Cross-Tier Interference Mitigation for RIS-Assisted Heterogeneous Networks
Abstract
:1. Introduction
2. Related Works
3. Contribution
- We examine the maximisation of spectrum efficiency (SE) in an RIS-assisted HetNet using a system model in which the macrocell base station (MBS) communicates with its users through a direct link and a reflected link.
- We investigate how RIS helps to resolve cross-tier interference issues in HetNet.
- Because the formulated optimisation problem is not convex, we solve it by maximising the sum rate of the combined desired channel by extending a semidefinite relaxation technique.
- Finally, to confirm the viability of the suggested technique, numerical analysis is carried out through computer simulations under real-world channel conditions. To specifically measure and support the SE of the specified framework. The number of RIS elements, the MUE’s locations, and the number of SBS were all analysed. Furthermore, we compare the proposed algorithm with HetNets without RIS and HetNets with RIS but with random phase shifts.
4. System Model
5. Problem Formulation
RIS Reflecting Coefficient-Based Optimisation (RCO)
6. Simulation Results
Simulation Setup
- No RIS (Without RIS): In this plan, we mimic the network without RIS deployment. As a result, only the direct propagation path is included in the signal that the MUE has received.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasser, A.; Muta, O.; Elsabrouty, M.; Gacanin, H. Interference Mitigation and Power Allocation Scheme for Downlink MIMO–NOMA HetNet. IEEE Trans. Veh. Technol. 2019, 68, 6805–6816. [Google Scholar] [CrossRef]
- Nasser, A.; Muta, O.; Gacanin, H.; Elsabrouty, M. Non-Cooperative Game Based Power Allocation for Energy and Spectrum Efficient Downlink NOMA HetNets. IEEE Access 2021, 9, 136334–136345. [Google Scholar] [CrossRef]
- Iqbal, M.U.; Ansari, E.A.; Akhtar, S. Interference Mitigation in HetNets to Improve the QoS Using Q-Learning. IEEE Access 2021, 9, 32405–32424. [Google Scholar] [CrossRef]
- Kassim, A.Y.; Tekanyi, A.M.S.; Abdulkareem, H.A.; Muhammad, Z.Z.; Almustapha, M.D.; Abdu-Aguye, U.F. An Improved Cross-Tier Interference Mitigation Scheme In A Femto-Macro Heterogeneous Network. J. Electr. Eng. Technol. 2020, 9, 62–70. [Google Scholar]
- Mondal, A.; Al Junaedi, A.M.; Singh, K.; Biswas, S. Spectrum and Energy-Efficiency Maximization in RIS-Aided IoT Networks. IEEE Access 2022, 10, 103538–103551. [Google Scholar] [CrossRef]
- Mishra, K.V.; Chattopadhyay, A.; Acharjee, S.S.; Petropulu, A.P. OptM3Sec: Optimizing multicast IRS-aided multiantenna DFRC secrecy channel with multiple eavesdroppers. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 9037–9041. [Google Scholar]
- Jiao, S.; Xie, X.; Ding, Z. Deep Reinforcement Learning-Based Optimization for RIS-Based UAV-NOMA Downlink Networks (Invited Paper). Front. Signal Process. 2022, 2, 915567. [Google Scholar] [CrossRef]
- Jian, M.; Alexandropoulos, G.C.; Basar, E.; Huang, C.; Liu, R.; Liu, Y.; Yuen, C. Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques. Intell. Converg. Netw. 2022, 3, 1–32. [Google Scholar] [CrossRef]
- Mei, W.; Zheng, B.; You, C.; Zhang, R. Intelligent reflecting surface aided wireless networks: From single-reflection to multi-reflection design and optimization. arXiv 2021, arXiv:2109.13641. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.-S.; Yuen, C.; de Rosny, J.; Tretyakov, S. Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Fara, R.; Ratajczak, P.; Phan-Huy, D.T.; Ourir, A.; Di Renzo, M.; De Rosny, J. A prototype of reconfigurable intelligent surface with continuous control of the reflection phase. IEEE Wirel. Commun. 2022, 29, 70–77. [Google Scholar]
- Pérez-Adán, D.; Fresnedo, Ó.; González-Coma, J.P.; Castedo, L. Intelligent Reflective Surfaces for Wireless Networks: An Overview of Applications, Approached Issues, and Open Problems. Electronics 2021, 10, 2345. [Google Scholar] [CrossRef]
- Pei, X.; Yin, H.; Tan, L.; Cao, L.; Li, Z.; Wang, K.; Björnson, E. RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials. IEEE Trans. Commun. 2021, 69, 8627–8640. [Google Scholar]
- Di Renzo, M.; Ntontin, K.; Song, J.; Danufane, F.H.; Qian, X.; Lazarakis, F.; De Rosny, J.; Phan-Huy, D.-T.; Simeone, O.; Zhang, R.; et al. Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison. IEEE Open J. Commun. Soc. 2020, 1, 798–807. [Google Scholar] [CrossRef]
- Kamaruddin, N.A.; Mahmud, A.; Bin Alias, M.Y.; Aziz, A.A.; Yaakob, S. Performance Evaluation of Reconfigurable Intelligent Surface against Distributed Antenna System at the Cell Edge. Electronics 2022, 11, 2376. [Google Scholar] [CrossRef]
- Bjornson, E.; Ozdogan, O.; Larsson, E.G. Intelligent Reflecting Surface Versus Decode-and-Forward: How Large Surfaces are Needed to Beat Relaying? IEEE Wirel. Commun. Lett. 2019, 9, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Wu, Q.; Zhang, R. Joint Power Control and Passive Beamforming in IRS-Assisted Spectrum Sharing. IEEE Commun. Lett. 2020, 24, 1553–1557. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, B.; Togou, M.A.; Ruffini, M.; Muntean, G.M. Mitigating the impact of cross-tier interference on quality in heterogeneous cellular networks. In Proceedings of the 2020 IEEE 45th Conference on Local Computer Networks (LCN), Sydney, Australia, 16–19 November 2020; pp. 497–502. [Google Scholar]
- Kamiwatari, S.; Muta, O. Cross-tier interference mitigation considering pilot overhead for TDD MIMO heterogeneous networks. IEICE Commun. Express 2020, 9, 230–237. [Google Scholar] [CrossRef] [Green Version]
- X, Y.; Yang, Z.; Huang, C.; Yuen, C.; Gui, G. Resource Allocation for Two-Tier RIS-Assisted Heterogeneous NOMA Networks. ZTE Commun. 2022, 20, 36–47. [Google Scholar]
- Bian, Y.; Dong, D.; Jiang, J.; Song, K. Performance Analysis of Reconfigurable Intelligent Surface-Assisted Wireless Communication Systems Under Co-Channel Interference. IEEE Open J. Commun. Soc. 2023, 4, 596–605. [Google Scholar] [CrossRef]
- Jiang, W.; Schotten, H.D. Orthogonal and Non-Orthogonal Multiple Access for Intelligent Reflection Surface in 6G Systems. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Thessaloniki, Greece, 26–29 March 2023; pp. 1–6. [Google Scholar]
- Okogbaa, F.C.; Ahmed, Q.Z.; Khan, F.A.; Bin Abbas, W.; Che, F.; Zaidi, S.A.R.; Alade, T. Design and Application of Intelligent Reflecting Surface (IRS) for Beyond 5G Wireless Networks: A Review. Sensors 2022, 22, 2436. [Google Scholar] [CrossRef] [PubMed]
- Hameed, I.; Camana, M.R.; Tuan, P.V.; Koo, I. Intelligent Reflecting Surfaces for Sum-Rate Maximization in Cognitive Radio Enabled Wireless Powered Communication Network. IEEE Access 2023, 11, 16021–16031. [Google Scholar] [CrossRef]
- So, A.M.-C.; Zhang, J.; Ye, Y. On approximating complex quadratic optimization problems via semidefinite programming relaxations. Math. Program. 2006, 110, 93–110. [Google Scholar] [CrossRef] [Green Version]
- CVX: Matlab Software for Disciplined Convex Programming|CVX Research, Inc. Available online: http://cvxr.com/cvx/ (accessed on 20 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soumana Hamadou, A.N.; wa Maina, C.; Soidridine, M.M. Cross-Tier Interference Mitigation for RIS-Assisted Heterogeneous Networks. Technologies 2023, 11, 73. https://doi.org/10.3390/technologies11030073
Soumana Hamadou AN, wa Maina C, Soidridine MM. Cross-Tier Interference Mitigation for RIS-Assisted Heterogeneous Networks. Technologies. 2023; 11(3):73. https://doi.org/10.3390/technologies11030073
Chicago/Turabian StyleSoumana Hamadou, Abdel Nasser, Ciira wa Maina, and Moussa Moindze Soidridine. 2023. "Cross-Tier Interference Mitigation for RIS-Assisted Heterogeneous Networks" Technologies 11, no. 3: 73. https://doi.org/10.3390/technologies11030073
APA StyleSoumana Hamadou, A. N., wa Maina, C., & Soidridine, M. M. (2023). Cross-Tier Interference Mitigation for RIS-Assisted Heterogeneous Networks. Technologies, 11(3), 73. https://doi.org/10.3390/technologies11030073