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Abstract: In order to reduce the probability of automobile safety incidents, the in-vehicle occupant
monitoring is indispensable. However, occupant monitoring using frequency-modulated continuous
wave (FMCW) radar can be challenging due to the interference from passengers’ posture, movement,
and the presence of multiple people. This paper proposes an improved method for generating
point clouds using FMCW radar. The approach involves point cloud clustering, post-processing
operations such as segmentation, merging, and filtering of the clustered point cloud to match the
actual in-vehicle environment, and a state machine combination step. Experimental results show that
the proposed method can achieve high recognition accuracy in scenarios with multiple passengers
who are moving and sitting in a relaxed manner.

Keywords: FMCW; radar; in-vehicle; occupant monitoring system; presence detection; point cloud;
clustering; state machine

1. Introduction

It is estimated that over 90% of road traffic accidents are caused by human error. In
the United States alone, more than 30,000 people die in fatal crashes each year, a number
which increased in 2020 due to the COVID-19 pandemic [1]. Tragically, there have also
been incidents of people being trapped in enclosed vehicles, resulting in suffocation and
heatstroke. According to survey data released by the organization KidsAndCars in 2021,
nearly 1000 children died in such incidents since 1990, with 55% of these accidents caused
by parents leaving their children unattended in the car [2]. Seat belts and airbags are essen-
tial fixtures inside vehicles that can protect passengers in the event of a collision and that
can effectively mitigate injuries. Furthermore, adaptively adjusted seat belts and airbags
can provide better protection for passengers of different types and heights [3]. In addition,
the presence detection of occupants in a vehicle is now considered an indispensable func-
tionality and will soon become an important criterion for car safety ratings, according to
the 2025 European New Car Assessment Program [4]. Among the various safety functions
enabled by presence detection, child presence detection (CPD) is crucial for adjusting the
fitting of seat belts and airbags and for preventing unattended children from being left
inside vehicles. The selection of detection equipment for these functions should be carefully
evaluated, weighing the pros and cons of different options and scenarios.

There are two categories of devices that can detect passengers’ presence and their
sizes: contact and non-contact devices. Contact devices, such as under-seat pressure
sensors, are not always effective as they cannot easily distinguish between a human body
and a heavy object [5], thus requiring the deployment of many sensors throughout the
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vehicle [6]. On the other hand, non-contact solutions, such as passive IR sensors (PIR),
can be implemented using various technologies. However, the use of infrared technology
based on the pyroelectric principle is limited and cannot distinguish between static human
bodies [7]. Moreover, PIR sensors are unable to determine the direction of the signal
and thus cannot distinguish between different passengers. Camera-based monitoring
systems require appropriate illumination and are also subject to privacy infringements [8].
Sensing devices based on radar, particularly those using frequency modulated continuous
wave (FMCW), can obtain target information such as distance, angle, speed, and target
size, making them superior when compared to other non-contact sensing technologies.
FMCW technology provides access to a large amount of information at a low cost and
is well suited for different working conditions, making it highly suitable for in-vehicle
detection scenarios.

In-vehicle monitoring is a challenging task due to numerous uncertainties in the
application scenario. The limited space and different vibrations from the car, along with
the large variability of signal types and levels depending on the type of vehicle, make the
monitoring task particularly difficult. The specific function of in-vehicle presence detection
is to determine the presence of passengers in each position to support subsequent safety
measures, such as reminding passengers to fasten their seat belts or adjusting the airbag
ejection parameters. Additionally, the presence detection function aims at preventing
children from being left unattended in the car.

One important class of FMCW-based methods for in-vehicle occupant monitoring
is based on point clouds. However, there are two main challenges associated with this
method. First, it is a challenge to determine the number of passengers corresponding to a
large number of point clouds. The posture of passengers may lead to incorrect identification
of the number of passengers, e.g., a point cloud generated by a forward-leaning passenger
may be similar, in some cases, to the point cloud generated by two passengers. Second,
if passengers have large movements inside the vehicle, flickering point clouds can be
generated due to multipath effects, which can lead to false recognition by creating false
images at locations where no one is present. In this paper, we address these challenges
by using clustering and post-clustering processing such as segmentation, merging, and
filtering of the clustered point cloud according to the actual in-vehicle environment to
reduce the mutual interference of a person’s posture and to determine the target position
adaptively. Additionally, we adopt a state machine to weaken the interference from a
person’s motion and to adaptively determine the preexisting state of the target.

Existing point cloud-based vehicle detection systems are prone to false positives or
missing targets when multiple passengers make body movements. This paper proposes a
new point cloud-based vehicle occupancy detection system that overcomes the problem
of low-quality point clouds by utilizing clustering and post-processing techniques, as
well as a newly designed state machine method. The innovation lies in the first-time
application of clustering and post-processing methods in this scenario. The system was
validated in the presence of multiple passengers making body movements. The most
significant contribution of this paper is to filter, segment, and merge the point cloud cluster
according to the actual distribution of car seats, aiming at the impact of passenger sitting
movements and a multi-person environment on point cloud clustering, so as to make the
point cloud correctly correspond to the actual target and thus improve the recognition
accuracy in the real in-vehicle environment. The proposed clustering and post-clustering
processing greatly improve the reliability and stability of the system, whereas the novel
presence detection method based on a state machine and point cloud features reduces the
interference from passenger movements and adaptively determines the target’s preexisting
state. Experimental results demonstrate the good performance of the proposed algorithms
for occupant detection.

The remainder of this paper is structured as follows: Section 2 outlines recent research
progress, and Section 3 introduces the system framework on which this research is based.
Section 4 describes the processing flow and principles of the algorithms used in point cloud
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clustering and presence detection. The experiments and evaluation results are presented in
Section 5, and the paper concludes with a summary and conclusions in the final section.

2. Related Works

Currently, various sensing devices are implemented for human target detection; they
can be broadly divided into two categories: contact-based and non-contact-based sens-
ing. Contact-based systems typically use pressure sensors and wearable devices, while
non-contact devices can be further classified into non-radar and radar-based methods.
Table 1 presents the specific features of the aforementioned monitoring solutions and their
respective advantages and disadvantages when applied in vehicle scenarios.

Table 1. Comparison of different monitoring technologies.

Category Technology Sensor Type Feature and problems

Contact

Embedded Pressure sensor [5]
Uses an embedded pressure sensor for estimating the weight
on a seat, but it cannot distinguish between heavy objects and
human bodies.

Wearable Motion sensor [6] Uses machine learning models for human movements
recognition, which is inconvenient to operate.

Non-contact

Non-radar based

Infrared sensor [7]
Uses a pattern recognition algorithm for detecting the presence
of people in indoor environments, but it cannot detect
fixed people.

Camera [8]
Uses DNN for in-vehicle occupant presence detection, but its
result is heavily influenced by the light factor. Moreover,
privacy is a problem.

Thermal image sensor [9]
Uses thermal imaging methods to determine the presence of a
person and uses image density for estimating the number of
persons. Its cost is high.

Ultrasonic sensor [10] Used for obtaining vital sign information of static targets;
however, it cannot easily handle dynamic targets.

Radar-based

Ultra-wide band radar [11,12]
Uses signal processing techniques for measurement of vital
signs such as respiration and heart rate monitoring. It is
characterized by high computational complexity and high cost.

Pulsed coherent radar [13] Uses vital signs for identifying living organisms in the car. It
has experimented with baby simulators.

Continuous wave radar [14]
Uses micro-Doppler and neural networks for classification of
occupancy in vehicles. Its results may be influenced by a
person’s movement.

FMCW [15–22]

Uses two types of features, i.e., respiratory signs of a person
and output of angle-of-arrival (AoA) algorithms, for
classification of occupancy in vehicles. Neural network
methods are commonly applied to it. The problem is that it
requires enormous computation, thus making it difficult to
implement in radar chips.

Contact devices for human target detection mainly include pressure sensors and
wearable devices such as bracelets. For instance, in April 2017, Tao et al. proposed a
graphene paper pressure sensor that can be used for respiratory and pulse detection as
well as motion detection [5]. However, the main challenge for pressure sensors in a vehicle
testing environment is that they are unable to distinguish between heavy objects and
human bodies, leading to false judgments. To address this, Márquez et al. combined a
smart multisensory bracelet to develop a control platform capable of recognizing human
activity and detecting situations that may result in body injury [6].

Non-contact devices can be divided into two categories: radar-based and non-radar
based. Among non-radar-based systems, Perra et al. proposed a method that combines
thermal imaging from an infrared sensor array with a pattern recognition algorithm to
detect the presence of people in indoor environments [7]. The algorithm can count people
in a confined indoor environment, similar to that of a car, with high accuracy by detecting
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the movement of users with different walking speeds based on different user–sensor
distances and the typical temperature ranges of residential environments. However, the
algorithm’s performance is degraded by different distances, speeds, and thermal noise.
Additionally, devices based on infrared systems have inherent limitations due to the
pyroelectric effect and cannot recognize stationary targets. Another widely used non-
contact system is based on camera images for occupant detection, as presented by Papakis
et al. [8]. This system constructs a deep learning neural network to sense body movements
and actions and identify the number of people in a vehicle. Alternatively, a thermal imaging
camera can also enable the detection of the presence of people indoors, but this method
is expensive [9]. Additionally, an ultrasound-based system can detect static human vital
signs, but monitoring accuracy decreases in complex in-vehicle environments [10].

Various radar-based systems and methodologies have been developed and are avail-
able in the literature. One such system is based on ultra-wideband radar [11], which
determines the presence of passengers mainly by analyzing parameters such as signal
mainstream and size. This system detects the presence or absence of vital sign signals to
detect the presence of people. Signal processing techniques such as the fast Fourier trans-
form (FFT) and variational mode decomposition (VMD) are applied to extract information
about vital signs. However, the accuracy of the respiratory cycle estimation is affected by
body movements. Lim et al. proposed a method based on pulse radio ultra-wideband
radar that feeds the processed signals into a deep neural network [12]. However, the radar
used in this method is too large to be embedded in an automotive environment, and it
is less robust and challenging to implement in an embedded device or DSP due to the
use of integrated learning and multilayer perception techniques. Lazaro et al. proposed
a detection method based on peak amplitude difference standard deviation estimation
and threshold comparator [13]. The respiration rate is measured from the time interval
between two peaks associated with breathing movement. Hyun et al. proposed a Doppler
spectrum-based vehicle passenger detection scheme [14]. In their research, they utilized
two motion features and one vital sign feature, and then applied machine learning-based
identification using a bifurcated decision tree (BDT).

The proposed solution in this work is based on a Frequency Modulated Continuous
Wave (FMCW) radar, which is inexpensive, small in size, and easy to deploy. It is equipped
with a built-in chip for offline computing and is able to derive data on multiple dimensions
of the target, such as distance, angle, speed, and target size due to its signal characteristics.
Therefore, a multi-input multi-output FMCW radar is suitable for the in-vehicle scenario.
Additionally, Caddemi et al. developed a child recognition system using sawtooth wave
radar [15]. In the case of a child in a child seat, the FMCW radar beam is pointed at the
seat, and the target distance is calculated by FFT using the distance difference between the
presence and absence of the child. Although this scheme is easy to implement, its primary
disadvantage is that the radar can only detect one position, and the seat cannot move back
and forth during its use unless the threshold for determining the child’s presence is reset
after the seat movement. In 2021, Song et al. used an FFT-based system to identify the
child’s presence by analyzing the respiratory band (0.1–0.4 Hz) and the heartbeat band
(0.8–1.7 Hz) [16]. Cardillo et al. [17] presents a detection system for a non-contact engine
room that utilizes a combination of radar signal processing techniques to detect the presence
and location of people inside the vehicle. The experimental results confirm the feasibility
and effectiveness of the system, but the study does not test it in a real-world scenario where
multiple targets are moving, which is a problem that the paper aims to address. Diewald
et al. used Feko software to simulate the directional map of the transceiver antenna and
then modeled the full vehicle environment [18]. However, the work concluded that target
extraction by phase information is not possible if there are multiple moving targets. Abedi
et al. modeled the vehicle and the antenna using a full-wave electromagnetic simulation
to find the best installation position of the AWR1443 type of radar [19]. Song et al., on the
other hand, used power and Wiener entropy at different distances for the estimation of
different seat occupancy situations [20]. Another class of methods relies on the generation



Technologies 2023, 11, 39 5 of 23

of the target point cloud map using the multidimensional information of FMCW. Zhang
et al. proposed a more accurate point cloud generation method by combining the moving
target indication (MTI) algorithm and range-Doppler imaging (RDI) using both dynamic
and static characteristics [21]. Abedi et al. fed the heat map of AoA’s output into different
classifiers, including support vector machine (SVM), k-nearest neighbors (KNN), and
random forest (RF), to classify passenger occupancy [22]. As mentioned by Abedi [22]
in his paper, the group tracking algorithm based on point cloud data may not produce
accurate recognition results when passengers are moving. Therefore, he employed machine
learning techniques to improve the algorithm’s performance. The objective of this paper is
to address the challenging scenario of monitoring multiple passengers with movements
inside a vehicle. Additionally, the proposed algorithm in this paper is characterized by
low complexity and can be easily implemented on embedded systems. In general, there
are two main approaches for target detection using FMCW, including passenger presence
detection based on their breathing and heartbeat characteristics [14–20] and output of
angle of arrival (AoA) [21,22]. However, the former method has limitations due to the
impact of the moving vehicle and passengers’ movements, which can significantly affect
the measurement of vital signs. Similarly, the FMCW-based method of extracting micro
doppler features is unsatisfactory in situations where multiple passengers are moving
simultaneously, which is the most realistic scenario considered in this paper. Therefore,
this paper proposes a point cloud generation method that is less affected by movement
and interference. The focus of this paper is not the generation of point clouds, but the
post-processing process for low precision point clouds. The purpose of this paper is to
propose a detection scheme that can adapt to different sitting positions and movements of
passengers based on the low precision point cloud method, to achieve better robustness
and improve detection accuracy under the condition of low complexity. The proposed
method uses clustering and a state machine to achieve robust presence detection with low
computational complexity and ease of deployment on the radar’s microcontroller unit
(MCU). This method offers better robustness to passengers’ actions, and it is characterized
by low cost and low latency. Unlike other methods in Table 1, the proposed method has
been experimentally demonstrated to be applicable in scenarios that closely resemble a real
car environment with moving passengers.

3. Layered System Framework for Occupant Monitoring

To describe the proposed solution for occupant monitoring and to facilitate future
research on other in-vehicle applications, a layered system framework is proposed which
spans from the underlying hardware to the top-level application. The proposed framework,
illustrated in Figure 1, comprises four layers: the electromagnetic wave layer, the signal
processing layer, the data analytics layer, and the smart application layer.

In the electromagnetic wave layer, the FMCW radar is utilized to gather information on
the spatial distribution of people inside the vehicle. By processing the IF signal using Fourier
transform-based techniques and combining it with incoming wave direction estimation,
various information such as target distance, velocity, angle, and target size can be obtained.

As shown in Figure 2, an FMCW radar transmits and receives a chirp signal, which is
later post-processed. The delay between the TX chirp and the RX chirp is

τ =
2d
c

(1)

where d is the distance between the radar and the object, and c is the speed of light. The
mixing produces the IF signal, and the frequency is

fc =
τ

Tc
B + f0 (2)

where f0 is the starting frequency of the radar; Tc is the TX chirp’s frequency rise time; and
B is the bandwidth of radar. The IF signal frequency corresponding to the target object
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is obtained by converting the time domain IF signal to the frequency domain using the
fast Fourier transform (FFT). Thus, the specific distance corresponding to the object is
calculated. In addition, the resolution of the FFT-based range estimation is determined by
the swept bandwidth B of the FMCW system.

Rres =
c

2B
(3)
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In our following experiments, the FMCW signal is configured with 2 GHz swept
bandwidth, and the expected range resolution is 7.5 cm, as shown in Equation (3).

Theoretically, this layer can be applied to all kinds of radars. The radar used in this
research operates in the frequency band 60–62 GHz with three transmitting antennas and
four receiving antennas [23]. Since in-vehicle detection requires angle-of-arrival estimation
in two dimensions, the virtual array arrangement is designed as shown in Figure 3. Azimuth
and elevation angular resolution are 29 degrees.
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In the signal processing layer, the standard process for generating point clouds is
utilized. The IF signals sampled by the ADC are subjected to FFT, followed by clutter
removal to eliminate the impact of static reflective surfaces by misusing the mean value in
time. Then, the angle of arrival (AoA) is calculated at each frequency using the 2D-CAPON
algorithm. In the final step, the dynamic reflective surfaces are extracted using CFAR-CA,
and after coordinate conversion, the point cloud is generated [24,25].

The data analysis layer aims at analyzing and extracting multi-dimensional features
from the previously generated point cloud data to make decisions about the vehicle oc-
cupancy. However, since the point clouds contain noisy data and the positions of seats
and people are unpredictable, clustering methods can be used for spatial aggregation. In
this paper, various clustering methods are utilized to divide the point clouds into different
classes and assign them to specific targets. Although traditional approaches rely solely
on the current frame’s point cloud to make decisions, they may be inaccurate since the
point cloud is in an unstable flickering state due to the influence of moving targets on
radar echoes. Large body motions, such as those that occur when passengers change seats
or get on and off the car, make the radar detection results unstable because the echoes
from moving targets overwhelm those from slightly moving targets, resulting in a poor
estimation of the incoming wave direction or large errors in angle estimation. To overcome
this limitation, a state machine is employed to describe different states and determine the
presence of people in the car through the transfer process between states. This approach
enables a more accurate detection result by adapting to the case of moving bodies. Hence,
the proposed solution in the data analytics layer adopts a clustering strategy to process
the point clouds based on the passenger state machine, as described in the next section.
This leads to a self-adaptive judgment step that is beneficial as functional support for the
subsequent smart application layer, which improves people counting accuracy.

The top smart application layer mainly offers vehicle occupant presence detection,
unattended child prevention, vehicle anti-intrusion, and other possible in-vehicle future
applications. The bottom-up framework of the whole system can make full use of the phys-
ical radar signals and suitable processing algorithms for adaption to special characteristics
of different environments and passengers in various types of vehicles.

4. Processing Flow for In-Vehicle Monitoring

The processing flow of the proposed monitoring system consists of three main parts
and their main functional modules are shown in Figure 4. The three parts are point cloud
generation, clustering algorithm, and presence detection; they are described in the following
subsections, respectively.
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4.1. Point Cloud Generation and Challenges

The process of obtaining point clouds from the radar is similar to the one outlined in the
TI reference processing chain [24]. First, the differential frequency signals are processed by
the fast Fourier transform (FFT) to generate the point cloud. As the FMCW radar produces
a sawtooth wave, the frequency of the differential frequency signal is proportional to the
distance between the reflecting surface and the radar, allowing distance information to
be obtained from the result of the Fourier transform. However, static reflecting surfaces
such as car seats and chassis may cause interference, and thus, a clutter removal technique
is used to eliminate the impact of such surfaces. This technique involves subtracting the
result of the FFT for each antenna from its mean value in a period. The incoming wave
direction is then estimated using the two-dimensional Capon algorithm [25], which allows
for the angular properties of the reflecting surface to be obtained. The CFAR algorithm is
used to extract the reflecting surfaces from the Capon results, and the extracted surfaces at
different distances are combined to generate point cloud data for the entire space.

The point cloud generation process utilizes the two-dimensional Capon algorithm for
angle-of-arrival (AoA) estimation, which is necessary for detecting multiple passengers
with different angles at the same distance. However, this also limits the quality of the
point cloud. First, the AoA algorithm has an angular resolution of about 29 degrees due to
the limited number of antennas, making it difficult for the radar to distinguish between
two targets that are too close, as in the scenario where two passengers are sitting next to
each other, causing their point clouds to be biased towards one of them. Another problem
is the performance of the AoA algorithm when two targets are at the same distance and one
is moving more than the other, as the strong reflected signal may drown out the weaker one,
resulting in a point loss situation for stationary passengers. Consequently, FMCW-based
point clouds have low accuracy and are not stable enough. Therefore, one of the goals of
this paper is to mitigate these effects.

The proposed method aims to handle general scenarios that involve passengers in
various casual sitting positions and typical movements within a vehicle. The point cloud is
first divided based on predefined seating positions, and then presence is determined in each
area. However, when a passenger’s posture spans multiple areas, the point cloud appears in
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multiple areas, making it difficult to determine the number of people in the car. Clustering
is used to aggregate point clouds from the same target, thereby avoiding this situation to a
certain extent. Furthermore, due to the limitations of the AoA estimation algorithm, the
motion of targets can overpower weaker targets, resulting in errors in determining the
presence of people. To increase stability and mitigate the impact of body movement, this
paper utilizes a state machine approach.

4.2. Point Cloud Clustering Principle

The point cloud data obtained from an FMCW radar in TI’s reference design [24] is
used directly for occupant detection. However, our experiments have shown that reliable
detection results are challenging to achieve, especially when more than two people coexist
in a car. This is because the point cloud obtained may not reflect the actual target with high
confidence. The points generated by the multipath effect of the target, the points misjudged
by the target movement, and the points generated by other objects in the vehicle that do
not remain stationary can be confused with the points of the target itself. Therefore, it is
necessary to use the distribution characteristics of the point cloud for possible interference
removal. Additionally, the situation in which a passenger is sitting in the middle of the area
dedicated to a specific seat may be difficult to handle. In such cases, the spatial aggregation
property of the point cloud needs to be exploited using the clustering method. We propose
the application of clustering on the obtained point cloud to reduce the misjudged and
confusing points. Figure 5 shows an example including the original point cloud, the one
after clustering, and the one by post-processing of the clustered points obtained by the
proposed implementation. Where the positive direction of the x-axis faces to the left of the
forward direction of the car, the positive direction of the y-axis faces to the rear of the car,
and the positive direction of the z-axis faces to the bottom of the car. It can be seen from
the figure that clustered and post-processed point clouds can better distinguish targets,
paving the way for subsequent passenger presence determination. In this research, we use
three clustering algorithms, and their basic principles are briefly described below.
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4.2.1. Euclidean Clustering Principle

The Euclidean clustering algorithm employs Euclidean distances to measure the
degree of target aggregation and divides all points into non-divisible sets [26]. During this
process, the point cloud distribution is used to construct a KDTree in a 3D space, which
is equivalent to dividing the 3D space into distinct parts. The KDTree storage structure
reduces complexity compared to linear lookup with direct traversal.

4.2.2. DBSCAN Principle

DBSCAN is a density-based clustering algorithm that assumes that categories can be
determined by the proximity of sample distribution [27]. Samples of the same category are
expected to be closely related to each other, meaning that any sample of a given category
should not be too far away from the other samples in the same category. By classifying all
closely related samples into different categories, the final result of all clustering categories
is obtained. This type of density clustering algorithm is widely used in various fields, such
as image segmentation and object tracking.

4.2.3. K-Means Principle

The k-means algorithm is a distance-based clustering algorithm that uses distance as
an evaluation indicator of similarity. In other words, the closer two objects are, the more
similar they are considered to be. The k-means algorithm aims to find k clusters in the
given data set. It gets its name from the fact that it finds k different clusters, and the center
of each cluster is calculated using the mean of the values contained in the cluster. The
number of clusters k is specified by the user, and each cluster is described by its centroid,
which is the center of all points in the cluster [28].

4.2.4. Post-Clustering Processing of Clustered Results

The primary contribution of this paper is in this section, which proposes the use of
post-processing methods to handle misclustering and merging of point clouds, allowing
for better alignment of the point cloud with real passenger targets and ultimately resulting
in improved recognition accuracy. The clustering process may produce results that fall into
one of the following categories, as illustrated in Figure 6 based on our experiments: (1) The
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point cloud generated by the target’s multipath effect and seat vibration has a specific
spatial distribution; (2) A target’s points may be separated into multiple clusters, such as
the head and legs forming two clusters due to the seat blocking the body; (3) The points of
two targets may be partially merged when two people are sitting too close together, making
it look as a single cluster, especially when their shoulders are almost touching.
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To improve the clustering results, post-clustering processing is proposed to check
and handle the three situations described above. The post-processing including filtering,
merging, and splitting is applied according to the following three rules.

Rule 1 aims at filtering out point clouds that do not belong to the passengers but are
caused by the car’s internal environment. Two types of objects are targeted for filtering: the
plane at the top of the seat backrest and the car’s chassis, which produce thin point clouds
on the z-axis due to engine vibrations. Physically, the thickness of these reflective surfaces
is minimal, resulting in a variance of less than 14 cm on the z-axis for 97.5% of the point
clouds they generate, according to experimental data. The other type of filtering object
is small clusters of point clouds generated by the multipath effect in the car. Since their
aggregation characteristics are inferior and their number is small, they are not considered
to be passengers’ point clouds. Point clouds containing less than 20 points are filtered out
by the system.

For rule 2, the primary purpose is to handle situations where the passenger’s torso
is obscured, leading to the passenger being clustered into two separate clusters. Figure 7
shows a top view of three consecutive seats in the second row of the car. The blue color
represents the reflection point cloud of the passenger’s head, and the green color represents
the reflection point cloud of the passenger’s legs. When the two clusters are located in the
same area and the distance between the two cluster centers is less than the threshold Tdis,
they are merged into a single cluster. Tdis is calculated using equation 4, and in the actual
experiment, Tdis is set to 0.877 m.

Tdis =
1
2

√(
1
2

Lenseat

)2
+

(
1
2

Widseat

)2
(4)
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Figure 7. The top view of the Figure 6b case. The three rectangles divided by the dotted line are
the top view of the three seats. The blue point cloud is the part of the passenger’s torso, and the
green point cloud indicates the reflection of the passenger’s legs. The white arrows indicate the
distance between the centers of the point clouds. Different colors represent point clouds grouped into
different categories.

For rule 3, the goal is to handle situations where multiple individuals are clustered
into one class. Figure 8 depicts a top view of a three-seat configuration in the second row
of the car, where two passengers are combined into one class. If DistX > 1.5Widseat, we
regard them as two targets and divide them at the x coordinate where the point density is
the lowest. In the actual experiment, this threshold was set to 0.778 m.
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Figure 8. The top view of the Figure 6c case. The three rectangles divided by the dotted line are the
top view of the three seats. The blue point cloud indicates two passengers that are clustered into
one class.

The proposed method improves the clustering process based on the characteristics of
point cloud data generated by vehicle occupants. Similar to how the unsupervised ISO-
DATA algorithm improves k-means clustering, the clustering results are further segmented
and merged to enhance the match between the final clustering results and the actual targets
in the vehicle.

4.3. Presence Detection Based on a State Machine Diagram
4.3.1. Feature Extraction

The presence detection within a vehicle requires the determination of the presence
or absence of passengers in each seat. After the clustering process is completed, the point
cloud at each location may not be stable due to the radar echoes of the moving target. For
example, a large motion of a target will hide slowly moving targets, the strong echoes will
mask the weak echoes. Therefore, the radar detection results are certainly unstable when
passengers are making seat changes, or during the process of getting on and off the vehicle.
This is mainly due to the poor estimation of the incoming direction for the echoes from
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moving targets, since targets at the same distance but with different motion amplitudes will
result in the failure of the extraction of the reflected surface points or large errors in angle
estimation. Therefore, it is inaccurate to rely on the point cloud data of a single frame only
for the determination of the results. As shown in the Figure 9, a case example is considered
where a single person is getting on and off the car, and the number of points of the class
corresponding to this seat shows a distinctive feature. The different states correspond to
different point characteristics. Therefore, the state machine can be considered appropriate
to model the passenger’s state.
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Figure 9. Case of a single person getting on and then getting off the car. The figure presents the
number of points within the cluster corresponding to the occupied seat as a function of the test
person’s actions.

4.3.2. State Machine

Based on the previous discussion, the states of each location can be categorized as
present, absent, or moving. Figure 10 illustrates these three states and their potential
state transitions, which are similar to TI’s presence detection zone state machine [24].
However, our system’s state transfer conditions are based on point sets after clustering and
post-processing, which are substantially different from TI’s state transfer conditions. The
pseudo-code below illustrates the algorithm of the presence detection based on the state
machine. Avg_cnt[i] denotes the average number of points over time, cnt[i] denotes the
number of points in class i, and T1, T2, and T3 represent the thresholds. T1, T2, and T3 are
primarily determined by analyzing and fitting experimental data, as shown in Figure 11.
T1 is determined by the cnt value that corresponds to the intersection of the normal fit
curves for the ABSENT and PRESENCE states, and T3 is determined by the cnt value that
corresponds to the intersection of the curves for the PRESENCE and MOVING states. This
approach achieves a statistically significant balance in classifying the states. T2 is the right
boundary from the 99% confidence interval of the ABSENT state curve. In the experimental
setup validated in this paper, T1, T2, and T3 are set to 32, 52, and 292, respectively. The
specific algorithm is described in Algorithm 1.
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Figure 11. The histograms of the respective frequency distributions of cnt in the ABSENT, PRESENCE,
and MOVING states and their fitted curves are shown in the figure.

The solid line in Figure 10 represents the primary transfer path, whereas the dashed
line represents the secondary transfer path. In real-world scenarios people move in and out
of their seats, leading to the transition between present and absent states at each location,
thus meaning that the transition between present and absent states must go through the
movement state on the primary path. Additionally, the clustered result can be used as
an event to trigger the target motion. During the state transfer, the state of the previous
moment and the distribution of point clouds at the current moment jointly determine the
state of the current moment.
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Algorithm 1 Presence detection based on state machine

Initialize model parameters
if Avg_cnt[i]>T2 then
current_state = Present
else
current_state = Absent
while True
do
if current_state = Present then
if cnt[i]>T2 then next_state = Present

elseif cnt[i]>T3 then next_state = Moving
elseif Avg_cnt[i]<T1 then next_state = Absent

elseif current_state = Absent then
if cnt[i]<T1 then next_state = Absent

elseif cnt[i]>T3 then next_state = Moving
elseif Avg_cnt[i]>T2 then next_state = Present

elseif current_state = Moving then
if cnt[i]>T3 then next_state = Moving

elseif cnt[i]>T2 then next_state = Present
elseif cnt[i]<T1 then next_state = Absent

current_state = next_state
endwhile

5. Experiment and Evaluation

This section presents a series of experiments conducted to demonstrate the effective-
ness of the proposed processing flow and associated algorithms. The following subsections
describe the experimental environments and several test cases used to apply the proposed
method. The resulting evaluation results of the occupant presence detection are presented
and discussed.

5.1. Experimental Environment and Test Cases for Data Acquisition

The experiments were carried out using TI’s IWR6843AOP [23] for data acquisition on
a Honda CRV. The system has the following features: a range resolution of 7.5 cm, azimuth
and elevation angular resolution of 29 degrees, and a frame rate of 5 frames per second. The
subsequent data processing and occupant detection were performed on a PC with an Intel
i7-9750H processor operating at 2.60 GHz, 24 GB of RAM, and Windows 11 Professional.
The algorithms were implemented using both Python and MATLAB. MATLAB was used
for the initial point cloud data analysis, and the subsequent implementation of the whole
system was based on python. All the parts are handled by the source code, except for
the DBSCAN part in python, which uses functions from the sklearn library. The radar
outputted the FFT results via serial communication, which were then stored and reused on
the PC. The occupant information considered in the experiments is presented in Table 2.

Table 2. Personal information of experiment participants.

Participant Height (cm) Weight (kg) Age (Years Old) Gender

Adult A 178 60 24 Male

Adult B 175 55 23 Male

Adult C 165 50 23 Female

Child A 139 31 9 Female

Child B 118 26 6 Male

The experimental setup, as illustrated in Figure 12, was used to verify the algorithms
proposed in this paper through three types of experiments. These experiments were
performed based on two different test cases: static adults and dynamic adults. In the static
case, presence detection was performed for zero to five passengers, considering all possible
combinations of four different sitting positions and various passenger distributions. On the
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other hand, in the dynamic case, the presence of passengers was detected as they boarded
and disembarked the vehicle and changed seats, with varying numbers of passengers.
Each test case lasted for 1 min and was repeated 3 times, with data output occurring every
250 ms. The results were presented as presence detection outcomes for each seat, and the
accuracy was calculated as the percentage of correct determinations out of 240 evaluations.
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Figure 12. Radar placement and experimental environment: (a) front view of the radar mounting
position; (b) left view of passenger and radar; (c) the interface where the results are presented. Where
the number of people is marked in the upper part and the location of the passengers are marked in
the vehicle (d) live in-vehicle view of the test case with one adult and one child in the third row.

5.2. Evaluation Results

The following sections present the results of the three types of test cases, with ac-
curacy calculated by dividing the number of correct determinations by the total number
of evaluations.

5.2.1. Presence Detection Results of Static Test Cases

For the static case, we detect the presence of one to five passengers in different
combinations of four sitting positions and position distributions. We use the five testers
listed in Table 2, with each test lasting 1 min and repeated three times. Accuracy is
calculated by dividing the number of frames with the correct number of decisions by
the total number of decisions. Table 3 shows the detection accuracy results for the static
test cases.
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Table 3. Presentation detection results of different clustering methods in static use cases.

Use Cases
Detection Accuracy (%)

Euclidean DBSCAN K-Means

Test ID Number of
People—Sitting Posture 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 1-normal 100.0 100.0 100.0
2 1-leaning forward 100.0 100.0 100.0
3 1-leaning left 100.0 100.0 97.6 2.4
4 1-leaning right 100.0 100.0 100.0
5 2-normal 100.0 8.0 92.0 13.1 85.1 1.8
6 2-leaning forward 97.6 2.4 4.4 95.6 1.3 85.7 13.0
7 2-leaning left 0.6 97.6 1.8 7.8 91.6 0.6 0.6 85.6 13.8
8 2-leaning right 97.1 2.9 8.6 91.4 14.4 85.6
9 3-normal 3.6 96.4 11.3 88.7 19.6 80.4
10 3-leaning forward 2.6 95.2 2.2 14.3 85.7 21.4 77.4 1.2
11 3-leaning left 3.6 92.9 3.6 15.5 84.5 17.3 79.2 3.6
12 3-leaning right 4.6 92.3 3.1 13.0 85.2 1.8 16.6 79.3 4.1
13 4-normal 5.4 92.2 2.4 16.3 83.7 23.5 74.1 2.4
14 4-leaning forward 6.8 90.2 3.0 3.0 12.7 84.3 0.7 27.0 69.3 3.0
15 4-leaning left 1.2 5.6 90.7 2.5 4.6 10.8 84.6 0.8 24.5 72.2 2.5
16 4-leaning right 5.9 89.7 4.4 7.8 11.9 80.4 1.9 71.0 27.1
17 5-normal 10.7 89.3 5.0 21.3 73.7 15.4 16.7 67.9
18 5-leaning forward 3.2 9.6 87.2 9.2 16.4 74.4 5.3 13.4 14.6 66.7
19 5-leaning left 5.1 9.6 85.3 8.6 19.0 72.4 0.7 13.7 19.6 66.0
20 5-leaning right 7.5 8.2 84.2 5.8 16.8 77.4 14.7 18.2 67.1
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It is worth noting that none of the test cases were misjudged as having no passengers,
which is of great importance in preventing situations where children are forgotten in the car.
The clustering methods proved adaptable to different seating arrangements and produced
high accuracy rates. The Euclidean clustering and post-clustering processing method
proposed in this paper achieved an accuracy of over 90% in various situations with up to
four people. However, when there were five passengers, the main obstacle to accuracy was
the point cloud quality in addition to passenger posture. In the case of multiple targets,
the point cloud often missed the target due to antenna limitations and angle-of-incidence
algorithm resolution, resulting in greater accuracy errors with fewer passengers than with
more. Comparing the results of different clustering methods, the DBSCAN method tended
to group connected point clouds into a single category, leading to target loss for passengers
who were close together due to incorrect categorization. Therefore, the determination of
lost passengers was often incorrect in cases with multiple passengers. Meanwhile, the
k-means method was not stable enough in choosing k values, leading to classification
errors and poor clustering robustness. Figure 13 depicts a top view of a point cloud
with three individuals leaning to the right in three back seats, with two people being in
close proximity. The left figure shows the original point could characterized by unclear
clustering, thus not allowing to accurately identify the number of people. However, the
proposed post-processing steps, once applied, are able to ensure the correct classification
of the point cloud into the appropriate class, thus allowing the accurate identification of
the three individuals in the car. Figure 14 demonstrates the effectiveness of the proposed
processing methodology even when the car is fully loaded. The five people in the car can
be clearly identified only after the post-processing step, with the developed system that
can accurately categorize point clouds moving from the raw results in Figure 14a to the
clustered point clouds in Figure 14b. The results of different clustering methods in Table 3
are summarized in Figure 15 for a better and more intuitive overview. Based on these
results, the Euclidean clustering method proposed in this paper is the most suitable point
cloud clustering method for in-vehicle environments.
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five people leaning forward in the car. The original point cloud image is on the left (a), while the right
(b) shows the result of clustering and post-processing. Different colors are used to represent different
categories of point clouds, with the positive Y-axis pointing towards the front.
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Figure 15. Accuracy of different clustering algorithms applied in presence detection function in
different use cases.

In this paper, the effectiveness of the clustering post-processing step is verified to
improve the detection accuracy of multiple passengers. The results presented in Table 4
compare the accuracy obtained with and without the post-processing step. It can be
observed that the average accuracy for four passengers increased from 90.7% to 92.7%, and
for five passengers, it increased from 86.5% to 90.4%. Therefore, the effectiveness of the
post-processing step can be illustrated. The significant improvement is mainly attributed to
the problems described in Section 4, which are likely to occur in multi-passenger scenarios
where it is impossible to require passengers to sit upright at all times. The random sitting
posture can result in mis-segmentation and adhesion of point cloud clusters, and the
clustering post-processing step is effective in addressing this issue.
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Table 4. Presentation detection results with or without clustering post-processing in static use cases.

Use Cases
Detection Accuracy (%)

No Cluster Post-Processing Cluster Post-Processing

Test ID Number of People—Sitting Posture 1 2 3 4 5 1 2 3 4 5

1 1-normal 100.0 100.0
2 1-leaning forward 100.0 100.0
3 1-leaning left 100.0 100.0
4 1-leaning right 100.0 100.0
5 2-normal 100.0 100.0
6 2-leaning forward 97.6 2.4 98.5 1.5
7 2-leaning left 0.6 97.6 1.8 0.3 98.3 1.4
8 2-leaning right 97.1 2.9 0.2 97.8 2.0
9 3-normal 3.6 96.4 1.8 97.6 0.6
10 3-leaning forward 2.6 95.2 2.2 1.4 96.0 2.6
11 3-leaning left 3.6 92.9 3.6 2.7 94.2 3.1
12 3-leaning right 4.6 92.3 3.1 3.3 93.5 3.2
13 4-normal 5.4 92.2 2.4 3.2 92.6 4.2
14 4-leaning forward 6.8 90.2 3.0 5.5 92.7 1.8
15 4-leaning left 1.2 5.6 90.7 2.5 4.5 93.1 2.4
16 4-leaning right 5.9 89.7 4.4 2.6 92.4 5.0
17 5-normal 10.7 89.3 4.6 4.8 90.6
18 5-leaning forward 3.2 9.6 87.2 3.4 5.9 90.7
19 5-leaning left 5.1 9.6 85.3 3.7 5.2 91.1
20 5-leaning right 7.5 8.2 84.2 3.8 5.8 90.4
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5.2.2. Presence Detection Results of Dynamic Test Cases

Among these dynamic use cases, there are two major categories of tests that are
commonly encountered in real life. One category involves the process of getting in and out
of the car, in which the tester enters the car at the 10th second and exits at the 50th second.
The other category involves large movements in the seat, where the test taker performs
upper body swaying and random arm waving for a duration of one minute. Five testers,
as listed in Table 2, are used. Each test case lasts for 1 min and is repeated three times.
The accuracy is calculated by dividing the number of frames with the correct number of
decisions by the total number of decisions, and the final detection results are presented
in Table 5.

Table 5. Detection results in the dynamic use cases.

Use Cases Detection Accuracy(%)

Test ID Number of People Movement 1 2 3 4 5

1 1-Boarding and alighting 100.0
2 1-Rocking in the seat 100.0
3 2-Boarding and alighting 3.6 96.4
4 2-Rocking in the seat 1.0 97.8 1.2
5 3-Boarding and alighting 3.7 93.4 2.9
6 3-Rocking in the seat 5.4 93.5 1.2
7 4-Boarding and alighting 4.7 91.6 3.7
8 4-Rocking in the seat 5.1 91.7 3.2
9 5-Boarding and alighting 2.9 8.8 88.3
10 5-Rocking in the seat 3.6 7.3 89.1

The results in Table 5 show that there were no incorrect detections of 0 passengers,
i.e., the system was able to accurately detect when there were no passengers. The recog-
nition accuracy remained high even during large movements, demonstrating that the
state machine-based determination algorithm was able to adapt well to large passenger
movements. However, as the number of passengers increased, the detection accuracy
decreased, and the accuracy rate for the cases with large movements in the seat was slightly
higher than that for getting in and out of the vehicle. This was mainly due to the larger
magnitude of movement when getting in and out of the car, which had a slightly greater
impact on other positions. The accuracy of the multi-person test cases was higher when
compared to the static use case, likely due to the reduced number of weak targets, which
is more favorable for radar detection when passengers are not in a completely stationary
state. Additionally, the system had an average response time of 1.83 s during passenger
changes when getting on and off the vehicle, which met the sensitivity requirement of the
detection system.

6. Conclusions

This paper focuses on the detection of in-vehicle passengers using FMCW-based radar.
The proposed presence detection system addresses the instability caused by passengers’
sitting posture and large movements in the vehicle by using a combination of point cloud
clustering, post-clustering processing, and a state machine determination algorithm. Ex-
perimental results show that the proposed algorithm has a detection accuracy greater
than 90.4% in the case of different sitting postures of passengers and a detection accuracy
greater than 88.3% in the case of different movements of passengers. At the same time,
higher accuracy is obtained in the test cases of multiple people. These results indicate that
the proposed methodology is robust and reliable for real-world scenarios of passengers
inside a vehicle. However, there is still room for improvement in the detection accuracy
for relatively large numbers of passengers. Future research may focus on addressing these
issues. This technology can also be extended to other application fields and environments.
The proposed system can be combined with robotics and automation systems to assist
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people with various disorders, i.e., for detecting the motion of head and limbs, to enhance
the mobility of blind people, among other challenging applications where the body motion
needs to be detected.

The main challenge for presence detection is the need to improve detection accuracy
in scenarios where there are relatively large numbers of passengers in the vehicle (e.g.,
4–5 people) or multiple passengers with movements inside the vehicle. Furthermore, the
method does not ensure the same level of recognition accuracy when the passenger’s back
is facing the chip. The primary limitation of this system is that its recognition accuracy is
not high enough to be able to detect a crowded condition, i.e., when there are many people
in the car, such as with five passengers simultaneously. Additionally, the system has not
been tested with more than five people. Future research in this direction is needed.
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