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Abstract: Zero-defect manufacturing and flexibility in production lines is driven from accurate
Digital Twins (DT) which monitor, understand, and predict the behavior of a manufacturing process
under different conditions while also adapting to them by deciding the right course of action in
time intervals relevant to the captured phenomenon. During the exploration of the alternative
approaches for the development of process twins, significant efforts should be made for the selection
of acquisition devices and signal-processing techniques to extract meaningful information from the
studied process. As such, in Industry 4.0 era, machine tools are equipped with embedded sensors
that give feedback related to the process efficiency and machine health, while additional sensors
are installed to capture process-related phenomena, feeding simulation tools and decision-making
algorithms. Although the maturity level of some process mechanisms facilitates the representation
of the physical world with the aid of physics-based models, data-driven models are proposed for
complex phenomena and non-mature processes. This paper introduces the components of Digital
Twin and gives emphasis on the steps that are required to transform obtained data into meaningful
information that will be used in a Digital Twin. The introduced steps are identified in a case study
from the milling process.

Keywords: digital twin; manufacturing process; data acquisition; process related phenomena; signal
processing techniques

1. Introduction

Zero-defect manufacturing, sustainability in production lines, process performance
optimization (take the most from the equipment), the integration of advanced and com-
plex manufacturing processes in the production lines (additive manufacturing, hybrid
manufacturing, robotized machining etc.) and the interest of the industrial world for high
flexibility and reduced ramp up time for the production of new products are factors that
drive the Research and Development (R&D) activities of industries. Market uncertainty and
low-volume customized production are just two more reasons why industrial firms around
the world are interested to make their manufacturing lines more flexibly digitalized [1].
Flexibility is one of the key building blocks to achieve reconfigurability and, thus, resilience
to external disruptions [2]. The challenging events that have taken place in the last years
have made crystal clear that resilience to external disruptions should be the key goal for
manufacturing firms, in order for them to survive the previous and coming crises. Digital-
ization is an enabler for flexibility, since it can support the seamless integration of flexible
production modules, as well as their rapid reconfiguration. The successful adoption of
innovative solutions determines the adaptability and the success of production lines [1–3].
The current software solutions, the enormous computational power that support data
analytics and signal processing, as well as the continuously increasing quality of hard-
ware solutions (e.g., miniaturization of sensors and electronics, edge computing devices,
etc.) that facilitate signal capturing irrespective from the phenomenon are factors that
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are capable of contributing to this direction and also assist the implementation of digital
manufacturing.

The aforementioned consist of the pillars for the development of Digital Twins (DT)
and they have been under intensive research the last decade and especially during the
COVID-19 pandemic crisis where agility and flexibility of production lines was required [4].
A Digital Twin is the digital and computerized representation of a physical object, and
it is capable of predicting how an entity, product, or process will operate after a number
of changes on inputs variables. Digital Twin is at the frontline of the fourth industrial
revolution, and through the development of a linked physical and virtual twin, the Digital
Twin will address the challenges of seamless integration between Internet of Things (IoT)
and advanced data analytics. Since Digital Twin is a term that includes many different
components, various interpretations of the term have emerged, based on the use cases in
which they are employed [5]. To this end, different architectures are designed, varying
based on the area of applications and the expected benefits. By mentioning the link
between physical and digital-virtual world, it is crucial to see the importance of sensing
devices and edge modules on the signal capturing and data exchange. The latter consist of
challenging issues for the industrial, research, and academic world since they determine
the success of Digital Twins and the accurate representation of the physical world. In [6],
the challenges are classified according to their relation to the physical or virtual world
as well as their relation to data exchange layer. In every area, the uncertainty due to
the involvement of different sub-systems and different sensing devices due to the noise
environment is quantified. Based on the application or the studied system, a threshold is
set that determines when an uncertainty range is acceptable. In very detailed and accurate
applications, the sensors and data acquisition devices are selected to keep the uncertainty
within the acceptable range. It is common practice to calibrate the sensing devices in
time intervals specified from the sensor manufacturer to provide the desired accuracy. In
applications where the sensing devices are exposed in difficult conditions, the uncertainty
of the measurement is considered in the decision-making process.

Therefore, this work aims to study the steps that are required for the successful
implementation of a Digital Twin, including the steps for signal processing and information
extraction aiming to go from the sensing layer and the data acquisition to the actual twin of
a manufacturing process. In order to achieve that, the rest of the document is structured as
follows (Figure 1).
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In the remainder of Section 1, the different definitions of Digital Twin are mentioned,
introducing its main components and its different applications in manufacturing processes.
In Section 2, the components comprising a DT are described in detail to move on from the
requirements of sensing to the functionalities of twinning. In Section 3, all the steps that are
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mentioned in the previous section are applied in a real-life case study implemented in the
milling process while the conclusions are stated in Section 4.

1.1. Digital Twin Definitions

Although in literature there are different definitions of Digital Twins, in each one
there are some basic components that drive its functionalities. These components are the
physical layer, the digital layer, and the data exchange between these two [5]. Additionally,
the sensing layer and the data processing layer contribute to the acquisition of data and
the extraction of meaningful information aiming to connect the physical and digital parts.
These entities constitute the pillars of Digital Twins irrespective of the studied item [7]. In
the following paragraph, the most used definitions are introduced.

Shafto et al. [8] and Glaessgen et al. [9] in 2010 provided a detailed, broadly ac-
knowledged and most commonly used definition of Digital Twin (DT) as an “Integrated
multi-physics, multi-scale, probabilistic simulation of a system/machine that uses the best
available physical models, sensors update etc., to mirror the life of its corresponding twin”.
Grieves and Vickers [10], in 2017, defined the DT as a three-part system that includes a
physical object, a virtual representation of that object, and two-way data exchange from the
physical to the virtual world. This data flow is envisioned as a cycle, aiming to mirror the
two states; linking physical and digital states, transmitting data from physical to digital,
and giving feedback from virtual to physical. Virtual spaces comprise of several modules
that enable operations such as modelling, testing, and optimization [8,9], without the
requirement for real life data. The latest definition that has been introduced from Stark and
Damerau [11] in 2019 mentions that a Digital Twin is a “digital representation of an active
unique product/product service system that comprises its selected characteristics, proper-
ties, conditions and behaviours by means of models, information, and data within a single
or even across multiple life cycle phases”. In the same year, Tao et al. [12] mentioned also
that anything from a single machine or equipment and a production line to a production
floor or a whole part can be represented as Digital Twin.

The term “Digital Twin” is a broad term referring to the seamless integration of
data between physical and virtual machines in any direction while it consists of a virtual
representation of a production system that is able to run on different simulation disciplines,
characterized by the synchronization between the virtual and real system, thanks to sensed
data and connected smart devices, mathematical models, and real time data elaboration [13].
The data aspect is defined as the most important aspect of the Digital Twin, enabling the real
time representation of its physical object and the representation accuracy. The mentioned
definitions and the extracted Digital Twin components are depicted in Figure 2.
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1.2. Applications of Digital Twins in Manufacturing Processes

From the different examples that are presented below, the key applications of Digital
Twins in manufacturing processes are identified (Figure 3) as well as the syntactic compo-
nents of DTs. The different components of Digital Twins are analyzed in detail in Section 2.
Manufacturing depends on equipment that has the potential to generate large datasets
either with embedded sensors or with external sensors, giving awareness about the key
performance indicators of a process while enabling the development of digital-virtual
representation of the actual process. These data can provide optimization directions, train
predictive models, investigate critical conditions either for the machine or manufactured
part, as well as validate the production planning and the planned resources etc. Each one
of these functionalities is under research since the benefits that may arise on the production
line are considerable and the industries have identified great potentials for the recent future.
The following paragraphs introduce some of the key applications of DTs in manufacturing
processes via examples that have been identified in literature. As it can be seen in Figure 3,
in order to build an accurate DT, it is important to exchange data with all the different layers
of a production. Therefore, the same is true for DTs at the manufacturing process level.

Cvetkov et al. [14] described a strategy that is common in industries (e.g., auto-
motive, manufacturing sector etc), where virtual test benches are developed by taking
advantage of the faithful representation of the physical layer with a virtual one to sim-
ulate different aspects of the performance and behaviour of the under-investigation
part/process/phenomenon. In manufacturing processes and manufacturing industry,
Digital Twins are test benches where different process variables are examined in a virtual
environment, indicating the optimum combination of values in relation to the desired out-
put. The output criteria/indicators can be the energy consumption, production planning,
quality etc., [15]. Pastras et al. [15,16] developed a digital representation of laser welding
and laser drilling processes by taking advantage of physics-based models for each of the
processes, simulating how the process variables can affect the energy consumption and
the process efficiency. The models have been validated with experimental work, ensuring
accurate and trustful predictions. The outputs of this study have a significant effect on
the production planning, considering that the manufacturing process could take place
according to the energy mix and during non-peak hours, where the cost of electricity is
reduced. Similarly, Stavropoulos et al. [17] developed a digital representation of a polymer-
based additive manufacturing process aiming to improve the efficiency in terms of energy
consumption, the production planning by introducing a build time prediction model, the
orders production planning by calculating the mass of the end product including the sup-
port structures, while also indicating the areas where excessive material is consumed for the
support structure. The feedback from the model could lead to an improved sustainability of
the process. In the same work, the sensing layer provided continuous awareness about the
machine state via machine health monitoring. Moreover, Chaoyong et al. [18] introduced
a model for energy consumption prediction of the milling process by implementing an
analytical, physics-based model that considers the characteristics of the relative machine.
The developed tool takes input process variables and it predicts the energy consumption of
the process, presenting how the energy is divided in the subsystems of the process while
providing insight about how the modifications of path planning strategy and cutting speed
could affect this value. The aforementioned benefits of virtual test benches are embedded
in the works of Aksarayli et al. [19] and Vidrova et al. [20], which mention how machine-
process-dependent simulations can contribute to the overall optimization of manufacturing
processes and production lines.
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In an era where industries are interested to release new products before the competition
with reduced environmental footprint and to promote efficient processes, the successful
representation of the virtual world with the physical one and the data exchange among them
is vital in order to get an insight about the effects of different parameters on key performance
indicators without any waste of resources. Towards this direction, DTs can be used to match
part quality requirements with process capabilities. The manufacturability of parts in
terms of shape accuracy and structural defects can be evaluated with the aid of Digital
Twins and the included virtual representation. Especially in manufacturing processes, such
as additive manufacturing or welding, where the part conformity is highly dependent
on the proper selection of process inputs, the design phase cannot be agnostic to the
manufacturing decisions. The integration of an iterative cycle between the manufacturing
process DT and part design can ensure that the intended design and functionalities of
the part can be achieved by the selected manufacturing technology. On the other hand,
the required additional features for the manufacturing of the part with conventional and
additive manufacturing processes are indicated and optimized with the aid of accurate DTs.
Benjamin et al. [21] introduced a framework for a DT where the designed part is examined
in terms of manufacturability with the aid of an integrated model that suggests design
modifications so as to take the most from the process mechanism and the machine tool
capabilities. Zhang et al. [22] and Lim et al. [23] presented examples from the production
lines where the Digital Twin-based design process had a direct influence on the quality of
the final part.

The term “Digital Twin” encompasses not only end-part digitization, but also the
digitization of the plant, production system, and equipment. DT supports businesses in
simulation and testing before starting production while synchronously improving the
entire process to determine how process parameters can impact production and thereby
increase the flexibility and productivity [24]. Zhang et al. [25] presented a Digital Twin
system aiming to test and control the whole production planning from the design process
until the actual manufacturing process and the orders planning of an assembly of parts [26].
By tracking each process and production phase separately, the whole production line was
tracked. Rosen et al. [27] presented a novel architecture that introduces improved capa-
bilities in terms of orders planning based on statistical assumptions, improving decision
support by means of detailed diagnosis, and automatic planning and execution of orders
by the manufacturing units.

The acquired data from all the subsystems of a machine or a group of machines are
used as inputs for data analytics, evaluating the machine status while predicting the ex-
pected lifecycle of the different components of the machine [28]. An interesting approach
was proposed by Susto et al. [29] that copes effectively with unbalanced datasets that occur
in maintenance classification task where regular production findings vastly outnumber
abnormal/faulty production observations. Moreover, D’Addona et al. [30] developed data-
driven tools that use real-time multi-sensorial data in order to correlate them with cutting
tool wear and indicate possible malfunction. Finally, Magargle et al. [31] and Lee et al. [32]
introduced an approach based on data analytics for monitoring, diagnosis, and progno-
sis of a machine, achieving better transparency of a machine’s health condition; while
Uhlemann et al. [33] developed a multi-modal data acquisition approach based on Digital
Twin model for efficient manufacturing process evaluation and planning. This approach
contributed to the reduction of acquisition time for the relevant process information.
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The aforementioned examples described applications of the different components of
DT in the manufacturing sector. Below, some attempts for the development of complete
Digital Twin systems in manufacturing processes are presented. These works are discussed
in terms of adaptability, time of execution, and required inputs-outputs. Maskery et al. [34]
presented a Digital Twin concept in metal-based additive manufacturing processes, which
was developed based on sensing data and data analytics, mapping the effect of process
inputs on process outputs with the aid of metrology devices and non-destructive testing.
Due to the complexity of the process physics, the physics-based models are neither available
nor validated for the prediction of stresses and intrinsic defects for the metal-based AM
processes. Gaikward et al. [35] developed a machine-learning model utilizing images
from vision cameras and data from temperature sensors to feed models that evaluate
the process performance and indicate the possibility of defects in terms of cracks and
porous. Moreover, Hanel et al. [36], in their study relative to milling process, created a
Digital Twin approach with a significant amount of process inputs for the manufacturing
of aerospace components. The developed model includes mathematical techniques and
signal-processing algorithms for the selection of optimum process parameters, relying on
process data. Kechagias et al. [37] presented an interesting approach for the modelling of
CO2 laser cut of PMMA. In this model, machine learning algorithms were used to map
the effect of process variables on the geometrical characteristics of the final part, aiming to
predict in future processes the appropriate values of process variables to have the desired
kerf geometry. The dimension of the final part is obtained on the metrology stage and the
data is fed to the algorithm for future processes. DT is at the top of interests these days in
the industrial environment and more and more experiments can be identified. However,
these examples introduced the components of DT that are elaborated in Section 3.

2. Digital Twin Syntactic Components

Digital Twin can be considered as a system with embedded tools that are used for
achieving cost-effective and resource-efficient (digitally enabled) optimization through
closed-loop control of the physical system [38]. This section aims to introduce the syntactic
components of a Digital Twin. These components are the physical layer, sensing and data
layer, communication layer, virtual-digital layer, as well as the decision-making layer and
control. Each one of the components are described in the following paragraphs.
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2.1. Physical Layer

Digital Twin systems are widely used for process performance characterization and
control. As an example, DT systems are used for dynamic cutting tool position compensa-
tion, chatter detection, and control in milling processes, while in additive manufacturing
processes the heat-affected zone is measured with monitoring devices and laser power
and material feed control activities are performed. From the aforementioned examples,
it is determined that the physical asset is the actual phenomenon/process/mechanism
that will be represented digitally, as well as the data source and the feedback receiver after
decision making and control activities. Any action relies on the deep understanding of the
process mechanism that will guide the selection of the monitoring devices to measure key
physical quantities such as temperature, vibrations, energy consumption, current etc., and
finally after data processing to provide feedback for corrective actions while improving the
user awareness and the overall knowledge related to the process. The corrective actions
should be relying also on the effect of process variables on key performance metrics such as
defects, thermal stresses, and surface quality. In the next section, the second layer of DT is
mentioned, which represents the space where the data from different sources are gathered,
manipulated, and processed with algorithms so as to extract useful information for the
virtual-digital layer. All the different layers of the Digital Twin are depicted in Figure 4.
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2.2. Sensors, Data Acquisition and Information Extraction

Data acquisition, data manipulation, and data processing are critical steps towards
the effective and accurate real-time or near real-time monitoring of the physical object [43].
In Industry 4.0 era, data acquisition techniques and sensing technologies in the field of
manufacturing are evolving rapidly. Linking and coupling of control systems with cloud
technologies enable storage and processing of massive amounts of data from the physical
counterpart of the Digital Twin. In manufacturing processes, the accurate reflection of the
physical system to the virtual replica is being enabled through the integration of process-
related information. The process information includes the process variables and the process
data that are obtained from a variety of sensors integrated to the physical entity, providing
information related to process performance and machine status.

Digital Twins take feedback from inline and out-of-line sensing devices either for
calibration purposes or to feed decision support and control algorithms. In-situ sensors
are used for comparing predictions from the virtual replica with the physical system
while providing real-time feedback from the physical world to the digital world. Non-
Destructive Testing (NDT) and Destructive Testing (DT) techniques are used for part quality
examination, aiming to create a map between process inputs and process outputs, increasing
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the awareness of engineers the contribute to knowledge generation. By correlating the
process inputs, performance indicators, and process outputs, the obtained data from sensor
devices can be transformed to meaningful information about the quality of the end product
during the process. Data-driven models can be used for that purpose. However, the
engineer should select the appropriate sensors that are capable to capture the phenomenon
of interest. This is the most fundamental and crucial step when building the sensing layer
that will feed a Digital Twin. There are no signal-processing and data-mining techniques
that can compensate for a poor sensing layer design. The proper design of the sensing layer
comprises of its ability to capture the physical mechanisms of the phenomenon of interest,
in the appropriate length and time scales. This step is far from straightforward and requires
deep process understanding. Nevertheless, the existence of a DT can support the design of
the sensing layer by providing a test bench for a sensitivity analysis of the quantities that
can be sensed, with respect to the variance generated by the phenomenon to be monitored.

Sensors are electronic devices that constitute sensitive materials, which determine
the presence of a phenomenon by measuring a physical parameter and convert it into a
measurable electrical signal [44]. Based on the requirements for installation, they can be
classified as active and passive sensors. Passive sensors take advantage of a particular
physical stimulus to work effectively. As an example, the identification of a color with
color-identifications sensors relies on the provision of visible light to illuminate the object.
This allows the sensor to receive the required physical stimulus. On the other hand, in
case of an active sensor, the required physical stimulus is provided from the monitored
mechanism itself. As an example, vision systems take advantage of the radiation that
is transmitted from the process mechanism, extracting information in a specific format
(Figure 5).

Technologies 2022, 10, x FOR PEER REVIEW 8 of 30 
 

 

examination, aiming to create a map between process inputs and process outputs, increas-
ing the awareness of engineers the contribute to knowledge generation. By correlating the 
process inputs, performance indicators, and process outputs, the obtained data from sen-
sor devices can be transformed to meaningful information about the quality of the end 
product during the process. Data-driven models can be used for that purpose. However, 
the engineer should select the appropriate sensors that are capable to capture the phe-
nomenon of interest. This is the most fundamental and crucial step when building the 
sensing layer that will feed a Digital Twin. There are no signal-processing and data-min-
ing techniques that can compensate for a poor sensing layer design. The proper design of 
the sensing layer comprises of its ability to capture the physical mechanisms of the phe-
nomenon of interest, in the appropriate length and time scales. This step is far from 
straightforward and requires deep process understanding. Nevertheless, the existence of 
a DT can support the design of the sensing layer by providing a test bench for a sensitivity 
analysis of the quantities that can be sensed, with respect to the variance generated by the 
phenomenon to be monitored. 

Sensors are electronic devices that constitute sensitive materials, which determine the 
presence of a phenomenon by measuring a physical parameter and convert it into a meas-
urable electrical signal [44]. Based on the requirements for installation, they can be classi-
fied as active and passive sensors. Passive sensors take advantage of a particular physical 
stimulus to work effectively. As an example, the identification of a color with color-iden-
tifications sensors relies on the provision of visible light to illuminate the object. This al-
lows the sensor to receive the required physical stimulus. On the other hand, in case of an 
active sensor, the required physical stimulus is provided from the monitored mechanism 
itself. As an example, vision systems take advantage of the radiation that is transmitted 
from the process mechanism, extracting information in a specific format (Figure 5). 

 
Figure 5. Sensors and monitoring devices to represent the physical process [44–54]. 

Some of the key traditional sensing technologies for the monitoring of machine tool 
performance and machine state are introduced below alongside with their operating prin-
ciples [50]. The classification of the different sensors into categories can provide insight 
regarding the phenomena they can capture. Since there is more than one way to quan-
tify/capture a phenomenon, a sensor should be selected with regards to the range of op-
eration, accuracy-resolution of the received signal, sensitivity, frame rate, total cost, and 
finally interface-connectivity and documentation. The latter criteria are not directly re-
lated to the ability of the sensing layer to measure a phenomenon, but they are of high 
interest when the industrialization and practicality of the monitoring system are consid-
ered. 
• Temperature sensors: They are classified based on the operating temperature as low- 

and high-temperature sensors as well as based on the measurement technique. These 

Figure 5. Sensors and monitoring devices to represent the physical process [44–54].

Some of the key traditional sensing technologies for the monitoring of machine tool
performance and machine state are introduced below alongside with their operating prin-
ciples [50]. The classification of the different sensors into categories can provide insight
regarding the phenomena they can capture. Since there is more than one way to quan-
tify/capture a phenomenon, a sensor should be selected with regards to the range of
operation, accuracy-resolution of the received signal, sensitivity, frame rate, total cost, and
finally interface-connectivity and documentation. The latter criteria are not directly related
to the ability of the sensing layer to measure a phenomenon, but they are of high interest
when the industrialization and practicality of the monitoring system are considered.

• Temperature sensors: They are classified based on the operating temperature as low-
and high-temperature sensors as well as based on the measurement technique. These
sensors can be thermistor, resistance thermometer-resistance temperature detectors
(RTDs), thermocouple, pyrometer, thermal cameras etc.
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• Mechanical transducers: The sensors that belong in this category are devices that convert
energy from one form to another and then to a signal that can be translated to a value
based on the operating principle of the sensor.

# Pressure sensors: They have the ability to capture pressure changes with various
ways and transforming them to an electrical signal, which indicates the pressure
values. Based on the application and the working principles, they are classified
as resonant, capacitive, piezoelectric, etc.

# Force sensors: They capture the magnitude of the applied forces. These devices
can be load cells, strain gauges, force sensing resistors, etc.

# Flow sensors: These sensors can be electronic, taking advantage of ultrasonic
detection of a flow or partially mechanical. Mechanical, electromagnetic, and
ultrasonic sensors are used for velocity measurement, while mass flow and
positive displacement sensors are proposed for the measurement of the vol-
ume/mass that flows within an area.

# Vibration sensors: They are electronic devices that use micro-electro-mechanical
systems (MEMS), piezoelectric or piezoresistive technology to measure the
amount and the frequency of vibration of the surface where they are attached.
The sensor technology determines the maximum sampling frequency and
operating temperature. MEMS are not suitable for frequencies less than 1 kHz.

• Position sensors: These sensors aim to identify the relative position of different bodies or
to measure the distance that has been covered from one mechanism or the displacement
due to applied loads, etc. They can be eddy current sensors, optical sensors, proximity
sensors, capacitive, ultrasonic, potentiometers, laser vibrometers, laser line sensors,
laser trackers, etc.

• Vision systems: Visual sensing captures dynamic phenomena that cannot be captured
with conventional ways. The wavelength of the emitted light from a surface determines
which system should be selected and the spectrum of the measurements can be
provided (visible, infrared, hyperspectral). Vision systems are comprised of the sensing
element and the optical chain that is integrated after it. This optical chain can include a
set of mirrors and lenses that can direct the light emitted by the phenomenon towards
the sensing element and filter out unwanted wavelengths, while ensuring that the
focal plane of the monitoring system lies on the surface to be measured. The focal
length of lens also determines the resolution of the measurement and the applicability
in certain processes.

Apart from the traditional sensing devices and applications, significant benefits arise
by combining recent research developments related to piezoelectric materials and their
unique characteristic to transform mechanical strain and vibration into electrical energy.
This utilization of energy could contribute to improve sustainability and the development of
a self-sustained sensing layer in different machine tools [55]. In a different application, the
information from a computer-tomography (CT) device is used to reconstruct the 3D model
of a part, irrespective of the process, comparing the initial design to the actual part. This
information is used to extract the manufacturing defects and feed predictive models aiming
to improve the accuracy of the respective Digital Twin [56]. Furthermore, by combining
the capabilities of modern sensing devices (vision systems) and the developments in the
area of machine learning, interesting conclusions can be extracted from the monitoring of
an extrusion-based 3D printer [57]. In this particular example, consecutive pictures are
processed, extracting information about possible defects in the process. This information
is correlated with process variables, creating a map that is used in a process twin system.
Finally, in [58], an optic-electronic sensor was used to measure structural vibration instead
of the aforementioned mechanical transducers, presenting significant benefits as it regards
the equipment cost and positioning in the machine tool.

Based on the latest example and the variety of available sensors, the methodology
to select a sensor should be driven from the application and the phenomenon that need
to be captured. As an example, in metal-based additive manufacturing processes, the
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HAZ dimensions constitute a significant process characteristic that should be monitored
during the process. The problem statement determines that the HAZ dimensions should be
obtained. Cameras that operate in the visible light and thermal cameras can be used for this
application, capturing the phenomenon with different ways but providing similar results
after processing. The kind of required processing, the additional information that can be
provided from sensors, the required calibration, and the working range will determine
which sensors suit better each specific application. On top of that, the improved hardware
solutions for wireless sensing devices and the improved communication networks give the
possibility for wireless, re-chargeable sensors that can be catalytic in applications where the
cable routing is difficult, and it should be avoided [59].

2.2.1. Data Acquisition

The output of each sensor determines the characteristics of the device that is used
for data acquisition. These devices sample signals that measure physical phenomena
and convert them in a digital form to be manipulated by a computer/edge device and
software. A typical data acquisition system has multiple channels of signal conditioning
circuitry, providing the proper interface between external sensors and the analog-to-digital
conversion system. Signal conditioning is an embedded electronic circuit to the acquisition
device that prepares the signal to be processed and extract the sensor value. As an example,
thermocouple signals provide small voltage levels that have to be amplified before they
can be digitized. In another example related to resistance temperature detectors (RTDs),
accelerometers, and strain gauges, the sensors must have excitation to operate. These steps
are included in signal conditioning.

The physical phenomena that are captured from acquisition devices can be temper-
ature, current, voltage, strain, pressure, vibration, shock loads, displacement, distance,
revolute speed, angle, weight etc. Additionally, sound, position, light and images, and
linear speed are also considered as measurands. Depending on the sensor, the electrical
output may vary between voltage, current, resistance charge, or any other value which
is measured over time. As an example, piezoelectric sensors rely on the related material
property where electric charge is generated from a material when a mechanical force is
applied. The piezoelectric sensors exploit this effect by measuring the voltage across a
piezoelectric element generated by the applied forces. On the other hand, the piezoresistive
effect relies on the material’s resistivity to alter resistance when it is subjected to a force. In
this occasion, the output is a change in electrical resistance of a semiconductor material
due to mechanical stress. On top of that, MEMS accelerometers include a seismic mass
that is attached to the sensor housing, using the flexibility of the silicon to move back and
forth when forces are applied or the body where the sensor attached changes orientation.
When the included seismic mass moves, it generates a current flow that can be correlated
to the acceleration. The interesting fact about this sensor is that it can be connected to
electronic circuits in the same chip using the same manufacturing method. Ceramic and
quartz crystal are used commonly for sensing pressure as piezoelectric materials, while
piezoresistive effect is found in strain gauges for measuring pressure.

The decisions that are made during this step determine the efforts that are required for
signal processing and meaningful information extraction [60]. Synchronized initialization-
ending of data acquisition, automated data acquisition, alongside with wireless data
acquisition and big data-based acquisition, can be significant attributes of a successive
Digital Twin. These attributes may determine the transmission speed, the way that this
information is stored locally or in Cloud, as well as the data format that is required based
on the stored data for interoperability among the various subsystems of the Digital Twin
system and the external environment. The network speed should also considered for
the proper communication between the several subsystems. More details about the data
formats for appropriate data storage are provided in the following paragraph.
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2.2.2. Signal-Data Processing

Having established the type of sensing devices, the next step is to determine the
data transmission, storage, and signal-processing techniques to ensure high quality of
the data that can be mapped into meaningful outputs. Since large datasets are generated
from a machine during its operation, efficient data structures that enable the handling
of heterogenous and big size data are required. In the literature, various formats are
mentioned such as JSON [61], Avro [62], Protocol Buffers, Parquet, ORC [63], HDF5 [64] etc.
Self-describing data are desired to assist the user to extract metadata, which can be process
characteristics or other critical information, without the need for any other additional
dataset. In addition, since most of the sensing devices give outputs in different formats, the
datasets include non-homogenous data, and the data format should enable distinct types of
data to be stored within datasets while also enabling data compression, slicing, and filtering,
to reduce the memory that is bound in the edge device. To this end, the computational
power and time is reduced. The various formats use different ways to structure the data
within the file. As an example, in an HDF5 file, the so-called “directories” or “folders” on
a computer are called groups, and the files are called datasets. The structured raw data
should be processed with advanced techniques to extract its most relevant signals. After
signal processing, the data will be analyzed, providing inputs for simulation tools and
input for decision-making algorithms, which is the step where the features and the outputs
of data analytics are interpreted, and various actions are formulated [65].

Apart from the actual phenomenon that is measured, more often than not, sensed
signals contain unwanted parts that are enclosed in the signal in the form of noise. This
noise can be generated due to the wiring, the communication channels and data acquisition
devices, the mounting points of the sensor, and the surroundings. The different strategies
for signal processing target the extraction of features that could point out the state of
the machine/process at a specific time instance. In order to group the techniques for
signal processing, it is crucial to understand the nature-signature of the phenomena that are
studied each time. According to [66], there are three main signature generative mechanisms,
namely (a) periodic phenomena, (b) unexpected and transient phenomena (e.g., collision,
impact), and (c) response to changes in process and machine state. These phenomena are
depicted in Figure 6.

In the first type, the periodic forces during the tool-workpiece engagement in machin-
ing can be used as an example. In this case, frequency domain methods (e.g., spectrum
analysis) are applied to capture the frequencies of specific tones of the signals, which most
of the time can be extracted from the process mechanism. However, when modulation
occurs, a periodic signal is modulated by another phenomenon that is also periodic. As an
example, we can consider the periodic motion of spindle which modulates the periodic
contact of cutting tool-workpiece. Such phenomena are characterized by sidebands in the
frequency spectrum. In the second type, the example of a transient signal of the breakage
of a cutting tool can be used. A transient signal is generated due to the abrupt change of
the state and since the phenomenon creates signals that are spread over a wide range of
frequencies, advanced techniques such as time-frequency analysis and wavelet transforma-
tion, could be more effective. In the third and last type, the conditions that could create
a non-normal excitation of signal are not obvious. Different signals from distinct sources
should be studied over time as standalone and be compared to the other so as to extract an
indication about the dynamic behaviour of machine components. In this type, the spindle
bearing wear is found. The received data after a high number of working hours may differ
in a significant way. Sensor drift can influence the quality of the generated data over time.
Moreover, the machinery itself can behave differently (e.g., due to change in operating
temperature) after several hours of operation, thus distorting the generated signals. The
generative mechanisms and the signal analysis domains are introduced in Figure 6.

On the introduced generative mechanisms signatures, four different signal-processing
techniques can be applied (Figure 6). These techniques are mentioned below briefly since
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the scope of this section is to point out the available tools for engineers to provide high-
quality data for data analytics and decision making [67].

• The first technique is related to the time domain analysis, where the obtained signal
is processed in the time domain without being transformed in a different domain (e.g.,
frequency domain). The simplest method includes the evaluation of the magnitude
and energy of the signal. However, this technique does not incorporate information
related to the periodicity of the signal. Related metric forms of this technique are the
peak to valley, the average values, the area under the curve, the slope of the curve, the
Root Mean Square (RMS), the Crest Factor, the Kurtosis, and the Probability density
function of the values. The characteristics of the studied phenomenon determine the
metric that can capture it with the desired accuracy; RMS could be used for vibration
signals, however, since the phenomenon is related to the frequency of the applied loads,
it is not an ideal solution. On the other hand, peak to valley could be used to capture
the tool breakage phenomenon, since it is sensitive to impulses such as breakage.

• The second technique refers to the frequency domain, where the spectral analysis can
be found. The first step of spectral analysis is to transform the signal into the frequency
domain. Since a discrete signal is processed, it is not possible to perform the Fourier
Transform analytically. Spectral analysis relies on the Discrete Fourier Transform
(DFT), which, alongside with the Fast Fourier Transform (FFT), are the two most
frequently used that enable the transformation of a discrete signal in the frequency
domain. The key principle of frequency domain analysis lies in the investigation of
the distribution of the signal energy among a frequency band. The frequency band
to be examined is determined by the phenomenon itself, as well as the sampling
capabilities of the sensor and data acquisition system. Since for the machines, a
fundamental frequency may exist (rotating speed of a spindle), it is often the spectra
to be plotted against multiples (integer of fractional) of this speed, named as orders.
This is an order spectrum, and the related analysis is performed on the amplitude
and phase of the rotational speed harmonics and then is called as order analysis.
Common filtering techniques include highpass, lowpass, bandpass, and bandstop
filters, which are applied to the original signal. In this category, various frequency
domain algorithms are found such as Cepstrum Analysis, Hilbert Transform, SB ratio,
Residual, Bicoherence, Cyclostationarity, etc. Each one of them suits and can apply
to different phenomena with very specific frequency specifications of the obtained
signal. Cyclostationarity is used so as to point out the periodicity of a signal in the
frequency domain.

• The third technique refers to the time frequency methods and it perfect suits phenom-
ena that arise from the process mechanism and machine operation, which produce
non-stationary signals whose distribution of energy over frequencies change over time.
The periodicity of the changes is not ensured. Overall, the information that is acquired
from these methods is related to the distribution in which the frequency changes over
time. Some of the included techniques are the Spectrogram, which can be created by
performing windowed FFTs on a time-domain signal; the Wavelet Transform (WT);
the Wigner Ville Distribution (WVD); and the Choi-Williams Distribution, which aims
to capture the behavior of a signal over time. Each one of them processes with a
unique way the signal based on the examination of the energy of the signal over time.
Moreover, through the demodulation of the signal in the time-frequency domain, it
is possible to decouple the portion of the signal that is related to the phenomenon of
interest and separate it from the rest of the signal that is related to the normal operation
of the process. Several algorithms for signal demodulation have been used for manu-
facturing applications with the most popular being Wavelet Packet Decomposition
(WPD), Empirical Mode Decomposition (EMD) and its optimized versions, as well as
Variational Mode Decomposition (VMD).

• Finally, model-based methods are developed explicitly for each one of the studied
phenomena aiming to capture the dynamic characteristics of each one. More precisely,
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they try to utilize and calibrate the model to depict the relationship between different
signals of the same machine, with indirect use of sensors, to capture modulations on
periodic signals and non-linearities of different phenomena. In this field, the time
series analysis, the wideband demodulation, the virtual sensor, the embedded models,
etc. are found.
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The algorithms and the approaches that were introduced are described in detail in
various works. Signal processing and characterization is an ever-evolving field, aiming to
achieve a rapid and efficient transformation of raw data into meaningful information [74].

2.3. Virtual-Digital Layer

The virtual asset of a Digital Twin system refers to the faithful replica of the physical
entity in the virtual environment. The physical properties, behaviours, constraints, and
laws in the physical space are being utilized as the basis to develop accurate and efficient
virtual models. These models do not necessarily rely on physics-based models or empirical
ones, but also on a combination of them with weight factors and indicators that are used
for specific problems, established after extensive experimental work. The position of
sensors can be selected with the aid of digital layer, since a map of the developed strains;
distortions; oscillation; and change of characteristics such as speed, temperature, and
pressure in specific places of a physical system, can be provided. Once a model has been
validated, it can generate synthetic data that can be used for knowledge extraction. The
data can be fed to data-driven models and improve their predictive potentials. Finally, for
indirect monitoring applications, the data from a specific data source can be compared to
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the data that can be provided from the simulation and give an insight about the process
behaviour. A further analysis of the aforementioned follows in the next paragraphs and is
summarized in Figure 7.
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2.3.1. Physics Based Models

Based on the phenomenon that need to be simulated, different techniques are proposed,
considering time efficiency, computational power, accuracy, and expected outcomes. In
manufacturing processes, many different physical phenomena occur at the same time,
which can be simulated with complex equations that can be solved either numerically or
analytically. However, the computational time and the accuracy of the solution determine
which of the methods is most suitable.

A significant part of the physics-based models is the determination of the boundary
conditions, the discretization of the volume where the equation applies, as well as the
time stepping in case of transient analysis. For each one of these parameters, significant
studies have been made. Between the time stepping and the discretization, there is strong
dependency, since they can affect the convergence of a numerical solution. When implicit
time stepping is selected, the convergence criterion should be achieved in the previous
time step so as to proceed to the next step of the solution. In a different case, the solution
fails. On the other hand, explicit time stepping set an upper limit on the step size to
keep stability in the solution. Explicit time stepping is used mostly in problems of high
non-linearity, complex changing contact conditions, and other high-speed phenomena. In
the area of cutting processes, implicit schemes are recommended when the simulation
involves continuous chip formation and noncomplex contact conditions. Explicit schemes
are favorable when dealing with complex geometry and contact conditions, such as discon-
tinuous chip formation or in high-speed machining. The time stepping is related directly to
the computational time.

Another significant factor is the volume discretization methodology and the related so-
lution of equations. Meshes discretize/divide a continuous geometric space into predictably
shaped and mathematically defined elements. The discretization enables computers to
numerically solve the governing equations and simulate the physical effects. The mesh
quality and size influence the accuracy, convergence, and speed of the simulation process.
In order to achieve improved computational performance and considering that the time
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stepping should be always relevant to the studied phenomenon, adaptive meshing is
selected. The reasons are not limited on the computational time but also on the accuracy
of the model. Higher accuracy is needed in regions where large gradients or singularities
exist, referred to as geometrical singularities such as sharp corner. Moreover, singularities
can be point loads that cause stress to approach infinity at that location.

In the case when large plastic deformations are expected, the need for remeshing is
increased due to distorted elements that lead to reduced accuracy of the solution. Addi-
tionally, remeshing is preferable to capture the chip formation more accurately in a cutting
operation. Usually, the remeshing techniques are classified into three categories, namely,
the H-adaptivity, P-adaptivity, and R-adaptivity. In the first, the size of the finite elements
is changed, normally reducing the size to capture a physical phenomenon more accurately,
while in the second, the interpolating polynomials of the finite element are changed to a
higher degree, allowing for more accurate representation of gradients in the mesh. In the
last one, the nodes are relocated to a more favorable position, thereby reducing the element
distortion and increasing the model accuracy.

Highly customized meshing strategies cannot be achieved with commercial software,
that’s why self-developed mesh strategies and models are proposed in order to simulate
manufacturing processes. However, there are also meshfree modelling techniques such as
Monte Carlo trace, Lattice Boltzman Method (LBM), Discrete Element Modelling (DEM),
Optimal Transportation Meshfree etc., which establish system algebraic equations for the
complete domain of a problem without using a predetermined mesh to spatially divide the
domain. Based on the application, the engineer can select the desired method. In both cases,
for the differential equation that describes a physical phenomenon, two type of solutions
are expected, analytical and numerical. Analytical solutions are solved with rules from
algebra and provide an exact solution, while numerical solutions produce approximate
results. Sources of error can be the rounding errors, truncation errors, and propagation
errors. Euler’s method is the simplest numerical integration method. Additionally, as a
numerical method, the Finite Element Method is considered, which subdivides a large
space into smaller, with finite elements where the algebraic and differential equations
are solved.

Not only the intelligent and advanced meshing techniques can contribute to the
reduction of computational time, but also as in any computation, the use of physical insight
and process understanding to remove less important variables-phenomena can simplify
a solution with little loss of accuracy. As an example, two types of thermo-mechanical
couplings are met when simulating mechanical cutting. The adiabatic heating and the
complete coupling. The adiabatic thermo-mechanical coupling considers localized heat
during the cutting process due to contact (friction) between the two bodies. On the other
hand, when a complete thermo-mechanical model is selected, the heat is conducted in the
two bodies. Depending on the process and the involved materials, both of them and one
of them are true. In a process where there is no time for conduction to take place (high
speed process) and in the case of material with low thermal conductivity, which is used
as a workpiece material, the adiabatic assumption can be used. However, in the opposite
scenario, when a conductive material is used and in a slow-speed process, a completely
coupled thermo-mechanical model is preferred. The engineer should select the governance
phenomena and decide, otherwise the increased computational time does not guarantee
improved model performance.

Physics-based models are a combination of multiple factors for the simulation of a
unique phenomenon or for a characteristic of the process. As an example, from the heat
transfer simulation, which can be related to additive manufacturing, various numerical
methods can be used.

Finite Element Method (FEM) is widely used due to its increased capability of handling
high complexity geometries, with/without convective heat transfer or radiation [77,78].
Finite Difference Method (FDM) is commonly preferred for heat and fluid flow analy-
sis [79–82]. Computational Fluid Dynamics (CFD) method can be used to calculate the bead
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geometry by tracking the evolution of the deposit geometry’s free surface as well as simu-
lating the cooling effect, the surface tension, and the final shrinkage [79]. Lattice Boltzman
method (LBM) and Arbitary Lagrangian-Eulerian (ALE) method are used for predicting
void formation, spattering, and surface roughness in addition to temperature fields and
deposit geometry [82]. Rosenthal’s heat conduction is utilized for monitoring the heated
powder spatial distribution and the melt pool shape [83]. Heat capacity methods are com-
monly used to estimate phase transitions though the increase of the material’s heat capacity
as long as the transition occurs [84–86]. Enthalpy formulation shows high applicability on
the approximation of the phase transition phenomenon based on an enthalpy–temperature
relationship. In other examples, mechanical models are developed to accurately reflect
the versatility of the entire physical entity and its structural components, as well as their
interactions in order to efficiently simulate their dynamic behaviour [87]. Multi-Body
Simulation (MBS) is also used for developing machine tool models by considering the
stiffness and damping behaviour of the different bodies [87,88].

To sum up, complex manufacturing processes are often addressed with multiphysics
models involving numerical heat transfer, computational fluid dynamics, and computa-
tional solid mechanics, as well as thermodynamic, kinetic models, etc. Progress in material
behavior simulation as well as the development of efficient computational algorithms and
advances in computer hardware and storage devices have increased the ability of complex
software to be used for process design and optimization. However, in more complex and
non-mature processes such as laser-based processes or additive manufacturing processes,
the physics-based simulation of the whole process is much more complex and not a choice,
thus, data-driven models are proposed.

2.3.2. Data Driven Models

The complexity of representing processes and phenomena with physics-based models
point out the significance of data-driven models that combine information from multiple
sources and correlate them with different metrics, creating models that indicate outputs
based on inputs [89]. Although, research-wise, the machine learning algorithms have
been under investigation for more than 20 years, and only recently, they were applied
to the industrial environment in multi-sensor fusion, aiming to study data and extract
meaningful information.

Machine leaning algorithms are a topic of great interest for academia as well as for
industries, since they do not account for the complexity of the studied phenomenon, depict-
ing hidden relationships between inputs and outputs while being able to adopt different
conditions by feeding them with data that always have the same data format from the
sources. However, for many researchers the adaptability is considered as the key bottleneck
of machine learning algorithms since they always ask for data that become available af-
ter/during the process or from validated physics-based simulation. Validation experiments
and feedback can be vital to improve the performance of the models. There is a wide range
of researchers that investigate the way that each algorithm operates or when supervised or
unsupervised learning is appropriate and whether the studied problem requires classifi-
cation or regression algorithms based on the available data [90–92]. Although sometimes
the phenomenon may define whether a classification or regression model is appropriate,
the obtained data or the feature extraction from data can also determine what information
can be extracted. This thematic area is too broad, that is why only some important infor-
mation related to machine learning algorithms and reduced order models is mentioned in
this section.

Supervised machine learning relies on labelled input data, which introduce a char-
acterization to the data that will be studied. The term supervised indicates that someone
has an insight about the special characteristics of data. As an example, someone should
extract the information that is related to cracks or to other critical dimensions, obtained
from a microscope. When the training process is over and the model has learned the
relationship between inputs–outputs, it can then characterize new, unseen datasets and
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predict the outcomes. On the other hand, unsupervised learning incorporates the training
of models with raw and unlabelled data as inputs. These algorithms identify patterns and
group data in separate clusters based on key properties of the data that can be extracted.
The main drawback is the amount of data that are needed in order to have a predictive
capability since they rely on patterns that the engineer cannot track. In unsupervised
machine learning algorithms, the trends between inputs should be identified, while in
supervised machine learning the algorithms are trying to correlate inputs with outputs.

Both machine learning techniques are used in manufacturing processes, however, the
availability of labelled data determines the preferable technique. In supervised machine
learning, the representative dataset is provided and studied during the training phase. In
this phase, the selected algorithms try to identify patterns in the data that may indicate
correlation among inputs and outputs. The given datasets include labelled inputs that
facilitate the development of patterns and the identification of cause–result. After these
steps are completed, the generalizability of the developed algorithms is tested by providing
non labelled inputs. The algorithms are evaluated regarding their prediction performance
while the data repository for training is increased. The developed models can be regression
models or classification models based on the problem requirements and the way that the
data have been extracted [93–95]. In defect detection, if the question is “Is the final part
defective?”, a classification model could answer “Yes” or “No” and the type of defect etc.
As in classification models, the answer is related to the pre-defined classes. However, a
regression model, in the same question, could give an answer about the characteristics of
the defect based on the input data that can be related to the size, the positioning of the
defect, etc. A regression model could predict the length of a crack or the size of a pore,
considering that this information has been available previously from different experiments.

Data-driven models, in general, are capable of combining data from different sources,
enabling the calculation of simple metrics that are related to the studied process each time
so as to obtain predictive capabilities in future processes. However, since the main issue
met is the difficulty to adopt to new conditions and process parameters, they are used when
there is a significant variety of inputs that have been generated with different parameters
and in cases where there are simulation tools that can provide trustful outputs. In the
latter case, data-driven models identify relationship between inputs and outputs and can
be performed significantly faster than finite element models and analytical models. As it
regards the algorithms that can be used, it is important to consider the distribution of data
for classification algorithms in order to have equally distributed datasets for each class.
Otherwise, it can lead to overfitting issues. On the other hand, for regression models with
an increasing number of input points, the predictive performance improves. Under the
umbrella of data-driven models, the Reduced Order Models (ROM) can be found. These
models take advantage of simplified physics-based models offering high fidelity of complex
models, significantly reducing the solution time and the storage capacity while preserving
the essential behavior into dominant effects. They are used mostly in transient models,
fluent, thermal analysis, etc. since they provide a significant reduction in processing time.
ROMs could be considered as black boxes that transform an input in to output by being
trained with data that have been obtained from physics-based models. These data arose
after a careful and dense design of experiments so as to provide significant predictive
capability. The aim of ROMs is to bypass the solution of time-consuming models by
identifying the relationship between inputs–outputs for several physical phenomena.

The outputs of the virtual layer alongside with any other data are distributed via the
communication layer to the receivers that can be control devices, operators, or simple data
bases for data storage. The communication layer is described in the next section while the
decision-making strategies are mentioned as the last step for the successful implementation
of a Digital Twin.
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2.4. Communication Layer and Data Transmission

Considering the huge datasets that can be produced and the numerous sources that
can feed the algorithms, it is important to have appropriate communication channels
and networks that are capable of transferring the information back and forth seamlessly
(Figure 8). According to [50], the communication channels and the transmission paths
are capable to distort the signal between the source and the sensor as well as between
the sensor and the data acquisition module and the edge device. The transmission path
may introduce non linearities that make the signal more complex than the original. Since
multiple paths are responsible for data transmission in manufacturing processes (Figure 4),
the quality of the received and transmitted signal may be distorted in a significant way.
The transmission paths that have been introduced are included in different communication
layers that are related to the functionalities of Digital Twins and the sources of information
that need to be handled. The communication needs of a Digital Twin can be classified into
four categories.

1. Communication between the subsystems of a Digital Twin: As an example, the
simulation tools utilize data that is stored in data bases, while the prediction out-
puts are processed by decision-making algorithms aiming to optimize specific met-
rics/indicators.

2. Communication between Digital Twins and environment: The Digital Twin of a
complex mechanism constitutes a combination of different twins that correspond to
the separate subsystems of the investigated process. As an example, in a metal AM
process, the powder feeder system and the deposition head motion are represented
by distinct twins, which are combined to represent the deposition process. Moreover,
in this division there is communication between the twins that correspond to the
same system, but different components are found, exchanging information related
to the status of the machine. In addition, the data exchange with the environment
(temperature, warning messages in case of emergency) is also met here.

3. Communication between Digital Twin and external systems: Entities that provide
services to Digital Twin can be defined as external systems. Such entities are the cloud,
data storage, communication networks, etc., that are managed from external party
and not of the owner of the Digital Twin. These systems interact with the Digital Twin
in a standardized interface, while significant effort is given in the interoperability of
data structures.

4. Communication between the virtual representation and the physical object: The
two-way data exchange between the physical twin and the Digital Twin is found
here. Data from sensors and process status are transmitted from physical object to the
virtual, while also data is transmitted from Digital Twin to physical object, including
control commands and software update. However, from the definition of Digital Twin,
the most significant aspect is the correct and accurate transmission from the physical
twin to build an accurate representation.

A significant requirement of collaboration and communication between the different
subsystems of the twin is the connectivity. Regarding connectivity, networks (4G, 5G)
and hardware development in the field of communication have a key role in expanding
the use of Digital Twins, since they speed up the transmission of data. High speed and
wireless connectivity alongside with structured data formats, secure transactions, and
data of high quality create the pillars for successful (almost) real-time representation of
the physical world in the digital world and prediction of different indicators at the next
time step. Significant barriers in terms of latency, bandwidth, power, reliability, and
mobility of IoT devices can be overcome thanks to developments related to data extraction
and transmission [93]. Protocols and standards for communication and data exchange
are always the key factor for easy, consistent, accurate, and valuable interaction. The
communication between the network devices should follow a specified set of rules, called
protocols, to enable correct transmission and reception of data among the devices. Each
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sensor, machine, receiver, and edge module has its own protocol, with specific syntax and
rules for data exchange.
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In terms of the Digital Twin’s continuous data exchange between the different com-
ponents (Figure 8), different communication methods are introduced such as the Wireless
Sensor Networks (WSN), Machine-to-Machine (M2M) Interfaces, Industrial FieldBus Net-
works (ModBus, ProfiBus), and Open Platform communications—Unified Architecture
(OPC_UA), which are met in different industrial environments and are related to different
machine architecture [94–96]. The specifications of each machine as well as the required
principles for machine-to-machine (M2M) data exchange often needs structured data for-
mats such as XML, JSON, and protocols to circulate the information, always maintaining
the same field of information for proper interaction with other module and machines. Such
a protocol can be the SOAP (Simple Object Access Protocol) protocol, which ensures that
the information that is related to specific services and functionalities will be transmitted
always with the same way and with the same sequence [93–96].

The data exchange between sensors, edge devices, and the devices that perform the
control action (actuator, motors, etc.) is governed from security protocols that act on
the industrial networks that manipulate the data. Data security is being ensured through
encryption at the exchange of information, customer’s identification through Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) protocols in compliance with database
authentication, and the utilization of a Virtual Private Network (VPN) [93].

2.5. Decision Making and Control

The meaningful information that is extracted from monitoring devices and data-driven
models drive the decision-making strategies. As an example, although the visual monitor-
ing has been used over the years, today, with the latest advanced in artificial intelligence
and neural networks, several challenges of image processing have been addressed, en-
abling real-time performance characterization and process control [97]. Machine vision
systems are being continuously implemented for inspecting the work piece, measuring
dimensions, identifying defects, and monitoring thermal profiles, ensuring the desired
machine performance [98].

One of the most significant decisions is how the model outputs will be utilized and
this feedback will be given to the process via the control modules. According to [44],
the decision-making strategies rely on simple thresholds, statistical process control (SPC),
position- and time-dependent thresholds, the part signature, the waveform recognition, the
pattern recognition, and the severity estimator. For each one of them a simple description
is introduced:
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• Thresholds: In general, they are case dependent. They are related to a specific phe-
nomenon and a specific machine/tool. As an example, during the breakage of a cutting
tool, acoustic sensor captures values above a specific threshold that usually indicates
breakage. Thresholds can be either absolute or relative to previously obtained values
and values from different sensing devices. In the simple case where there are simple
thresholds, the response time is set based on the observed phenomenon and its seri-
ousness. On the other hand, there are time-/position-based thresholds that aim to
adopt the dynamic behavior of most of the manufacturing processes. In these cases,
the decision depends on thresholds that have exceeded a specific number of times.

• Statistical process control (SPC): The decision is based on the evaluation of process
outputs with statistical metrics after the threshold condition is activated. It is important
to calculate the control limits of the studied phenomenon, which determines the
threshold condition. If the analysis gives outputs that are outside of the accepted
values, then the decision is made, the process stops, and the engineers try to diagnose
the cause and possible corrective actions. The control chart is one of the primary
techniques that are used in the SPC. It is a graphical display that depicts the values
of metrics that have been measured between the threshold values over time so as to
guide the control activities and give insight about the effect of the current condition of
the machine on the manufactured part. The effect can be a value or a characteristic of
the part.

• Part signature: This strategy depends on the repeated observations of key parameters
of a machine. The timeline of the observation is not defined a priori but is extracted
by comparing how the observed values deviate across time. However, when the time
between the observations has been defined, it should be respected so as to avoid
missed detections that can lead to wrong decisions.

• Waveform recognition: It refers mainly to cases where a phenomenon can be repre-
sented with a specific waveform of the obtained signal. When this phenomenon is
activated, then the corresponding waveform is considered as a pattern. Thus, the
obtained signals are compared to the pattern so as to point out a possible issue and
create an alarm for decision.

• Pattern recognition: This method requires a series of data so as to match a pattern.
Machine learning models work in a similar way, trying to identify patterns between
data either from different sources or from the same source over time so as to point
out a condition or to predict an output that may lead to the excitation of the critical
phenomenon.

• Severity Estimator: Once a threshold value has been activated, the severity of the
condition should be inspected so as to proceed to the decision making. In order to
investigate the severity, additional information is needed. An estimator is used that
relies on mathematical models that correlate the measured values with the severity
of the issue, and then if it is desirable they can correlate this effect on the final part.
In this strategy, the machine learning models, reduced order models, and empirical
models are found, since they provide this kind of information.

All the decision-making strategies aim to preserve processes of high quality without
wasting resources. This is very crucial for the industries, nowadays, since they are trying
to take the most from the equipment and apart from the knowledge that “something is
going wrong”, they need to know how this affects the process performance and the final
product quality and what is the remaining life of the equipment if they keep using it. After
the decision making, the control actions should be performed, being transmitted through
the communication channels to the devices or to the machine controller that will modify
the related parameters.
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Knowledge Extraction and Wisdom

By taking advantage of the described steps for the transformation of raw data, ac-
quired from sensing devices to meaningful information that assist the decision-making
process, knowledge and wisdom relative to a process mechanism can be generated. These
are the last two layers of the Data-Information-Knowledge-Wisdom (DIKW) pyramid that
have been introduced from different researchers [99–101] and they represent the differ-
ent transformations that need to be performed so as to improve the adaptiveness of the
process in different conditions. Since the principals of each of the steps of the pyramid
related to data acquisition and information extraction have been previously introduced,
only the Knowledge and Wisdom section will be mentioned in detail in this section. These
steps of the pyramid receive more and more interest, as they represent the main outcome
of digitalization of industries and contribute directly to the selection of the appropriate
decision-making strategy. The information is transformed to knowledge when it can deter-
mine the actions of decision making. Among the two classifications of knowledge, tacit and
explicit, the industrial world is interested in the latter since it incorporates documentation
and formulation of the knowledge, while the first one relies on the identification of prob-
lems that may have been identified in the past, and their solution can be used as experience
for similar problems in the future [102].

On the other hand, the layer of wisdom cannot be generalized for all the processes
that belong in a process family. As an example, laser-based processes and additive manu-
facturing processes differ significantly one from each other. Therefore, application-based
wisdom is suggested as terminology that limits the scope of wisdom layer in specific appli-
cations where the human can take decisions based on the instinct that relies on the deep
understanding of the effect of process variables on the final result and a possible map of
these effects on the final part. Additionally, it is important to mention that although process
knowledge extraction can be automated, as well as the decision-making, wisdom is an
inherent, human aspect and cannot be digitalized (e.g., through artificial intelligence) [73].

The pyramid that was introduced in [101] includes the two different flows between the
layers of the pyramid determined as goal-oriented data generation and adaptive knowledge
generation (Figure 9). In the top-to-bottom strategy (goal-oriented data generation), the
agent who is responsible for the decision making investigates what kind of data may
give a desired output, while on the other hand, the bottom-to-top strategy (adaptive
knowledge engineering) introduces the knowledge that can be generated based on the
given data and how the outputs change with different inputs. As a general conclusion
from the aforementioned, one of the targets of Digital Twin is to create the environment
where meaningful information can be produced and then be transformed to knowledge
supporting both approaches and accelerating the decision-making procedures and the
exploration of different processes.
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3. From Sensing to Twining in a Case Study from Milling Process

This section aims to identify the components of a Digital Twin in different examples
that are related to the milling process, with the aid of literature sources [73,103,104]. In
these examples, different sensing devices and signal processing techniques were selected
based on the author’s preferences, the signal characteristics, and the available infrastruc-
tures. The fact that by following different approaches a Digital Twin that serves the same
functionalities can be developed, points out the adaptability of this approach in industrial
scenarios, where different requirements ask for different solutions, not only in terms of cost
but also in terms of accuracy, speed, etc.

The proposed systems captured and identified conditions/phenomena that affect the
process performance indicators and propose corrective actions. To this end, this section
will not describe in detail each separate development but will introduce key parameters
that determine the success of a DT as well as the weak points of the different approaches in
terms of signal acquisition resolution, equipment cost, and installation capabilities on the
machine tool.

3.1. Problem Statement

The first step before sensor selection is to identify critical phenomena that need to
be monitored with sensors. One of the challenges that are met in the milling process is
the chatter phenomenon, which is defined as a type of self-excited vibration that can be
identified in different time instances during the machining process [1,73]. This phenomenon
is excited due to the dynamic characteristics (damping, stiffness) of the studied machining
system in combination with the selected milling parameters (cutting speed, depth of cut,
feed per tooth). This phenomenon is an uncontrollable and unattenuated vibration, which
leads to poor surface quality due to the oscillations between the workpiece and the cutting
tool. Apart from the surface quality, this phenomenon affects the cutting tool life and the
health of the machine tool components. In addition, this is a regenerative phenomenon,
since the oscillating motion of the tool leaves chatter marks on the workpiece, which have a
waviness at the oscillating frequency of the end mill (the chatter frequency). As a result, the
next cutting edge is introduced to a varying chip load, which varies at a frequency equal to
the chatter frequency, thus triggering the regenerative effect.

The development of analytical and data-driven models could enable the prediction of
the occurrence of chatter during the initial stages of process planning and support selection
of appropriate process parameters. However, when the process variables change (e.g.,
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cutting tool, tool holder, etc.), the engineer should examine once again the dynamic response
of the structure and extract new parameters for the models. To this end, a monitoring
system is required, aiming to capture appropriate signals continuously during the process,
evaluating the existence of chatter in real time, while giving feedback to decision-making
algorithms that can perform control activities. The aforementioned information depicts
the significance of transforming process-related information, to control actions, aiming
to improve the process performance without the human factor being involved in each
process, but only during the development of the Digital Twin and the involved models.
The next step is the decision regarding the appropriate sensor that is capable to capture this
phenomenon (Figure 10).
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3.2. Sensor Selection

In the literature, different sensors are proposed that are capable of capturing this
phenomenon. Some of them include accelerometers, force sensors (piezoelectric), contact-
free ultrasonic and acoustic emission sensors, as well as microphones. However, in the
industry, only the first two sensors have been found to have application due to the ease of
installation and the required resources for signal processing. Apart from the sensor quality,
the machine tool set up could also guide the engineer regarding the most appropriate
sensor. In [73], a Kistler 8762A10 tri-axial, ceramic shear, accelerometer was used for
the data collection, mounted on the spindle head of the machine tool. In [103], force
data were collected with Kistler dynamometer 9258C2, which was placed directly on the
machine table, where the workpiece was clamped, while in [104] a Kistler dynamometer
9255C was selected for the recording and validation of force data, placed again on the
machining table. Both dynamometers obtain force components in three directions. The
accelerometer can be placed anywhere close to the spindle, being very small, but asking for
significant signal processing so as to extract the desired information. On the other hand,
the dynamometer is much more expensive, with pre-defined space for installation, but it
provides data of high quality, and it captures with great accuracy the studied phenomenon.
Finally, both devices detect the same phenomenon with different ways but different in
terms of positioning, dimensions, sensitivity, accuracy, and cost. This is a very important
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decision for the development of a Digital Twin. In the next section, the devices for data
acquisition/storing are introduced (Figure 10).

3.2.1. Data Acquisition

In [73], a National Instrument PXI-4472 sound and vibration module was used for data
acquisition with a sampling rate of 1 KHz, while Labview software was selected for data
storage. On the other hand [103], the multi-function data acquisition device NI-USB-6343
alongside with a charge amplifier were selected, with a sampling rate of 250 Hz. In both
cases, wired connections were implemented (Figure 11). In addition, the whole system is
integrated in the proximity of the machine, limiting the effect of wire length on the signal
acquisition quality. Finally, the desired data format for data storage is selected for future
offline post processing and inline signal processing.
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3.2.2. Data Format

Since the chatter phenomenon can be captured from only one sensor and homogenous
datasets are generated, the data format can be as simple as a Comma Separated Values
(.csv) file. Moreover, small datasets are generated, considering that the signal (force,
acceleration) for each axis (x, y, z) is stored in a different column. In [73], the author
mentions that 40 experiments were performed for the training of data-driven models and
in total 7000 samples were recorded. To this end, the dataset includes 28 × 104 samples for
the analysis.

3.2.3. Singal Processing

In [75,103,104], frequency domain methods were selected since the phenomenon is
identified in specific signal bands and is modulated from the rotational speed of the spindle.
However, different algorithms were proposed for the decomposition and processing of the
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signal. In [73], the variational mode decomposition was selected for the demodulation of the
original signal into its principal modes. The extraction of features of the initial signal gives
the opportunity to study only specific values that represent the signal instead of the whole
signal, reducing the computational time, which is significant criterion for a Digital Twin.
Furthermore, the metric of kurtosis (fourth statistical moment of a signal) was correlated
with the excess of signal outliers (Figure 11). Finally, it was determined that for the stable
process, the metric remains negative, while in the case of chatter, this metric becomes
positive, and its magnitude can be correlated to the magnitude of chatter. The correlation
between signals and the existence of chatter was made with AI, while the labelling of
datasets was made manually by tracking the distinct sound and the surface quality as a
result of chattering. In [103,104], the Fast Fourier Transforms (FFT) was employed to detect
chatter at the natural frequency of the cutting tool. The dominant frequency was met at the
tooth-passing frequency. Additionally, the statistical variance of forces in x, y direction was
selected as criterion to identify the chatter phenomenon in the obtained force signals, while
a threshold value was pointed out that points out whether the process is stable.

3.3. Digital-Virtual Layer

A significant part of the Digital Twin is the representation of the physical world in
the digital world. In this work, Python [73] and MATLAB [103,104] suites were selected
to run the digital-virtual layer (Figure 12). To this end, the mentioned works developed
models that were validated (data-driven and physics based analytical models) towards
the detection of chatter aiming to provide a map for decision making. In [73], the support
vector machine classifier was selected for the detection of the stability of the process, while
70% of the datasets were selected for the model training and the remaining 30% of the
datasets were used for model testing. By selecting the optimum hyperparameters for the
classifier, high performance of the predictive model is achieved (AUC 93%), which means
that it can predict with high accuracy the process status. On the other hand, in [103,104],
the authors developed analytical models that calculate the developed cutting forces, which
were validated and calibrated with the received data from the actual process. Each time
a force signal is received, the model can predict with the aid of the statistical metrics
and the empirical models the machine status. Additionally, the validated models can be
used to generate datasets to improve the performance of the predictive models as well
as to test different process inputs, considering that the model somehow incorporates this
information, either with coefficients or with weight factor.

Technologies 2022, 10, x FOR PEER REVIEW 25 of 30 
 

 

spindle. However, different algorithms were proposed for the decomposition and pro-
cessing of the signal. In [73], the variational mode decomposition was selected for the de-
modulation of the original signal into its principal modes. The extraction of features of the 
initial signal gives the opportunity to study only specific values that represent the signal 
instead of the whole signal, reducing the computational time, which is significant criterion 
for a Digital Twin. Furthermore, the metric of kurtosis (fourth statistical moment of a sig-
nal) was correlated with the excess of signal outliers (Figure 11). Finally, it was determined 
that for the stable process, the metric remains negative, while in the case of chatter, this 
metric becomes positive, and its magnitude can be correlated to the magnitude of chatter. 
The correlation between signals and the existence of chatter was made with AI, while the 
labelling of datasets was made manually by tracking the distinct sound and the surface 
quality as a result of chattering. In [103,104], the Fast Fourier Transforms (FFT) was em-
ployed to detect chatter at the natural frequency of the cutting tool. The dominant fre-
quency was met at the tooth-passing frequency. Additionally, the statistical variance of 
forces in x, y direction was selected as criterion to identify the chatter phenomenon in the 
obtained force signals, while a threshold value was pointed out that points out whether 
the process is stable. 

3.3. Digital-Virtual Layer 
A significant part of the Digital Twin is the representation of the physical world in 

the digital world. In this work, Python [73] and MATLAB [103,104] suites were selected 
to run the digital-virtual layer (Figure 12). To this end, the mentioned works developed 
models that were validated (data-driven and physics based analytical models) towards 
the detection of chatter aiming to provide a map for decision making. In [73], the support 
vector machine classifier was selected for the detection of the stability of the process, while 
70% of the datasets were selected for the model training and the remaining 30% of the 
datasets were used for model testing. By selecting the optimum hyperparameters for the 
classifier, high performance of the predictive model is achieved (AUC 93%), which means 
that it can predict with high accuracy the process status. On the other hand, in [103,104], 
the authors developed analytical models that calculate the developed cutting forces, 
which were validated and calibrated with the received data from the actual process. Each 
time a force signal is received, the model can predict with the aid of the statistical metrics 
and the empirical models the machine status. Additionally, the validated models can be 
used to generate datasets to improve the performance of the predictive models as well as 
to test different process inputs, considering that the model somehow incorporates this 
information, either with coefficients or with weight factor.  

 

Figure 12. Digital-virtual layer, communication layer, and decision making and control [73,103,104].



Technologies 2022, 10, 98 26 of 30

3.4. Communication Layer

After the virtual layer, the outputs are transmitted via wired communication channels
with protocols determined from the machine controller and the edge module so as to
perform the desired modification of the process parameters. MODBUS/PROFIBUS network
protocols were selected for the transmission of data to the machine controller [104]. These
two protocols are well known in this type of application (Figure 12).

3.5. Decision Making and Control

The decision making can be divided in two components. The first one refers to
the decision about the machine state that was made during the data analytics/feature
extraction section, and the second about the action that will be performed to control the
process and modify the machine status. Considering that thresholds of specific metrics are
used to characterize the machine status, the decision-making strategy relies on thresholds.
However, in [73,104], it was described that the process status can be evaluated with stability
lobe diagram, finding the limiting depths of cut and spindle speeds so as to maintain a
stable process [73]. On the other hand, variations of these diagram can be found, including
parameters such as spindle speed, tool path position, chatter frequency, and feed rate [104].
In both cases, the process should remain stable, and the corrective actions have to be made
with a control diagram that will be case dependent. According to the process characteristics,
the engineer should select which parameter should be changed to maintain the stability.
The feed rate and the depth of cut affect the productivity time of the process. In [104], the
spindle speed is modified so as to maintain a stable process (Figure 12). With this step, all
the components of a Digital Twin were identified, describing with real cases what actions
are required to go from sensing to twinning.

4. Conclusions

The present work points out the main components that are required for the develop-
ment of a Digital Twin and the transition from sensing to twinning. The importance of
process mechanism understanding and data analytics to extract the desired features from
each process related phenomenon are items that need to be investigated further in the recent
future. The complexity of new process mechanisms (e.g., additive manufacturing) leads to
the increased adoption of digitalization in industries since the physics-based, theoretical
models are not capable of representing the physical process and providing meaningful
characterization of the process status. Moreover, the improved hardware solutions for data
collection and data transmission as well as for signal processing and data analytics give
the opportunity to bypass the process physics and develop data-driven models that depict
the process status by combining data from different sources. Therefore, the data structures
will play a significant role, especially when large datasets are generated. However, the
decision making and the feature extraction during signal processing relies on different
methodologies and thresholds that until now have not been automatically selected, which
means that always human will have key role in the Digital Twin loop. As future work, the
full potentials of IoT and Industry 4.0 will be integrated in the production lines, enabling
process performance optimization and minimized use of resources. On top of that, since
the physical layer is an existing object and the decision making relies on the provided data
and the scope of the Digital Twin, the key area of interest and for future research is the
selection of the desired sensing layer to capture a specific phenomenon and how this input
will be transformed into knowledge so as to be part of Digital Twin.
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