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Abstract: Sustainable energy exhibited immense growth in the last few years. As compared to other
sustainable sources, solar power is proved to be the most feasible source due to some unanticipated
characteristics, such as being clean, noiseless, ecofriendly, etc. The output from the solar power
is entirely unpredictable since solar power generation is dependent on the intensity of solar irra-
diation and solar panel temperature. Further, these parameters are weather dependent and thus
intermittent in nature. To conquer intermittency, power converters play an important role in solar
power generation. Generally, photovoltaic systems will eventually suffer from a decrease in energy
conversion efficiency along with improper stability and intermittent properties. As a result, the
maximum power point tracking (MPPT) algorithm must be incorporated to cultivate maximum
power from solar power. To make solar power generation reliable, a proper control technique must
be added to the DC–DC power converter topologies. Furthermore, this study reviewed the progress
of the maximum power point tracking algorithm and included an in-depth discussion on modern
and both unidirectional and bidirectional DC–DC power converter topologies for harvesting electric
power. Lastly, for the reliability and continuity of the power demand and to allow for distributed
generation, this article also established the possibility of integrating solar PV systems into nanogrids
and picogrids in a sustainable environment. The outcome of this comprehensive survey would be of
strong interest to the researchers, technologists, and the industry in the relevant field to carry out
future research.

Keywords: solar power generation; intermittency; modern DC–DC power converter topologies;
unidirectional and bidirectional converter topologies; control for maximum power outcome;
hybridized maximum power point tracking; nanogrid and picogrid architecture

1. Introduction

Renewable sources of energy are achieving worldwide importance in the present
era, especially with the incremental awareness about the rapid decline of conventional
sources of energy, like coal and petroleum products [1]. On the basis of the statistics from
the monthly energy review article given by U.S Energy Information Administration in
June 2021, energy consumption consists of 58.8% natural gas, 39.1% electricity, and 9.6% and
7% petroleum and renewable energy, respectively. In India, there is a higher dependency
on petroleum and coal. As a result, conventional resources are depleting very rapidly.
Now, energy harvesting from renewable sources has become a key research interest among
researchers. When more than one renewable source are acting together, the resulting system
is called a hybrid renewable energy system (HRES).

Besides all other advantages, the major drawback of all forms renewable energies
is their intermittent nature. The output of the sources is always variable as the output
is weather dependent. So, the aim must be to make an HRES that is able to surpass the
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power quality issues and to provide superior quality of power to load. The power quality
and system immutability can be accomplished by applying suitable control techniques
embedded into the power converter control circuit. To deal with the intermittency and to
achieve better dynamic performance of an HRES, several stable sources and storage devices
should be embedded within the system, such as batteries, fuel cells, super capacitors, and
diesel generators, either in standalone mode or in grid-connected mode [2]. At the time of
breeding of electric power, DC–DC power converters have a more pronounced contribution
due to the far-reaching usage in various applications.

Photovoltaic generation naturally suffers from lower energy conversion efficiency
along within congruous immutableness and spasmodic properties. As a result, there
should be an approach to ensure access to the optimum power that can be cultivated
from solar PV generation [3] as the power generated by a PV panel only depends on
meteorological factors, like solar irradiation, and the cell’s reachable temperature. The
parameters change depending on the weather. Hence, it is mandatory to employ maximum
power point trackers (MPPT) [4]. The main factor that influences solar PV systems is
the unwanted availability of solar irradiances. To overcome this problem and to provide
unvarying supply to load, different DC–DC power converters are embedded within the
solar generation system. Since the 1920s, PV systems were equipped with the DC–DC
power converters.

The prime focus of the power electronic converters is to displace the application
of prevalent circuit components, like rheostat and voltage divider circuits. The main
disadvantage of this approach is that the output voltage acquired is less than the input,
resulting in inferior efficiency [5]. The European Union declared an intention to achieve
20% renewable energy consumption by 2021 in order to foster the production of renewable
energy. Compared to nonconventional resources, the production of solar energy has been
shown to have a lower impact on the environment. To generate the most power possible
from solar energy, an MPPT (maximum power point tracking) algorithm must be used.
The selection of an appropriate power converter topology is a crucial component of solar
energy generation since it affects the way photovoltaic (PV) systems behave [6].

PV power is directly proportional to solar irradiance and inversely proportional to
panel temperature [7]. A PV array can be represented as a circuit-based model of a solar
cell comprising a current source connected in parallel with a diode. The current source
illuminates a photon-generated current. The resistance Rs defines the losses due to contacts
and connections. The leakage current in the diode is depicted by the shunt resistance
Rsh [8]. A prediction of the electrical behavior of solar power generation is very much
needed as it is the lowest value of the energy that will be delivered. This is the most crucial
step of design of a PV system [9]. Smart grids are considered as prime solutions to solve
current power security issues. Among these suggestions, microgrids are intended to mingle
with distributed generations (DGs), such as photovoltaic (PV) systems, in the network, and
the control of DG output power is a keen interest among researchers.

The nonlinearity of P–V characteristics of PV arrays were affected by solar irradiance,
panel temperature, and load. Thus, various maximum power point tracking (MPPT)
methods have been evolved in order to enhance power output [10]. The furtherance of
renewable energy systems (RESs) is more pronounced and beneficent due to the impacts
of fossil fuels. The application of wind turbines and photovoltaic generation is found
to be numerous [11] since this kind of RES has been researched for a long time. Due to
the absence of electricity, 1200 million people are living without the advantages of power
in many developing countries [12,13]. There are numerous spots where power grids are
expensive, such as in standalone systems without any power lines [14].

In recent days, different kinds of control strategies have been developed for the
maximum power point tracking (MPPT) of photovoltaic power generation. Various kinds
of MPPTs are evaluated in terms of energy efficiency, energy conversion capability, and
dynamic pursuance and dependability with respect to different weather conditions [15].
The performances of prevalent MPPTs are restricted to uniform weather conditions [16]. It
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has become challenging to extract optimum energy from photovoltaic systems by using
MPPT during partial shade conditions [17]. The P–V curve of PV systems shows multiple
peaks under different constraints of working and variations in atmospheric phenomenon,
which destroys the effectiveness of conventional MPPTs [18]. Photovoltaic systems are
drawing more attention to smart grid systems. In order to obtain optimized energy output,
the maximum power point tracking (MPPT) algorithm should be incorporated into PV
systems. But due to the constraints of clouds and partial shade, MPPTs are becoming
less efficient. To overcome these problems, MPPTs must be able to learn and respond
to the changing state of the online system [19]. Considering the stated discussions, this
literature is focused on the detailed discussion of DC–DC power converter topologies and
control strategies for maximum power outcome from solar power generation. The major
contributions of the proposed work are as follows:

1 The classification of the different control topologies of the modern DC–DC convert-
ers and an amalgamation of various MPPT approaches integrated with sustainable
nanogrid and picogrid architectures for the enhancement of technoeconomic feasibility
in the power sector of a country.

2 The promotion of the environmental impact of solar power generation to be inter-
faced with grid either in standalone mode or grid-connected mode for empirical
development. Statistical data from the U.S. Energy Information Administration re-
garding the percentage of conventional or renewable energy used in the environment
is considered.

3 Addressing the intermittency issue of solar power generation. A control strategy will
be established by realizing maximum power point tracking, voltage and current of DC
links, and q-axis by applying adaptive strategies and simulating different controllers.

4 The discussion of the proposed controller with respect to smaller oscillations, less
power loss, fast convergence, and the capability of following true maximum power
point (MPP) under rapidly varying ambient conditions. The benefits are that it will be
able to enhance the operating area of controllers; thus, it will be able to implement
a more accurate signal to get optimum output from the converter as per the load
requirement within the proved step response to work under the desired width.

This article is framed in the following manner: Section 2 presents the interfacing
of solar power generation, Section 3 reports the various control strategies for maximum
power extraction from solar energy, Section 4 reviews the details of solar PV systems,
Section 5 reviews the details of various modern unidirectional DC–DC power converter
topologies applicable for solar power generation, Section 6 reviews modern bidirectional
DC–DC converter strategies in a sustainable PV architectures, and Section 7 discusses
future research directions and the conclusion accordingly.

2. Interfacing of Solar Power Generation

Along with the nonrenewable sources of energy, solar energy also plays an important
function in unreliable and stable power generation and in providing uninterrupted and
superior quality of power to the end users. Primarily, photovoltaic cells convert solar
energy into direct current electricity. Practically, solar radiation hits the outer atmosphere at
around 1300 W/m2, but in truest sense, some of the radiation is diverted due to reflection,
refraction, and absorption. Finally, the amount of irradiation that reaches the Earth’s surface
is much lower than 1000 W/m2 [20]. Solar power can be interfaced with the DC bus and
then to the DC load, by employing a proper DC–DC power converter, and lastly to the AC
load or utility grid via the proper arrangement of DC–AC converters, i.e., inverters [21].
Because of the intermittent nature of PV energy generation, it may not serve as a reliable,
stable, controllable energy source and may not be able to provide ancillary services like
a conventional energy source. To mitigate this problem, one solution is to upgrade solar
power generation by incorporating an energy storage device into it. A storage device can
be added to store or release energy as a buffer when necessary [2]. A block diagram is
depicted in Figure 1, showing a PV source interfaced with a DC bus and an AC utility
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grid along with an energy storage device. In this configuration, the PV panel is inter-
faced with an MPPT controller in order to harvest maximum energy output during solar
power generation. The MPPT controllers will providethedutycyclefortheemployedDC–
DCboostconvertertoregulateitsinconsistentoutput [22].
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Figure 1. Solar power generators with embedded energy storage systems.

The energy storage device is interfaced with the DC bus via DC coupling through
the energy storage chopper, which is a bidirectional DC–DC power converter, to affirm a
stable supply demand counter balance according to its rated capacity. The common DC
bus receives the supervised power from the PV array and from the energy storage device
to supply DC load to have a constant magnitude of DC voltage at the input of DC–AC
inverter. A single DC–AC inverter acts as an interfacing medium between the common
DC bus and AC bus. The AC bus delivers power in inverted form to the AC load and
must also have the ability to merge with the utility grid when the power induced from
the renewable energy system is not sufficient to meet the load demand. From the above
configuration, it is evident that power converters employed in the system needs simple
control algorithms because source-side converters are dependable only for cultivating
optimum power from the photovoltaic sources. Load- or utility-grid-side converters are
the converters that are controlling the active, reactive voltage and load frequency and
harmonics to confirm optimal quality of power to be supplied to the load.

The output of RESs can be resiliently directed by DC–DC power converter topologies
to achieve the desired input of the DC–AC inverter [23]. Most of the RESs and the storage
devices are DC-based, so the interfacing of these with the DC bus line is very simple [24].
The extant scenario of power demand is in need of renewable energy resources. Among
all other sustaining renewable energies, working with photovoltaic (PV) energy is less
complicated due to some prominent advantages, such as PV energy being suitable for
different climatic conditions around the whole world and causing less pollution to the
environment. Besides the benefits, PV energy has some disadvantages too. The power
generated from PV energy generation is purely nonlinear and very much difficult to
evaluate. Furthermore, the voltage and current depend on the solar irradiation and panel
temperature, which are also nonlinear in nature. Now, to generate maximum power from
PV energy generation, it has to be able to operate at optimal operating conditions, which is
called Maximum Power Point (MPP).
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2.1. DC Nanogrid and Picogrids Architecture and Control

Nanogrids are generally categorized as a small-scale grid model, which must carry
one load and contains a gateway to the passage. Moreover, nanogrids can supply both AC
as well DC and can be integrated into a utility grid. The basic configuration of a nanogrid
consists of a form of energy storage, like a battery, and any sustainable energy source, like
solar, wind, wave, etc. Compared to microgrids, they have a lower capacity of around
15–20 kW. On the other hand, picogrids have a very small capacity grid compared to that of
nanogrids as they also consist of a battery model and other sources of sustainable energy.

The power level capacity of nanogrids is about 5 kW; however, no hard limit is
established. It is possible for nanogrids to be configured with DC distribution through
the positive and negative rail. In such topologies, the converter integrates a PV panel and
a battery (energy storage) into a DC nanogrid. The DC link (rails) of the DC nanogrid is
connected to the two ends of the switch-leg. The power conversion from the PV panel and
the battery to the DC link of the nanogrid form two DC boost converters with discontinuous-
conduction-mode (DCM) and continuous-conduction-mode (CCM) operations.

Further, the MPPT of the sustainable PV system is obtained through controlling the
switching frequency and duty cycles, and in turn, further bidirectional power flow studies
can be conducted. Moreover, the soft-switching topology of the proposed converters
will play a significant role while controlling the various parameters of the distribution
grid and power outcome. With the advancement of information and communication
technology (ICT), a modification in the electrical grid and the remodeling of the components
from consumer to prosumer is supposed to be an objective of smart cities. The main
motto of a smart city is to efficiently employ the technological advancement to obtain the
smart infrastructure.

Moreover, for the employment of smart power and industrial information integration,
the trifurcation of smart grid infrastructure into small-scale grids is supposed to be a promis-
ing solution for a modern sustainable infrastructure. Additionally, the economic benefits
of a prosumer can be enhanced either by selling or sharing the additional power with the
main grid or the individual customer at a fixed rate. In this context, the major challenges
are related to the power management system through software or hardware controllers.

Several research works are reported to investigate the smart management tools in
various countries to integrate the communication between the cloud and the nanogrid and
picogrid control system. As a case study, if the battery bank of the nanogrid becomes fully
depleted, a notification will be forwarded to the controller. This information is passed from
the controller to the cloud, which acts accordingly. The Government of India has been
planning several steps to incorporate the concept of smart power in various smart cities for
sustainable development. The key outcomes of the Energy Policy 2020, as decided by the
Government of India, are described as follows [2–5]:

• The encouragement of entrepreneurship and employment in the agricultural sector
due to the incorporation of new technologies, like smart irrigation, smart power
management, climate control and change, waste management, etc.

• The prior objective of the Energy Policy 2020 was energy security with the advance-
ment of sustainable energies in global supply contributions.

• A regulation called FAME (Faster Adoption and Manufacturing of Electric Vehicles)
has been pioneered to promote the usage of e-mobility.

• The Smart Cities Mission established the need to involve more than 100 cities across
the country in the reduction in energy consumption, the enhancement of infrastructure,
the enhancement of energy efficiency, etc.

• The Government of India is planning to invest more into the implementation of EV
charging infrastructure and suitable planning to integrate it into the distribution grid
for the overall development of the region.
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3. Analysis of Various MPPT Methodologies

MPP is a point that works on Maximum Power Transfer theorem, i.e., maximum power
will be delivered from source to load only when Theremin’s equivalent resistance is equal
to load resistance. There are many methods to extract optimum power from photovoltaic
sources [25–27]. The most popular methods to track maximum power from PV sources
are Perturb and Observe (P&O), Incremental Conductance, Fuzzy Logic [28], and Neural
Network [29]. Perturb and Observe (P&O) is gaining popularity in controlling maximum
power due to its simple algorithm and less complicated implementation. It focuses on
the theory of rate of change in power and will be minimum around MPP. P&O has the
drawback of oscillation around MPP.

Incremental Conductance is another widely applied maximum power point tracking
algorithm that works on the theory that the slope of the P–V curve will approach zero as
the PV system approaches the MPP. To find the MPP, the derivative of voltage and current
need to be considered. It provides less oscillation and improved MPPT even in rapidly
changing climatic condition. It exhibits superior result compared to P&O. Along with the
advantages, the Incremental Conductance is confined in the selection of the incremental
step size. Intelligent controls, such as Fuzzy Logic [30–32] and Neural Network [29], may
be applied to achieve the benefit of getting a proportionally changing power converter duty
cycle added to the PV system, which consists of a solution of constant step perturbation.
The working principle of Fuzzy Logic deals with the strategized rules, which also depends
upon the experience of rule designer. Therefore, the prime drawback is that there is no
phenomenal strategy. The neural network method needs more precise data to check and
train. The quality of the data plays an important role here, which is more effortful to obtain.

The most popularly cultivated controller in industrial process is the PID controller for
the reason of its simple architecture and ease of application, low cost, and robust performance
with respect to wide range of modifying operating conditions. The discretion of PID con-
trollers as MPPT controllers matches the entire above criterion. B. Ashoke Kumar et al. [33]
designed a PID controller as an MPPT controller that necessitates the identification of
three parameters, i.e., proportional gain and integral and derivative time constant. The
continuous PID equation is dependent upon three parameters, kp, ki, and kd, which can be
obtained using the Ziegler–Nichols method shown in Figure 2. Different MPPT techniques
on various aspects are tabulated in Table 1.
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Table 1. Comparative study of different MPPTs for PV system.

Categorization MPPT

Index of Performance

Complicacy Tracking
Speed Price Efficiency Certainty Hardware

Compatibility

Traditional/
Conventional

Control on
the basis of
parametric

choice

CVT Poor Average Low <85–90% Poor Simple

OVT Poor Average Low <85–90% Poor Simple

SCT Poor Average Low <85–90% Poor Simple

CS Poor Poor Medium <85–90% Poor Simple

Direct
control

P&O Poor Superior Mean >97% Average Simple

IC Medium Superior Mean >98% Very High Simple

RC Medium Superior Mean >96–99% Very High Simple

PC High Superior Very High >98% Mean Complicated

MPPT under
partial

shading
condition

PSO Very High Rapid High >97–99% Best Medium

GWO Very High Average High >98% Average Simple

PO-PSO Very High Rapid High >98% Mean-low Easy

GA Very High Fast Very High >98% High Simple

FLC-P&O Very High Fast High 98–99% Very High Easy

Intelligent
MPPT

FLC(AI) Very High Rapid Very High >99% Mean Simple

ANN(AI) Very High Rapid Very High >99% Mean Complicated

SMC(Nonlinear) Medium Rapid Very High >99% High Easy

In this method, the algorithm controlled the tuning of the proportional, integral and
derivative gain using the Z–N method. From the result obtained from the simulation, it
is evident that PID MPPT exhibits superior results compared to the conventional MPPT
algorithm. There was an increment in output power and the time consumed by the
PID controller to obtain the optimal point, and it was faster than P&O and Incremental
Conductance. The oscillations in this method have become smaller. The efficiency of the PV
system is proved to be better compared to other conventional methodologies. To overcome
the drawbacks of conventional MPPTs that are unable to achieve the maximum power point
of PV systems even after extended operation, one of the solutions to the above constraints
is an upgraded MPPT control strategies, which must be established to achieve the superior
performance of PV-system-controlled MPPT. But there is some difficulty in working with
paid due to its tuning problem [34]. Various approaches have been reviewed in this article
to achieve the best possible tuning methodologies [35–37].

A detailed classification of various MPPT methodologies is shown in Figure 3. Bet-
ter performance parameters, like settling time, rise time, and steady-state offset, can be
obtained by employing hybrid AI-based systems. But, the execution of these systems is
not smooth due to their complexity in computation. Emmanuel Kwaku Anto et al. [38]
intended to design a PID-based MPPT for an off-grid solar photovoltaic (PV) system. The
study showed that PID MPPT showed outstanding outcomes compared to P&O MPPT
and non-MPPT systems by applying step, ramp, and impulse signals using a commercial
SOLAR 36 W. From the point of view of better performance, Perturb and Observe (P&O)
shows positive approach. The main limitation of this method is that at the steady state
the operating point oscillates near the maximum power point (MPP). As a result, some
quantity of energy is wasted, and the step size is increased, thereby reducing the accuracy
of the system [39,40].
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To get rid of the above-mentioned aspects, modified MPPTs are proposed [39]. Nur
Atharah Kamarzaman, Chee Wei Tan et al. [41] focused on MPPT classification. The
conventional methods are best used for uniform solar irradiation and panel temperature.
And, the probabilistic and artificial-intelligence-based algorithms are the best choice for
working under partial shade conditions. The advancement of the MPPT algorithm is the
easiest task considering its cost, and it can be applicable for the equipment, which are
also contemporizing their control techniques [42]. These methods can be categorized as
online or offline methods and hybrid methods [43]. Many hybrid methods have already
been introduced, such as Genetic Algorithm Neural Network (GA-ANN) [44,45], Particle
Swarm Optimization (PSO)-based Fuzzy Logic controller [46], and Genetic Algorithm
Fuzzy Logic controller [47]. Anupama Ganguly et al. [48] presented a horse-herd optimized
adaptive fractional order PID controller to provide the duty of the inverter to a PV interface
grid-connected system. Algorithm robustness was verified by rapid and continuous change
of climatic phenomenon.

The open circuit voltage VOC MPPT algorithm is the simpler version that can be
applied in offline (standalone) applications. A near about relationship between the open
circuit voltage and the optimum output voltage of PV array under various varying climatic
condition may be considered [49]. Another simpler approach of MPPT algorithm is short
circuit current ISC technique in which the working principle is same as open circuit voltage
strategy [49]. Whenever a PV array is interfaced with DC–DC boost converter, it would
introduce some voltage and current ripples due to the switching action. As a result of
which the power induced by PV array must get contaminated by those ripples which in
turn deteriorates the performance of PV system.

To mitigate this issue, ripple correlation control MPPT algorithm has been imple-
mented. To achieve the MPP, the power gradient should be equal to zero. Ripple Corre-
lation Current (RCC) correlates between rate of change of PV power, changing P versus
current i or voltage V which are both changeable with respect to time [50,51]. The RCC
furnishes advantages of simple and less costly analogue circuitry while quickly following
MPP within rapidly varying climatic phenomenon [49]. This MPPT is unable to follow the
MPP at lower intensity of solar irradiation as it requires large step size near MPP. Ameur
Khaled et al. [52] designed a fast MPPT control using PID controller for the application
in PV system. This paper was focused in designing a controller that can make the system
responses superior, thereby shortening the tracking time.
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Conventional P&O algorithm was chosen for MPPT that provides a reference voltage
as input of the controller, which in turn will calculate the PWM of the converter. Pabitra
Kumar Biswas et al. [53] proposed a comparative performance analysis of the hybrid MPPT
to analyze the performance of boost converter in standalone photovoltaic configuration.
The intended system was structured with an MPPT oriented load following techniques
that permits the transmission of maximum power for changing input RF power in order to
achieve desired voltage magnitude. Muhammad Ammirrul Atiqi Mohd Zainuri et al. [54]
developed an Adaptive Perturb & Observe (P&O) Fuzzy control maximum power point
tracking for photovoltaic (PV) boost converter. P&O is the conventional and simple MPPT
algorithm to be implemented. Fuzzy Logic is also an easy tool to be widely used. The
proposed strategy was the amalgamation of both the benefits. All the algorithms simulated
in MATLAB platform with PV module of Kyocera KD210GH-2PU interfaced with PV boost
DC–DC converter.

Adeel Feroz Mirza et al. [55] brought novelty in maximum power point tracking for
the fast charging irradiance of PV system. The proposed architecture used PID controller
with Genetic Algorithm to analyze the variable step size of the Incremental conductance
based MPPT. The aforesaid system also tested against P&O. The intended strategy was
able to estimate the global maxima (GM) for fast charging solar irradiance for adopting
GA based tuning of the controller. Mohamed Nejib Mansouri et al. [56] designed a PID
controller to track the maximum power point (MPP) of a PV system with Genetic Algorithm
by using Energetic Macroscopic Representation (EMR). The tuning of three parameters of
the controller was conducted by GA. P&O method was applied to generate the reference
voltage. Vref and the simulation result was analyzed in terms of Mean Square Error (MSE),
percentage overshoot, and rise time.

Saravanan et al. [57] discussed about various kinds of MPPT techniques both conven-
tional and stochastic and concluded that none can be proclaimed as better compared to
other unless practically implemented. Ouoba et al. [58] invented an upgraded auto-scaling
variable step size MPPT for photovoltaic system. The method was assimilated with some
classical approaches like fixed step size, variable step size, auto-scaling variable step size
MPPT techniques and therefore winded up the system, and it was not able to produce
steady outcome as the step size was large in comparison to requirement. Ali Nasir et al. [59]
presented an adaptive fractional order PID controller-based MPPT for a grid connected PV
system, under varying atmospheric phenomenon. AFOPID controller is enriched with the
characteristics of usual PID controller, at which the adaptations are embedded in order to
achieve optimized parameter gain depending on the generator and grid side parameter.

M. Mahapatra et al. [60] intended to introduce adaptive fuzzy MPPT to create the
gate signal for an interleaved soft switching boost converter for a PV system. To overcome
linearity in PV output with the changes in irradiation and environmental temperature,
the proposed MPPT proved to be more efficient and also reduced the cost of fabrication.
Diwaker Pathak et al. [61] introduced an application of nonlinear discrete PID controller for
MPPT of PV system. The proposed nonlinear-discrete controller attains the usual properties
of conventional proportional integral derivative (PID) controller where the integral and
derivative gain were discretized by applying forward Euler formula and the integral gain
was varied during simulation time as per the error. An intelligent strategy of Particle
swarm Optimization (PSO) and Genetic Algorithm was incorporated to find the optimal
gain during a dynamic situation. M.L. Bharathi et al. [62] proposed an Artificial Neural
Network (ANN) supported Fuzzy Logic for SEPIC converter in PV system.

K. Jyotheeswara Reddy et al. introduced an Artificial Neural Fuzzy Inference Sys-
tem (ANFIS)-based MPPT control algorithm for a PEMFC system for electric vehicle
approach [63]. Suresh Srinivasan et al. [64] proposed a novel neural network based MPPT to
harvest optimum at rapidly changing operating phenomenon configured with quadratic boost
converter by incorporating RBFN strategy for fuel cell application. Chiranjit Sain et al. [65]
intended to focus on performance analysis and enhancement of reliability of the PV array
under partially shaded condition by one time electrical reconfiguration.
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4. System Description

Photovoltaic system is comprised of solar panels, Direct Current–Direct Current (DC–
DC) power converter and energy storage devices. DC–DC voltage converters are employed
in order to match the load features with which the solar panels are interfaced. The term
“photovoltaic “derived from two different phrases that are “photo” which means light
and voltaic that reveals the meaning of generating the electrical energy directly from the
sun [66]. There are various kinds of model to furnish the behaviorism of PV module like
single diode (SD), double diode (DD), and three diode (TD) models [67]. Solar arrays
are the combinations of multiple solar modules at which every module is synthesized
by a number of solar cells. Solar cells are composed of different layers of semiconductor
substances, most commonly crystal silicon [66,67] A single diode PV model is comprised of
a series resistance and a shunt resistance [67]. Figure 4 depicts that the amount of electrical
energy induced solar energy generation by the current Iph that is proportionate to the
solar irradiation. The resistance in series exhibits an internal resistance while the parallel
resistance shows the leakage current.
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The photovoltaic output voltage and current represented by VPV and IPV, respectively.

IPV= Iph − ID − VD/Rsh (1)

The features of diode can be characterized by ID:

ID = I0

(
e

VD
VTA − 1

)
(2)

The voltage drop across the diode represented by VD:

VD = (VPV + IPVRs) (3)
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Photo current is expressed by Iph:

Iph =
(
ISC + K1

(
T1 − TRef

))
λ (4)

where VT depicts the thermal potential of PV modules that is equal to kT/q. VD is the
potential of the diode. K is the Boltzmann constant that is same to 1.38 × 10–23 J/K. T1 is the
p-n junction temperature in Kelvin. A depicts the diode ideality factor that is dependent on
PV technology. ISC shows the short circuit current of cell at a reliable experiment condition
(1000 W/m2) and 25 deg C, K1 is the coefficient of cell’s short circuit current, TRef is the
reference temperature of the cell, Rs and Rsh represent the series and shunt configuration
resistance, respectively, and λ represents the intensity of solar radiation in W/m2. Table 2
shows the detailing of different configurations of PV array. P–V characteristic of PV array
is represented in Figure 5, and PV array reconfiguration structures are shown in Figure 6.

Table 2. The characterization of dynamic PV array rearrangement approaches.

Configuration Strategy Number of
Switches

Gained
Parameters

Remarks

Advantages Limitations

(a) Simple
series Series [68] Zero Zero Wide application

range
Poor efficacy and huge

loss of power

(b) Parallel Parallel [69] Zero Zero

Wide range of
application and

larger
output current

Low efficacy and poor
output potential

(c) Series–
parallel

RPV [70] 6-SPDT, 5-DPST,
4-DPDT

Voltage and
intensity

of radiation

Wide range
of application

Only dual mode of
transition

of connectivity

SWS [71] 6-Switches for
each SWS

Current and
intensity

of radiation

Better speed
of convergence

Poor authenticity and
high changeability

Adaptive [70]
6NFST+3MFMIM +

(NFST − 1) +
(NFMIM − 1)

Current and
intensity of
radiation

Highly compatible Existence of many
switches and complex

IE [72] NS Intensity of
radiation

Better speed of
convergence High volatility

(d) Total cross
tie

DS [73] NS Intensity of
irradiation

Superior efficacy
and highly reliable Complicated

ZZ [74] NS Intensity of
irradiation

Wide range of
application and

superior efficiency

Restricted to 3 × 3
array configuration

IE [75] 24-DPST Current, voltage,
irradiance

Smaller processing
and computation

duration

Highly complicated
and gained only
three parameters

(e) Bridge link [76] NS Intensity of
irradiation

Wide range of
application and

lower cost

Highly complicated
and lower acceptance

(f) Honey comb [77] NS Intensity of
irradiation Better stability Complicated and

lower acceptance
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(d) Total Cross Tie; (e) Bridge Link; and (f) Honey Comb [67].

5. DC–DC Power Converter Topologies in Sustainable Energy System

The demand of renewable energy is increasing due to ease of access, less pollution
caused, and less expenditure incurred. The thermal power plants and radioactive power
plants are responsible for abrupt climatic changes that usually are generated by the thermal
pollution of those plants. Considering all other renewable energy sources, PV and wind are
supposed to be utilized more. These resources have the upcoming possibilities on parity of
grid in India due to its environmental phenomenon [78]. Many other countries like Mexico,
China, Finland, and Europe have been experimenting on renewable energy so that it can be
deployed as alternative way of energy generation [79,80].

Researchers are focusing on solar generation as it is highly trustworthy and installation
is less complicated. Since the solar generation is intermittent in nature due to uncertain solar
irradiation and ambient temperature, to mitigate this trouble, DC–DC power converters
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were established to provide fixed amplitude or regulated voltage outcome. Broadly the
DC–DC power converters are classified in two categories, i.e., isolated and non-isolated. In
isolated DC–DC converter, the input and output ends are kept separated by applying an
electrical barrier by using a high frequency transformer whose turns ratio is chosen on the
basis of the desired gain. The benefit of this arrangement is that it safeguards the sensitive
load. Both positive and negative output configurations can be achieved by this architecture,
and it is also enriched with the ability of noise interference.

Limitations are as follows. The whole system becomes heavy, and the main switches of
the converter experience high potential spikes and therefore high switching power loss due
to the presence of leakage inductance. As compared to isolated architecture, non- isolated
DC–DC converters are simple in design due to the absence of high frequency transformer
and carry less cost. This article is mainly aimed at the discussion of non-isolated DC–DC
power converter topologies. A detailed classification is portrayed in Figure 7. Considering
the parameters of superior efficiencies, trustworthy control switching techniques, config-
uration based on the withstanding of faults and compatibility with sustainable energy
applications, the DC–DC converters are developed [81–83]. Each converter topology carries
its own features [84–86]. The aforementioned converters are engaged in many other applica-
tions like electric traction, electric vehicles, space stations, airplanes, machine tools, etc. [87],
fuel cell embedded with the storage device [88,89], solar generation application [90], and
basic and special electrical machine drives [91,92].

5.1. Progression of DC–DCPower Converter Topologies for Solar Power Generation

The modern topologies of non-isolated unidirectional DC–DC boost converters, bidi-
rectional converters, and SEPIC converter applicable for PV-interfaced nanogrid and
picogrid systems are elaborated in this section.

Traditional boost converters are employed in the solar power generation where
the receiving end voltage is required to be high as compared to the sending end. An
MPPT controller can be embedded with the boost converter considering such a condition.
Huber et al. [93] made an analysis of using cascade architecture to make the output voltage
gain superior and decrease the ripples. Since the magnitude of the input potential is low
so the initial stage experiences less voltage stress and becomes able to operate with better
switching frequency. The later stage works under lower switching frequency as a result
of which switching losses have been reduced. The limitations of cascaded structure are
high number of circuit elements, poor efficiency, and electromagnetic interference noise
(EMI). Ghamrawi et al. [94] examined the immutability of quadratic double boost converter
that performs the identification of MPP by incorporating MPPT as a control technique.
Embodiment of coupled inductor and switched capacitor results in voltage gain of the
boost converter. The reverse recovery challenge of output diode can be solved by the
leakage inductance of the coupled inductor. The boost converter can be classified as follows
depending on power consumption and potential gain.

In PV application to achieve a voltage range of 12–60 V, non-isolated DC–DC con-
verter plays a role of input voltage provider that would deliver an output voltage in the
range of 24 V for batteries and 760 V for power transmission system [84]. Due to hav-
ing some restrictions in raising the voltage in the range of grid level of the conventional
DC–DC boost converters, some modifications are made in order to derive new improved
topologies [95,96]. These derived topologies are superior in terms of high voltage output
and efficiency. The modified topologies of the boost DC–DC converters can be classified
into four sub-categories:

(i) Low gain low power (LGLP);
(ii) Low gain high power (LGHP);
(iii) High gain low power (HGLP);
(iv) High gain high power (HGHP).
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Among the above-mentioned categories HGLP topology has applications in PV sys-
tems. A detail classification is showcased in Figure 7b. Researchers are engaged in some
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further modifications of HGLP topology such as three level boost converter [97–100], multi-
level switched capacitor (SC) topology [101,102], voltage multiplier cells (VMC) [103–106],
voltage doublers [107–109], coupled inductor(CI) configuration [110,111], switched capaci-
tor configuration [112,113], amalgamation of SC and CI topologies [114–116], amalgamation
of SC and SI configuration [117–119], triple state switching converters [120–122], flying
capacitor configuration [123], non-magnetic flying capacitor configuration [124], multilevel
modular capacitor clamped DC–DC converters [125], technique of cascading [126], topol-
ogy having two inductors [127], dual inductor configuration [128], two CIs [129],winding
crossed coupled inductor [130], transformer with built-in configuration [131], poly-phase
converters [132], and VL technique [133].

5.2. Low Power High Gain Boost DC–DCConverter Associated in PV Application

Based on the literature survey, it is found that 20 variations of derived and modi-
fied topologies have been sectioned as high gain low power converters whose technical
aspects are tabulated in Table 3. It is evident from the result that out of 20 topologies
6 configurations provide excellent output in terms of voltage gain >15. This phenomenon
may be regarded as “extra high potential gain” DC–DC converter. This section focuses on
those “extra high potential gain topologies”. These topology configurations include VMC,
voltage doublers, CI based, converter with SC and CI, triple state switching cell converter,
and MMCCC. Among them, modular structured VMC, voltage doublers, and cascading
structures are studied in depth on the basis of count of elements, potential stress on switch,
optimum efficacy, potential gain, and examined frequency and power, and are tabulated in
Table 4 for the following advantages.

Table 3. Different topologies of HGLP DC–DC converters.

Topology
Number References

Range of Potential Gain Number of Elements

Smallest Highest Smallest Highest

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

[97–100]
[101,102]
[103–106]
[107–109]
[110,111]
[112,113]
[114–116]
[117–119]
[120–122]

[123]
[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]

4 [98]
9 [102]

9.45 [103]
7.89 [108]

6 [109]
4.97 [113]
5.76 [114]
8.99 [117]

8 [122]
5 [123]
5 [124]

5.89 [125]
19.5 [126]
12.59 [127]

8 [128]
10.99 [129]
8.23 [130]

9 [131]
4.85 [132]
9.43 [133]

12 [99]
12 [101]

15.7 [105]
18.97 [109]

17 [111]
11 [112]

16.56 [116]
19.87 [119]
8.34 [120]

X
X
X
X
X
X
X
9

9.46 [133]
9.43 [132]
15 [133]

13
10
11
7
7
9
8
6

13
7

14
7

11
12
13
7
7

13
8

11

18
20
22
12
14
16
18
17
19
X
X
X
X
X
X
X
14
18
25
13

X indicates that no data was available.

VMC is having simple configuration with lower potential stress on the switches and
being modular. Voltage doublers are the modification of VMC. It is also a simple topology
with superior potential gain due to the application of multiplier circuit. Since this topology
uses lesser number of elements thus efficiency is better. Cascade-based topology has wide
variations. It is also simple in structure and being modular.
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Table 4. Comparative study of modular structured DC–DC converter topologies.

Topology
Count of Elements Potential Stress

on Switch
Optimum
Efficacy

Potential
Gain

Frequency
(kHz)

Power
(W)L C S D Sum

VMC 4 3 2 5 14 Vout/2(n + 1) 97.2% 15.6 50 400

Voltage doublers 2 3 2 4 11 Vout/2 93% 15.83 100 500

Cascading techniques 2 2 3 4 11 N/A 95.6% 20 45.5 280

5.2.1. VMC

There exist several VMC topologies that are determined on the basis of amalgamation
of many passive elements comprising of capacitors and inductors, which consist of various
semiconductor devices like MOSFET, IGBT, diode, etc. This arrangement resulting in a
multiplier circuit with individual features. Figure 8 shows the fundamental circuitry of DC–
DC boost converter with VMC [104]. A few topology variants are depicted in Figure 9 [106].
This amalgamation results a multiplier circuit associated with distinctive characteristics.
These topologies are appropriately fitted due to their ability of stepping up low input
voltage to a desired level on the grid end.
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5.2.2. Voltage Doublers

The converter whose output is twice the input is termed as voltage doublers. It
comprises of a diode and an inductor [107]. Voltage doublers work on the principle of
charging the capacitor at the input end and shifting the saved energy to the load end by
accurately making double of the input voltage. Due to this potential doubling mechanism
the converter suffers from high losses, thus reducing efficacy. The equivalent circuit
configuration of DC–DC boost converter in association with voltage doublers is shown in
Figure 10 [109].
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5.2.3. Cascading Topologies

In order to increase the potential gain of a converter, a multistage boost converter is
one of the solutions. The diagrammatic representation of cascaded DC–DC boost converter
is depicted in Figure 11 [134]. It is evident from the diagrammatic representation that the
family of this topology is constructed on the basis of cascading multiple configuration of
boost converter (quadratic topology) or increasing gain of converter (hybrid topology).
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Quadratic Boost

As shown in Figure 11A, this converter topology is derived by cascading two boost
converters [135]. It is evident from the circuit composition that the antecedent boost con-
verter experiences less potential stress compared to preceding boost. Thus, the first boost
converter is allowed to operate on the high frequency and less power density phenomenon.
As the preceding operates at lower frequency, as a result, it experiences lower switching
loss. A multiple stage boost converter for multiple stage configurations is depicted in [136]
to mitigate the circuit complexity that can be integrated into a configuration consisting of
one switch is called quadratic boost converter. Figure 11B shows the circuit composition
of quadratic boost converter. The control of quadratic boost converter requires two PWM
signals, which introduce more complications, and these are alleviated by multiple stage
operation that needs only one switch to make the control less complicated [137]. Figure 11C
acquires superior potential gain on the basis of altered tri-level DC–DC converter [138].
Figure 11D–G depicts multiple members of quadratic boost converter family. These con-
figurations are capable of allowing the narrow alteration of duty cycle with the change in
potential gain. Thus, design process becomes simple accompanied by high performance by
the converter’s end itself [139].

6. Modern DC–DC Bidirectional Converter Strategies in a Sustainable PV Architecture

6.1. Bidirectional DC–DC Converter

The Bidirectional DC–DC converter as shown in Figure 12 is a C class chopper, which
can operate in first and second quadrants (i.e., positive voltage and positive or negative
current). In one quadrant, it works as a boost converter and as a buck in other quadrant
as per the direction of current. In this proposed work, a dual loop controller is designed
to control the converter. The outer loop controls the voltage and inner loop controls the
inductor current. The current reference is calculated by the difference between the voltage
of the dc grid and reference voltage. In this way, converter acts in buck or boost mode to
maintain a constant bus voltage.

6.2. Triple Port Integrated Topology (TPIT)

The circuit diagram of TPIT is shown in Figure 13. The bidirectional AC–DC converter
interfaces the dc link with the electric grid. The bidirectional DC–DC converter (Class C)
interfaces the electric vehicle batteries, and the unidirectional DC–DC converter interfaces
the solar PV panel. TPIT integrates all these converters to a single common dc link such
that the characteristics of each converter are maintained. The direction of power flow in
each converter is decided by the operating mode of the system such that the voltage of the
dc link is maintained constant. This topology given operates in four modes:
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i. Renewable-to-grid (R2G) mode: In this mode, the power generated by the solar PV
is given to the electric grid via a chopper (DC–DC converter) and then to a DC–AC
converter. The bidirectional AC–DC converter works as an inverter in this mode.

ii. Renewable-to-vehicle (R2V) mode: In this mode, the generated PV power is used to
charge the electric vehicle’s battery. The bidirectional converter allows the current
flow such that the battery charges and the SOC also increase.

iii. Vehicle-to-grid (V2G) mode: In this operating mode, the electric vehicle supplies
the required power to grid. This mode ensures uninterrupted supply in the system.

iv. Grid-to-vehicle mode: When the required power by the vehicle is not generated by
solar then the grid supplies the excess power demand via this operating mode. The
ac power from the grid is converted to dc via AC–DC converter and it charges the
battery. SOC of the battery increases in this case.
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6.3. Three-Port DC–DC Converter

Basic circuit layout of the proposed three port DC–DC converter is shown in Figure 14.
In this figure, the converter blends a PV panel and a battery (energy storage) into a dc
nanogrid system. The dc link of the nanogrid is combined to the two ends of the switch-leg.
Further, the conversion of power from the PV panel and the energy storage to the dc
link frame two dc boost converters operated in DCM and CCM modes. The purpose of
this converter can supply bidirectional flow of power in the battery to indulge different
requirement of the dc nanogrid. Further, the power flow between the ports varies on the
basis of load demand, net solar energy, and the state-of-charge of the battery storage.
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6.4. SEPIC Converter

The shortcomings of conventional buck-boost converter such as output voltage of
reciprocal polarity and palpitated characteristics of load current can be overcome by SEPIC
converter [141]. Rasoul Shalchi et al. [142] proposed a high step up DC–DC converter
by combining an extensive switched capacitor and a conventional SEPIC converter for
PV application. The main prospects of this introduced topology are lower number of
elements and superior potential gain, presence of low ripples, simpler control strategies,
and consistent input current. Rizky Ajie et al. [143] investigated an updated SEPIC under
different criterion for grid oriented solar application. The model was simulated by PSIM. By
varying the solar irradiance and ambient temperature, both the boost and SEPIC converter
was tested, and the SEPIC showed better performance.

Kumaran Nathan et al. [144] proposed an extended version of DC–DC converter by
combining Cuk-SEPIC which showed a good fitness in PV application. The said topology
experienced low ripples in input current by incorporating integrated magnetic core to join
the inductors of input and output ends, thereby improving the power delivering capability.
H. Suryoatmojo et al. [145] proposed a design of revamped DC–DC SEPIC converter. The
alteration to the basic SEPIC converter was conducted by incorporating capacitors and
diodes. As a result of which while the conventional SEPIC was capable of stepping up to
five times, the updated version could increase the gain up to ten times.

Ahmed El Khateb et al. [146] investigated Fuzzy Logic controller with SEPIC to
obtain maximum power from PV application. The FLC-based MPPT was capable of
following the true MPP and transferred power about 4.8% higher than usual PI controller.
Babaei et al. [147] analyzed the presence of ripples of output voltage during DCM and
CCM because these parameters are mandatory while designing the converter. On the basis
of primary magnitude of input voltage and output resistance, the amplitude of optimum
value of ripples in output voltage was witnessed. CCM was analyzed in two modes, namely,
complete inductor supply mode (CSIM) and incomplete inductor supply mode (IISM).
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DCM only worked on IISM. This article also focused on how the efficiency was affected by
the influence of the inductor.

In order to analyze the dynamic performances like steady state and small signal
stability, Fourier analysis can be conducted to reduce the ripple quantities. At the time of
transient response, this method helps to reduce the potential stress on the switches [148].
Kim et al. [149] enforced a soft switched PWM-SEPIC that had evidence of small switching
stress as compared to hard switching configuration. The trouble of hard switching can
be minimized using a quasi-resonant SEPIC that is capable of operating at a constant
switching frequency.

7. Conclusions and Future Research Directions

Researchers can gain a thorough understanding of the DC–DC converter topologies
that can be used to generate electricity from solar energy through the aforementioned survey
and debates. Low power conversion efficiency in solar energy generation necessitates
discussion of DC–DC converter topologies suitable for low power, high gain applications.
Six of the 20 modified derived high gain low power (HGLP) topologies examined produce
gains greater than 15, which are referred to as extra high gain converters. Three of those
extra high gain topologies—voltage multiplier circuits, voltage doublers, and cascade
techniques—with modular structures are elaborated in terms of the number of components,
potential switch stress, optimum effectiveness, potential gain, and frequencies and powers
under consideration. In future, more extra high gain power converters may be assessed in
terms of the aforementioned criterion. In addition, certain enhanced modified bidirectional
converters are researched in this study to interface with grid and vehicle to execute (R2G),
(R2V), (V2G), and (G2V) operations in nanogrid and picogrid configurations.

Researchers and engineers will find this study piece useful in selecting the best topolo-
gies for a PV-interfaced power conversion system. Since the production of electrical energy
from solar energy is intermittent, MPPT is crucial for achieving the appropriate output at
the converter’s end. It provides the converter the right switching signal. Under various ir-
radiation and partial shading conditions, various MPPT approaches are compared in terms
of their complexity, cost, and speed of tracking, certainty, and hardware compatibility. The
examined techniques also have certain shortcomings. In order to obtain both qualitative
and quantitative energy from solar power generation, hybridization of MPPT techniques is
the main focus of researchers. More suitable hybrid MPPT approaches may be developed.
After a thorough review of the literature, it was decided that addressing the intermittent
nature of solar power generation should be prioritized along with the effectiveness of the
system as a whole. Many MPPTs are in-depth reviewed in this article.

On the other hand, the non-isolated DC–DC power converters also perform well in
renewable energy sources to minimize the cost of the system and improve the efficiency.
The major findings of the research are as follows.

In order to expand the potential gain and to diminish the effect ripple content, cas-
cade architecture has a prominent role. But the shortcomings are higher EMI noise and
inferior efficiency.

Interleaved converters are capable of achieving reduced switching loss, superior
efficiency, reduced EMI, ripple accumulation and size of filter, better transient outcome,
and elevated stratum of power. Besides all advantages, the limitation is that circuitry is
complicated and expensive.

In view of the various performance index of different MPPT presented in the article,
one more index must be judged to analyze and standardize the MPPT that is energy usage
index, which is the ratio of power delivered by a particular MPPT to the metaphysical
optimum power output ability of the same MPPT over a duration of time.
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