. The validation loss for this architecture is 0.0412, which is the
smallest among the architectures we studied. Moreover, it also gave the highest accuracy
as we can see from Figure 20B. Sensitivity and recall are almost the same for the validation
dataset, 0.9545 and 0.9524, respectively, which are less than those in the UNet architecture.

5. Conclusions

Segmentation divides the image into multiple sets of pixels and focuses on the essential
features of images. It helps doctors to concentrate on the infected region of the body part.
Using the segmentation algorithm in the image classification will increase the accuracy of
the model, and it will try to focus on the specific region. Existing literature survey papers
implemented various image segmentation algorithms for biomedical images, tree segmenta-
tion, and many more. However, as per our knowledge, no one implemented the ResUNet++
architecture on lung segmentation. Residual units, squeeze and excitation units, ASPP, and
attention units are all used in the proposed design. From three architecture designs, the
ResUNet++ design outperforms the state-of-the-art UNet and ResUNet architectures in
terms of delivering semantically correct predictions, according to the comparative study of
various metrics.

According to a comprehensive assessment utilizing various datasets, the ResUNet++
design outperforms the state-of-the-art UNet and ResUNet architectures in delivering se-
mantically correct predictions. The proposed method for accomplishing the generalizability
aim architecture might serve as a good starting point for additional research. Toward devel-
oping a therapeutically effective technique, our model might benefit from postprocessing
approaches to improve segmentation results even further.

6. Future Scope

We believe that the model’s performance may be enhanced further by expanding
the dataset size and adding enhancement approaches and some postprocessing stages.
We believe that ResUNet++’s applicability should not be confined to biomedical image
segmentation but should be extended to natural picture segmentation and other pixel-wise
classification tasks that require more comprehensive validations. Based on our expertise and
experience, we have optimized the code as much as feasible. However, more optimizations
may be possible, which might affect the designs’ outcomes. We only ran the code on a Tesla
K80 system, and the photos were shrunk, which may have resulted in some information
being lost. Furthermore, ResUNet++ employs more parameters, lengthening the training
process.
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