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Abstract

:

Epicardial adipose tissue (EAT) is located between the visceral pericardium and myocardium, and EAT volume is correlated with cardiovascular risk. Nowadays, many deep learning-based automated EAT segmentation and quantification methods in the U-net family have been developed to reduce the workload for radiologists. The automatic assessment of EAT on non-contrast low-dose CT calcium score images poses a greater challenge compared to the automatic assessment on coronary CT angiography, which requires a higher radiation dose to capture the intricate details of the coronary arteries. This study comprehensively examined and evaluated state-of-the-art segmentation methods while outlining future research directions. Our dataset consisted of 154 non-contrast low-dose CT scans from the ROBINSCA study, with two types of labels: (a) region inside the pericardium and (b) pixel-wise EAT labels. We selected four advanced methods from the U-net family: 3D U-net, 3D attention U-net, an extended 3D attention U-net, and U-net++. For evaluation, we performed both four-fold cross-validation and hold-out tests. Agreement between the automatic segmentation/quantification and the manual quantification was evaluated with the Pearson correlation and the Bland–Altman analysis. Generally, the models trained with label type (a) showed better performance compared to models trained with label type (b). The U-net++ model trained with label type (a) showed the best performance for segmentation and quantification. The U-net++ model trained with label type (a) efficiently provided better EAT segmentation results (hold-out test: DCS =   80.18 ± 0.20 %  , mIoU =   67.13 ± 0.39 %  , sensitivity =   81.47 ± 0.43 %  , specificity =   99.64 ± 0.00 %  , Pearson correlation = 0.9405) and EAT volume compared to the other U-net-based networks and the recent EAT segmentation method. Interestingly, our findings indicate that 3D convolutional neural networks do not consistently outperform 2D networks in EAT segmentation and quantification. Moreover, utilizing labels representing the region inside the pericardium proved advantageous in training more accurate EAT segmentation models. These insights highlight the potential of deep learning-based methods for achieving robust EAT segmentation and quantification outcomes.
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1. Introduction


Epicardial adipose tissue (EAT) is located between the pericardium and the myocardium [1]. It has various distributions and is commonly found on the heart surface, in the atrioventricular and interventricular grooves, in the right ventricle lateral wall, and near the coronary arteries [2]. In many studies, it has been considered a source of inflammatory mediators and cytokines, and EAT volume has been associated with coronary artery disease [3]. EAT volume has been evaluated as an imaging biomarker for the diagnosis of pathological states such as metabolic syndrome and visceral obesity [4,5,6].



Manual or semi-automatic measurement of EAT volume by radiologists, while feasible, proves to be time-consuming and impractical for extensive clinical practice. To address this limitation, automated EAT volume quantification methods have been proposed, aiming to provide efficient solutions. Most EAT volume quantification is typically carried out using cardiac computed tomography (CT) scans. However, in this study, our focus lies specifically on EAT segmentation and quantification in non-contrast low-dose CT (LDCT) scans. In particular, EAT exhibits an irregular and noncontinuous shape, accompanied by a lack of uniformity in spatial distribution. Additionally, the presence of other fat tissues, such as mediastinal fat, positioned outside the pericardium presents a challenge. In CT images, these structures can be visually similar to EAT and are located nearby. The thin layer of the pericardium serves as a crucial reference for distinguishing EAT from these similar structures. One of the primary motivations for focusing on LDCT is its reduced contrast on coronary structures and the different thickness compared to standard-dose CT scans. Consequently, the segmentation and quantification of EAT in LDCT pose greater challenges. By addressing these complexities and providing a robust and accurate EAT segmentation methodology for LDCT, we aim to enhance the clinical utility of automated EAT volume quantification in various medical settings. Such advancements hold the potential to streamline cardiac assessments and improve patient care, given the widespread usage of LDCT in clinical practice.



As for automatic EAT segmentation methods, some works [7,8,9,10,11] utilized non-contrast standard-dose CT or LDCT, while some works [12,13,14,15] utilized coronary CT angiography (CCTA), which requires a higher radiation dose with contrast to ensure adequate image quality while capturing fine details on the coronary arteries. Recently, there has also been work utilizing magnetic resonance images (MRI) [16]. However, many works provided insufficient information on the setting of the protocol for EAT label acquisition. Furthermore, the variation in automated quantification of EAT volume across different CT acquisition protocols remains an unanswered question. The influence of protocol settings on EAT segmentation and the resulting volume of EAT remains unclear. Access to implementation codes or datasets is crucial for the reproducibility and comparison of work with the state-of-the-art. Due to variations in data set-up among different studies, a strict comparison of reported accuracy values can be misleading. Therefore, the main objective of our research is to thoroughly evaluate and compare state-of-the-art segmentation methods using our extensive dataset comprising 154 low-dose CT scans. To assess the segmentation performance, we employ well-established metrics such as the Dice similarity coefficient (DSC), mean Intersection of Union (mIoU), sensitivity, and specificity. Additionally, considering the clinical relevance of EAT volume, we utilize Pearson correlation and Bland–Altman analysis to measure the interscan reproducibility of EAT measurement in low-dose CT scans [17]. Through this rigorous evaluation, we aim to contribute valuable insights into the efficacy of existing segmentation techniques and to improve the understanding of the assessment of EAT in the context of low-dose CT imaging.



1.1. Related Work


The early automatic EAT segmentation methods were based on classic mathematical models such as intensity-based approaches [18], region growing approaches, active contour approaches [19], and atlas-based approaches [20,21]. Later, some machine learning-based methods with handcrafted features [7,8,22,23,24] or with clustering algorithms [13,25] were proposed for EAT segmentation. However, some are rarely fully automatic. Most recently, deep learning (DL)-based approaches have shown success in many medical image segmentation tasks [26].



The rise of deep learning brings to EAT segmentation methods more automation, as it can learn intricate features directly from images in an end-to-end manner rather than designing and selecting features manually. With the available advanced computer hardware such as graphical processing units (GPUs), the state-of-the-art DL-based segmentation approaches have outperformed many previous traditional methods. The basis of DL-based segmentation is the convolutional neural network (CNN). A standard CNN consists of an input layer, functional hidden layers, and an output layer. Commonly used functional layers include the 2D or 3D convolutional operations, pooling layers (e.g., max-pooling), normalization layers (e.g., batch normalization), activation functions (e.g., rectified linear unit (ReLU)), transposed convolutional operations, and upsampling layers. The input of the network could be CTs in 2D or 3D format and the corresponding labels. The output of the network is a matrix where each element could be a probabilistic score or a set of category indexes. Generally, for medical image segmentation, the U-Net structure [27] and more advanced 3D U-Net [28], the V-Net [29], the attention U-Net [30] with attention gates, and U-Net++ [31] with dense connections and deep supervision [32] have together formed a U-Net family that has gained popularity and success. Many recent works on EAT segmentation were based on or inspired by the U-Net family.



A fully automated EAT segmentation model proposed by Commandeur et al. [33,34] utilized a multi-task fully convolutional neural network with a statistical shape model. Santini et al. [35] applied standard U-Net on EAT segmentation with a dataset of 119 CTs, and Zhang et al. [9] utilized two U-Nets and morphological layers to achieve better EAT segmentation results. One of the most recent works by He et al. [12] proposed a 3D U-Net architecture with attention gates (AG) and deep supervision for EAT segmentation. Attention gates play a crucial role in prioritizing essential regions within an image during the segmentation process, enhancing the model’s accuracy. The attention mechanism is a widely utilized approach, especially in tasks such as cardiac image segmentation [36,37]. Many works showed quantitatively promising performance, but some were trained and evaluated with a very small dataset [7,9] or with private datasets [12,33,34]. The labeling protocol varies in various works. For labeling, commonly used labels include the region inside the pericardium, the contour/surface of the pericardium, pixel-wise EAT labels, and the contour/surface of EAT regions, etc.




1.2. Contributions


In this study, we comprehensively evaluated state-of-the-art segmentation methods for EAT using 154 non-contrast LDCT scans. The LDCT scans were part of the coronary artery calcium CT scans from the Risk Or Benefit IN Screening for CArdiovascular diseases (ROBINSCA) trial [38]. We provided two types of labels for the LDCT scans: (a) region inside the pericardium and (b) pixel-wise EAT labels. The LDCT scans were ECG-triggered and generated with low radiation doses, ensuring patient safety. We provide clear and sufficient information about the data and label acquisition protocol in Section 2.1. To achieve representativeness and diversity, we selected four methods from the U-Net family as the EAT segmentation models: 3D U-Net [28], 3D attention U-Net [30], U-Net++ [31], and the recent deep attention U-Net (DAU-Net) [12]. The model structures, along with the attention gates and deep supervision modules in these models, are meticulously explained in Section 2.2. For rigorous evaluation, we utilized four-fold cross-validation and hold-out tests in Section 3. The segmentation results were analyzed using the Dice similarity coefficient, the mean intersection of union, sensitivity, specificity, and visualization. Furthermore, we performed a quantitative analysis of EAT volume using the Pearson correlation and Bland–Altman analysis in Section 3.3. In Section 4, we delve into crucial aspects, including label types, domain knowledge, patch size, training time, deep supervision, and evaluation, to gain deeper insights into EAT segmentation using deep learning. Additionally, we propose potential future directions in the aspect of domain knowledge, data unification, benchmarking, and deep learning techniques, aiming to enrich the contributions of this research. Our comprehensive evaluation and in-depth discussions contribute valuable insights to the field of EAT segmentation, and we believe this work will significantly advance the application of deep learning techniques in cardiac image analysis and clinical practice.





2. Data and Methods


2.1. Data Set-Up


For method benchmarking, we randomly selected 160 samples from the Risk Or Benefit IN Screening for CArdiovascular Diseases (ROBINSCA) dataset [38]. Samples of patients with hernias were excluded from the study due to the significant alteration in the shape and location of the organs. Thus, 154 samples were used for the evaluation. The ROBINSCA trial included subjects from the general population, with men aged between 45 and 74 and women aged between 55 and 74. This is a multi-center dataset with CT screening performed at the Gelre Hospital (Apeldoorn), the Bronovo Hospital (The Hague), and the University Medical Center Groningen (Groningen). A second-generation dual-source computed tomography (DSCT) system (Somatom Flash, Siemens, Erlangen, Germany) was used in all examinations. The CT acquisition protocol was as follows: (1) pitch: 3.4, (2) tube voltage: 120 kVp, (3) tube current: 80 mAs, (4) rotation time: 280 ms, (5) collimation:   120 × 0.6   mm, (6) matrix:   512 × 512  , (7) ECG triggering: prospective, 60% of the R-R interval during inspiratory breath-hold, (8) upper limit: below carina, (9) lower limit: apex/bottom edge heart. The CT reconstruction protocol was (1) slice thickness: 3.0 mm, (2) slice increment: 1.5 mm, (3) FOV: 250 mm, (4) kernel: b35f (sharp).



EAT is characterized as fatty-like tissue intensity positioned between the myocardium and the visceral pericardium, with intensity limits ranging from −190 HU to −30 HU [39]. Manual annotation of EAT in CT scans can be accomplished through two primary methods: (a) annotating the region within the pericardium and then applying HU value thresholding to extract adipose tissue [11], or (b) directly annotating the region of EAT and utilizing HU value thresholding to generate final labels [12]. Due to the use of low-dose CT in our study, the second annotation strategy can be particularly challenging due to the reduced visibility of fat tissue and increased noise. As such, to ensure feasibility and efficiency, we chose the first annotation strategy. The labels were annotated by an experienced radiologist using the open-source medical imaging processing software 3D Slicer 4.10.2 (https://www.slicer.org/) (accessed on 19 February 2019) [40]. Two kinds of label maps were obtained, as shown in Figure 1: (1) the region inside the pericardium (in the second column, colored in yellow), and (2) the EAT volumes (in the third column, colored in yellow). To reduce the workload, all the annotations were made in the axial view semi-automatically. The radiologist annotated the region inside the pericardium on some 2D slices, and the annotations in between were generated automatically with the ’fill between slices’ effect of the 3D Slicer. Finally, the radiologist checked and corrected the generated annotations. To obtain the EAT, the thresholding of −190 HU to −30 HU was applied, and then the morphological operations of erosion and dilation were used to reduce the noise.




2.2. Methods Description


2.2.1. The 3D U-Net


The original U-Net, proposed by Ronneberger et al. [27], is a U-shape CNN based on the fully convolutional network [41] for biomedical image segmentation. It consists of a downsampling path, an upsampling path, and skip connections in between. The downsampling path is a standard CNN with multiple convolution operations followed by a ReLU and max pooling, and the upsampling path combines the feature maps from deconvolution and concatenation. The use of data augmentation and the special architecture lets U-Net outperform the prior best methods in many medical image segmentation tasks. The 3D U-Net [28] extended the standard U-Net by using 3D convolution operations rather than 2D convolutions. Figure 2 illustrates the network architecture. In the downsampling path, each layer consists of two convolutions with a kernel size of   3 × 3 × 3   and a max-pooling layer with strides of two. In the upsampling path, each layer consists of an upsampling layer with a kernel size of   2 × 2 × 2   by strides of two, and two convolutions which are the same as the convolutions in the downsampling path. The skip connection concatenates the feature maps from the downsampling path to the upsampling path. In all layers, the ReLU and batch normalization (BN) are applied.




2.2.2. The 3D Attention U-Net


The attention U-Net proposed by Oktay et al. [30] extended the 3D U-Net by adding grid-based attention gates (AGs) in the upsampling path. In the standard CNN architecture, to capture semantic contextual information, feature maps are progressively downsampled. In this way, the global features are well maintained, while the local features of small structures with large shape variations may be neglected. Thus, the AG was proposed to force the network to focus on local regions. Figure 3 illustrates the 3D attention U-Net architecture. The distinction between this network and the 3D U-Net in Figure 2 is the additional AGs in the upsampling path.



Attention gate: The schematic of the AGs is shown in Figure 4. The AGs collect the input features   x l   in layer l from the skip connections and the gating signals g from the upsampling path. The gating signal is a grid signal adapted to spatial information. The attention coefficients   α ∈ [ 0 , 1 ]   are calculated as follows:


   α l  =  σ 2   (  ψ T   (  σ 1   (  W x T   x l  +  W g T  g +  b g  )  )  +  b ψ  )   



(1)




where    σ 2   ( x )  =  1  1 + e x p ( − x )     corresponds to the sigmoid activation function, and    σ 1   ( x )  = m a x  ( 0 , x )    corresponds to the ReLU activation function.   W x  ,   W g  , and  ψ  are linear transformations and   b g  ,   b ψ   are the corresponding bias terms. The output attention maps are calculated by the element-wise multiplication of input   x l   and attention coefficients:


    x l  ^  =  x l  ·  α l   



(2)




Briefly, AGs highlight salient features in the concatenation maps.



Deep supervision: In the attention U-Net [30], the authors used deep supervision [32] to guarantee that the intermediate feature maps were able to contribute to the final segmentation. As shown in Figure 3, the red parts indicate how to calculate the deep supervision loss. In the standard U-Net architecture, only the feature map at the final layer is used to calculate the loss. With deep supervision, the outputs from hidden layers contribute to the loss too.




2.2.3. DAU-Net


One of the most recent methods, by He et al. [12], applied a network similar to the standard 3D attention U-Net (in Figure 3) for automatic EAT segmentation and quantification of EAT volume from CCTA. They replaced the original ReLU activation function after convolution, max-pooling, and upsampling with the parametric rectified linear unit (PReLU).




2.2.4. U-Net++


Figure 5 illustrates a U-Net++ architecture with a backbone network of 5 layers. Compared to standard U-Net (the blue blocks and black connections), U-Net++ [31] is an architecture that has additional convolution blocks (the green blocks), dense skip connections (the green connections), and deep supervision (the red part) [32].



Dense skip connection: The number of additional convolution blocks depends on the pyramid level. In the standard U-Net, the feature maps from the downsampling path are concatenated to the feature maps in the upsampling path directly through the skip connections. Conversely, in the U-Net++ structure, due to the additional convolution blocks, more feature maps from convolution blocks at the same level are concatenated to the corresponding upsampling layers. In Figure 5, the feature map produced by the corresponding convolution block is represented by   x  i , j   , where i indicates the level of the block and j indicates the index of the convolution block. The feature maps represented by   x  i , j    are calculated as follows:


   x  i , j   =      C (  x  i − 1 , j   ) ,          j = 0       C (  [   [  x  i , k   ]   k = 0   j − 1   , U  (  x  i + 1 , j − 1   )  ]  ) ,  j > 0       



(3)




where   C ( · )   denotes a convolution operation followed by the ReLU function and batch normalization,   U ( · )   denotes the upsampling operation, and   [   ]   denotes the concatenation operation. For each block, it fuses all the feature maps from the prior blocks at the same level and an upsampled feature map from the lower level. For example,    x  1 , 2   = C  (  [  x  1 , 0   ,  x  1 , 1   , U  (  x  2 , 1   )  ]  )   . In this U-Net architecture, with a backbone network of 5 layers, the feature maps from convolution block    x  0 , j   , j ∈  1 , 2 , 3 , 4    are responsible for the deep supervision.






3. Experiments and Results


3.1. Experiment Set-Up


Data: For the experiments, the dataset was divided into five groups of 31, 31, 31, 31, and 30 CT scans. Groups 1-4 were used for the four-fold cross-validation, and the last group of 30 CTs was reserved for the hold-out evaluation. The initial size in 2D was   512 × 512   pixels. Due to hardware memory limitations, all images were downsampled to   256 × 256   pixels in the axial view.



Implementation details: To bring our experiments into correspondence with the original papers, in the experiments with 3D U-Net, 3D attention U-Net, and DAU-Net, the models were trained using the Dice loss [29]:


   L  D S C    ( Y ,  Y ^  )  = 1 −   2 · P ( Y ⋂  Y ^  )   P  ( Y )  + P  (  Y ^  )     



(4)




where Y denotes the ground truth,   Y ^   denotes the predictions, and   P ( · )   denotes the number of voxels. In the experiments with U-Net++, a combination of the binary cross-entropy and the Dice loss, which is the same as the loss function in the U-Net++ paper, was used as the loss function:


  L = − (  1 2  ·  ∑ i   Y i  · l o g   Y ^  i  +   2 · P ( Y ⋂  Y ^  )   P  ( Y )  + P  (  Y ^  )    )  



(5)




where   Y i   and    Y ^  i   denote the ith pixel of the ground truth or prediction. The backbone model for the U-Net++ was the VGG16 model with 2D convolutions [42]. The models of 3D U-Net and 3D attention U-Net were trained with the publicly available PyTorch implementation in the attention U-Net work https://github.com/ozan-oktay/Attention-Gated-Networks (accessed on 2 March 2021) [30]. The models of U-Net++ were trained with the Keras implementation in the original paper https://github.com/MrGiovanni/UNetPlusPlus/tree/master/keras (accessed on 3 March 2021). As the implementation of the DAU-Net was not publicly available, we implemented it according to the attention U-Net implementation [30]. The code for our experiments is shared on Github at https://github.com/Nirvanall/U-net_family_EAT_segmentationin_LDCT (accessed on 28 July 2023). For all experiments, we used a patch size of 256 × 256 × 96, except for U-Net++. As the U-Net++ was implemented with 2D convolution, we used a patch size of 256 × 256 and a batch size of 64. The initial learning rate was set as   0.0001  , and all models were trained with the data augmentation setting, which was the same as the standard U-Net. More details can be found in Table 1. All models were trained with a maximum training epoch number of 500, with early stopping. All experiments were carried out using an NVIDIA Quadio RTX 6000 with 24 GB of memory.



Evaluation metrics: For evaluation, we selected four metrics—the Dice similarity coefficient (DSC), the mIoU, the sensitivity, and the specificity. DSC computes the overlap of the region between the ground truth and the predicted segmentation:


  D S C =  1 N    2 · P ( Y ⋂  Y ^  )   P  ( Y )  + P  (  Y ^  )     








where N indicates the number of CTs, Y denotes the ground truth,   Y ^   denotes the predictions, and   P ( · )   denotes the number of pixels or voxels. A higher DSC indicates better prediction results. mIoU computes the similarity between the predicted segmentation and the ground truth:


  m I o U =  1 N    P ( Y ⋂  Y ^  )   P ( Y ⋃  Y ^  )    








mIoU is a more strict metric compared to DSC, and a higher mIoU generally indicates better segmentation. Sensitivity measures the rate of corrected predictions divided by the ground truth of the positive regions:


  s e n s i t i v i t y =  1 N    P ( Y ⋂  Y ^  )   P ( Y )    











Higher sensitivity indicates the prediction is better at predicting positive regions, which are the target regions. Specificity measures the rate of corrected predictions over the ground truth of the negative regions:


  s p e c i f i c i t y =  1 N    P (  Y ¯  ⋂   Y ^  ¯  )   P (  Y ¯  )    








where   Y ¯   and    Y ^  ¯   indicate the ground truth and prediction of the negative regions, which are the background. Higher specificity indicates a better ability to predict background.




3.2. Results


Herein, we demonstrate both cross-validation and hold-out evaluation for the selected methods. We trained all four networks using two types of labels separately, which included the region inside the pericardium (Figure 1b) and EAT labels (Figure 1c). The corresponding results are summarized in Table 2 and Table 3.



3.2.1. Four-Fold Cross-Validation


For cross-validation, all models were trained with 93 CTs. From the cross-validation results shown in Table 2, the models trained with pericardium masks showed better performance compared to models trained with EAT labels. The U-Net++ models showed better results on almost all metrics compared to the 3D models.




3.2.2. Hold-Out Test


Similarly, for the hold-out test, all models were trained with both types of labels separately. The hold-out test was performed using 30 reserved test samples, and the models were trained with 124 samples. The numerical results are shown in Table 3. The results of the hold-out test show that: (1) most models showed better performance compared to the cross-validation as the result of more training data, (2) generally, the models trained with pericardium masks performed better than the corresponding models trained with EAT labels, and (3) U-Net++ models showed the best performance compared to the other models, both for hold-out test and cross-validation. We noticed that the performance of 3D attention U-Net was unexpectedly similar to or even lower than the performance of 3D U-Net. By checking the evaluation results on every test sample, we found that the variance in 3D attention U-Net segmentation results was much higher. Most of the segmentation results were better, but some cases had extremely low performance. The employment of attention mechanisms might account for the observed lower performance and increased variance. A detailed discussion on this matter is presented in Section 4. Especially for the attention U-Net model trained with EAT labels, though most of the predictions had a Dice higher than 65%, 6 out of 30 predicted segmentation results showed very low performance (some even lower than 1% for DSC).



The comparisons between all models—3D U-Net, 3D attention U-Net, DAU-Net, and U-Net++—are demonstrated using 2D visualization in axial, coronal, and sagittal views in Figure 6a (models trained with pericardium masks) and Figure 6b (models trained with EAT labels). The corresponding errors are green for false positives and blue for false negatives. From the errors, we see that most of the mistakes were the false positive pixels (in green). In CT, most of the green pixels were the mediastinal fat located outside of the pericardium, but were similar to the EAT visually. Compared to the models trained with pericardium masks, models trained with EAT had more false negative pixels inside the pericardium.





3.3. Quantitative Analysis of EAT Volume


The Pearson correlation coefficients for every model are shown in Table 2 and Table 3. Based on the results of the hold-out test, we show the Bland–Altman plots for all models trained with 124 samples, in Figure 7 for models trained with pericardium masks and Figure 8 for models trained with EAT labels. Quantitatively, U-Net++ showed the best performance in terms of Pearson correlation coefficient (0.9606) and outperformed the other models in the Bland–Altman analysis. Compared to the correlation coefficient (  r = 0.98  ) of the EAT volume from two observers reported in [17], all the trained models were below this value.





4. Discussion


The performance comparison of the state-of-the-art methods for EAT segmentation showed some interesting information: (1) Generally, the neural networks trained with the pericardium masks showed better segmentation and quantification results; and (2) U-Net++ trained with the pericardium masks outperformed the other models on segmentation and quantification. Furthermore, the process, encompassing data collection to evaluation results, involves numerous intricate details. Here, we discuss some points that we believe are crucial to EAT segmentation and quantification.



Label types: To the best of our knowledge, there are two types of labels in the works for EAT segmentation: (1) the pixel-wise or voxel-wise label maps (e.g., in [7,33]), and (2) the contours or outlines of the EAT (e.g., in [12,20]). There are various ways to obtain these labels, but, as most works are based on unpublished data, we cannot know the labeling protocols in detail. Based on our observations of example figures with labels and our extensive experience in labeling, it is evident that there is no ideal label type for EAT segmentation. Regarding pixel-wise or voxel-wise label maps, it is important to consider the physical characteristics of CT scans. Specific noise points can be erroneously classified as EAT within the pericardium. Though we could remove most of the noise with some denoising techniques, it is hard to remove all of them. The contours and outlines may better focus on the region with fat tissue. Because, geometrically, the contours occupy pixels or voxels, some small regions with very thin layers of fat may be neglected during labeling. In addition, the delineation of complex structures could be extremely time-consuming in 3D data such as CTs.



From the evaluation perspective, different label types could lead to different errors. For pixel-wise and voxel-wise labels, as there is noise, these may lead to more false negatives in the prediction. For contours and outlines labels, as some fat tissue may be missing, these may lead to more false positives in the prediction.



Attention mechanism: Compared to the results obtained from other methods, the performance of 3D attention U-Net demonstrates relatively lower accuracy and exhibits larger variance. While attention mechanisms can be advantageous in focusing on informative regions and enhancing performance in certain scenarios, they may also introduce additional complexity and elevate the risk of overfitting. Moreover, the effectiveness of attention mechanisms heavily relies on the dataset characteristics and the specific target structures being segmented. In the case of EAT segmentation in LDCT, where the target object has low visibility, the attention mechanism may lead to more errors. In Figure 6, it is evident that most mistakes made by the attention-based model are false positives below the pericardium, which aligns with the results obtained from the DAU-Net. Hence, the attention mechanisms might pose challenges in excluding structures below the pericardium accurately.



Domain knowledge: As the goal of EAT segmentation network is to find the exact locations of EAT voxel-wisely, ideally, it should mimic the manual segmentation progress as performed by radiologists. Thus, anatomical knowledge about EAT is a crucial reference for segmentation. By using the labels of pericardium masks, the network is forced to learn knowledge about pericardium, which is the foundation to distinguish EAT and adjacent similar structures such as mediastinal fat. Apart from our dataset, some works on EAT segmentation used labels that included pericardium knowledge too [7,20]. However, most works did not incorporate this knowledge deeply in deep neural networks. From a recent review of anatomy-aided deep learning for medical image segmentation [43], we noticed that there are many possible ways to incorporate anatomy information into deep learning. A well-integrated network could take advantage of both anatomy knowledge and data-driven deep learning methods.



Patch size: For models using 3D convolution operations, the patch size is a key hyperparameter for training. Due to the large image size of medical images and the memory limitation of GPUs, usually, it is not feasible to process a 3D image as one input for the input layer. Thus, the common way to solve this is to set a patch size for the input layer. By setting the patch size, the large 3D images are divided into multiple patches and processed separately for training. As the patch size influences the size of feature maps and the contextual information in the training process directly, it influences the segmentation results significantly. From our experiments and related papers, we noticed that, generally, a larger patch size could lead to better results. However, a larger patch size may lead to a much higher computational cost. Thus, there is a trade-off to choose the proper patch size for training performance and efficiency. In this paper, we selected   256 × 256 × 96  , which is a relatively large patch size.



Training time and inference time: For all experiments, we set the maximum training epoch number as 500, with early stopping. With the exception of U-Net++, which stopped earlier, the other models were trained until the 500th epoch. The training time for U-Net++ models (usually stopped at around the 80th epoch) was between 12 and 17 h, while the training time for 3D U-Net, attention U-Net, and DAU-Net was between 5 and 8 days, due to the different amounts of training data and different label types. The inference times for all models ranged from 4.33 s to 6 s per sample and were relatively similar. Thus, to verify whether training for a longer time would increase the performance, we trained models of 3D U-Net in the hold-out test set-up for 1000 epochs (in Table 4) with both label types. All models showed improving performance. Particularly, the model trained with EAT showed obvious improvement. However, the computation cost was very high, as the training time doubled.



Deep supervision: During experiments, we noticed that deep supervision influenced the decrease in training loss and models’ performance sharply. To verify the effects of deep supervision, we trained 3D attention U-Net models with and without deep supervision (in Table 5).



To visualize the prediction of 3D attention U-Net, we show the region inside pericardium segmentation results of 3D attention U-Net with and without deep supervision in Figure 9. Without deep supervision, the segmentation focused too much on the inside region and misses some pixels around the pericardium. This reduced the performance of EAT segmentation sharply, as most EAT locates near the pericardium.



Evaluation: As some models are trained with 3D inputs and some are trained with 2D inputs, the evaluation could sometimes be tricky. From the previous works on EAT segmentation, we noticed that most of the early works were based on 2D CT slices [7,13,19,20,21], while some recent works were based on 3D CT images [9,12]. At the evaluation stage, when computing the mean values for evaluation metrics, early works treated one 2D slice as a sample [7], while some recent works treated a 3D image as a sample [12]. Therefore, there is a numerical difference due to the different computation settings. We tested both computation settings of mean values for our trained U-Net++ models. The mean values computed based on 2D samples were slightly higher than those computed based on 3D samples. However, considering that one 3D sample is from one patient, all the evaluation metrics in our paper were calculated based on 3D samples.



Future Work


From the related literature and our experiments, we believe that there is potential for automatic EAT segmentation. Here, we list some future work directions that we hope could be helpful for further research.



Domain knowledge: From the previous works, we noticed the lack of domain knowledge in the research into EAT segmentation and quantification. Many models for EAT segmentation only applied an existing segmentation network to the EAT data directly. Thus, the domain knowledge from the radiology aspect and the anatomical uniqueness of EAT is ignored. We believe that there are more possibilities if we could incorporate deep learning techniques and domain knowledge deeply.



Data unification: Due to the large variety of data acquisition protocols, the comparison between research papers on this topic is hard. Thus, a unified labeling and data acquisition protocol could reduce this barrier and increase the reproducibility of future works.



Benchmark: Compared to some popular medical image segmentation tasks such as brain tumors or lung nodules, there are very limited publicly available data or benchmarks with EAT labels. Thus, the comparison between methods is hard and the reproducibility is very low. With a benchmark, this problem could be solved, and the visibility and popularity of EAT segmentation could be improved.



Deep learning techniques: Recently, the deep learning techniques for segmentation have improved rapidly. Many techniques such as generative adversarial networks, physics-informed deep learning, and graph neural networks have shown success in many other segmentation tasks [44], but have not yet been applied to EAT segmentation.





5. Conclusions


In this work, we compared four state-of-the-art models (3D U-Net, 3D attention U-Net, DAU-Net, and U-Net++) from the U-Net family with regard to their performance for EAT segmentation and quantification. All models were evaluated on a dataset of 154 LDCT from the ROBINSCA trial with two different types of labels. The U-net++ model trained with pericardium masks showed better EAT segmentation and quantification results as well as higher efficiency compared to the other models. Based on the experimental results and existing literature, we examined crucial aspects of EAT segmentation and identified potential areas for future research. While state-of-the-art methods from the U-net family have displayed promising results, they also exhibit certain limitations when it comes to EAT segmentation and quantification. We are optimistic about the potential of deep learning techniques in alleviating the workload of radiologists and potentially replacing labor-intensive manual evaluations. However, there is still a considerable amount of work ahead of us before achieving the necessary standards for clinical application.
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The following abbreviations are used in this manuscript:



	EAT
	Epicardial adipose tissue



	CT
	Computed tomography



	NCCT
	Non-contrast CT



	CCTA
	CT angiography



	MRI
	Magnetic resonance images



	DSC
	Dice similarity coefficient



	mIoU
	Mean intersection of union



	GPU
	Graphical processing unit



	CNN
	Convolutional neural network



	ReLU
	Rectified linear unit



	AG
	Attention gate



	BN
	Batch normalization
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Figure 1. (a) An example of a CT slice, (b) the binary label of the region inside the pericardium, and (c) the pixel-wise EAT label. 
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Figure 2. The 3D U-Net architecture. Blue boxes are feature maps, while gray boxes are concatenation maps.   F l   denotes the number of feature maps in layer l; H denotes the height; W denotes the width; D denotes the number of dimensions;   N c   denotes the number of classes. “Conv” is an abbreviation for convolution layer, “ReLU” stands for rectified linear unit, and “BN” is an abbreviation for batch normalization. The input image is downsampled by a factor of two at each level in the downsampling path and upsampled by a factor of two in the upsampling path. 
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Figure 3. The 3D attention U-Net architecture. Blue and pink boxes are feature maps, while gray boxes are concatenation maps.   F l   denotes the number of feature maps in layer l; H denotes height; W denotes width; D denotes the number of dimensions;   N c   denotes the number of classes. The input image is downsampled by a factor of two at each level in the downsampling path and upsampled by a factor of two in the upsampling path. Attention gates scale the concatenated features from the skip connections with the calculated attention coefficients from both the input features and the gating signals. The structure of the AG is shown in Figure 4. The deep supervision part is in red. 
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Figure 4. The structure of the AG. The input features   x l   are scaled by the computed attention coefficients  α  in AG. To compute  α , the gating signal g and the input features   x l   are linearly transformed by   W g   and   W x   and summed. By analyzing the sum progressively by the ReLU activation, the linear transformation  ψ , the sigmoid activation, and a grid resampler of trilinear interpolation, the attention coefficients  α  are obtained. 
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Figure 5. The U-Net++ architecture with a backbone network of 5 layers. Every circle block indicates a convolution operation with an activation function and BN. The blue blocks and the black connections indicate the original U-Net architecture. The additional convolution blocks and dense connections are in green. The red parts indicate deep supervision. 
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Figure 6. Visualization of segmentation results. The first column shows the ground truth, and the other columns show predictions from 3D U-Net, attention U-Net, DAU-Net, and U-Net++. The first row shows the segmentation in the axial view, the second row is for the coronal view, and the third row is for the sagittal view. In the segmentation results, the true positive is highlighted in yellow, the false positive is highlighted in green, and the false negative is highlighted in blue. 
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Figure 7. Bland−Altman plots for EAT volume for models trained with the pericardium masks. Comparison between the predicted pixel number of EAT and the ground truth pixel number. 






Figure 7. Bland−Altman plots for EAT volume for models trained with the pericardium masks. Comparison between the predicted pixel number of EAT and the ground truth pixel number.



[image: Technologies 11 00104 g007]







[image: Technologies 11 00104 g008 550] 





Figure 8. Bland−Altman plots for EAT volume for models trained with the EAT labels. Comparison between the predicted pixel number of EAT and the ground truth pixel number. 
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Figure 9. Segmentation results of 3D attention U-Net. (a) ground truth. (b) segmentation results of 3D attention U-Net without deep supervision. (c) segmentation results of 3D attention U-Net with deep supervision. 
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Table 1. Implementation details.






Table 1. Implementation details.





	Model
	3D U-Net
	3D Attention U-Net
	DAU-Net
	U-Net++





	convolution dimension
	3
	3
	3
	2



	deep supervision
	False
	True
	True
	True



	decoder block type
	Upsample
	Upsample
	Upsample
	Transpose



	optimizer
	SGD
	SGD
	SGD
	Adam
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Table 2. Cross-validation results of the selected models. The highest Pearson correlation is marked in bold.
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Model

	
Label Type

	
DSC (%)

	
mIoU (%)

	
Sensitivity (%)

	
Specificity (%)

	
Correlation






	
3D U-Net

	
Pericardium

	
   74.90 ± 1.30   

	
   60.92 ± 1.47   

	
   77.67 ± 2.15   

	
   99.53 ± 0.00   

	
0.7588




	
EAT

	
   59.04 ± 0.92   

	
   42.45 ± 0.74   

	
   70.99 ± 2.42   

	
   98.96 ± 0.00   

	
0.5648




	
3D attention U-Net

	
Pericardium

	
   68.52 ± 6.38   

	
   56.62 ± 5.97   

	
   70.50 ± 10.22   

	
   99.69 ± 0.00   

	
0.2085




	
EAT

	
   54.94 ± 6.43   

	
   41.56 ± 4.78   

	
   57.34 ± 9.92   

	
   99.47 ± 0.00   

	
0.3883




	
DAU-Net

	
Pericardium

	
   80.06 ± 0.50   

	
   67.30 ± 0.91   

	
   91.80 ± 0.46   

	
   99.34 ± 0.00   

	
0.8448




	
EAT

	
   71.91 ± 0.49   

	
   56.58 ± 0.69   

	
   83.01 ± 0.28   

	
   99.17 ± 0.00   

	
0.8596




	
U-Net++

	
Pericardium

	
   86.16 ± 0.23   

	
   75.97 ± 0.51   

	
   88.31 ± 0.55   

	
   99.72 ± 0.00   

	
0.9123




	
EAT

	
   77.42 ± 0.71   

	
   63.78 ± 0.90   

	
   84.61 ± 1.61   

	
   99.47 ± 0.00   

	
0.7303
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Table 3. Hold-out test results of the selected models. The highest Pearson correlation is marked in bold.
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Model

	
Label Type

	
DSC (%)

	
mIoU (%)

	
Sensitivity (%)

	
Specificity (%)

	
Correlation






	
3D U-Net

	
Pericardium

	
   74.42 ± 1.37   

	
   60.37 ± 1.57   

	
   72.95 ± 2.67   

	
   99.64 ± 0.00   

	
0.6661




	
EAT

	
   63.94 ± 1.20   

	
   47.84 ± 1.20   

	
   69.83 ± 2.17   

	
   99.22 ± 0.00   

	
0.6293




	
3D attention U-Net

	
Pericardium

	
   74.99 ± 4.79   

	
   63.48 ± 4.36   

	
   80.29 ± 7.27   

	
   99.57 ± 0.00   

	
0.5120




	
EAT

	
   55.39 ± 5.26   

	
   41.32 ± 3.96   

	
   60.11 ± 9.39   

	
   99.35 ± 0.00   

	
0.1386




	
DAU-Net

	
Pericardium

	
   82.33 ± 0.39   

	
   70.43 ± 0.80   

	
   90.11 ± 0.45   

	
   99.49 ± 0.00   

	
0.8445




	
EAT

	
   72.13 ± 0.40   

	
   56.78 ± 0.61   

	
   82.69 ± 0.20   

	
   99.21 ± 0.00   

	
0.8047




	
U-Net++

	
Pericardium

	
   87.99 ± 0.12   

	
   78.71 ± 0.30   

	
   91.45 ± 0.17   

	
   99.72 ± 0.00   

	
0.9606




	
EAT

	
   80.18 ± 0.20   

	
   67.13 ± 0.39   

	
   81.47 ± 0.43   

	
   99.64 ± 0.00   

	
0.9405
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Table 4. Hold-out test results of 3D U-Net at the 1000 th epoch.






Table 4. Hold-out test results of 3D U-Net at the 1000 th epoch.





	Label Type
	DSC (%)
	mIoU (%)
	Sensitivity (%)
	Specificity (%)





	Pericardium
	  76.04 ± 2.08   (+1.62)
	  63.03 ± 2.27   (+2.66)
	  73.10 ± 3.69   (+0.15)
	  99.74 ± 0.00   (+0.10)



	EAT
	  70.97 ± 0.71   (+7.03)
	  55.58 ± 0.83   (+7.74)
	  76.45 ± 1.53   (+6.62)
	  99.38 ± 0.00   (+0.16)
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Table 5. Hold-out test results of 3D attention U-Net without deep supervision.






Table 5. Hold-out test results of 3D attention U-Net without deep supervision.





	Label Type
	DSC (%)
	mIoU (%)
	Sensitivity (%)
	Specificity (%)





	Pericardium
	  65.60 ± 9.26   (−9.39)
	  54.90 ± 7.94   (−8.58)
	  61.25 ± 10.75   (−19.04)
	  99.86 ± 0.00   (+0.29)



	EAT
	  45.85 ± 9.89   (−9.54)
	  34.93 ± 7.01   (−6.39)
	  39.26 ± 9.59   (−20.85)
	  99.83 ± 0.00   (+0.48)
















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
3D UNet

3D attention U-Net

omoiac)

om0

I ) —
§ sramoeisseo)| £
g | 1 -
I — -—
i i
D
.
“ 2,000 (+1.9650) |

R o






media/file4.png
Input image

Segmentation

-~ = < Concatenation

P (Conv+ReLU+BN) x2
} Max-pooling (by 2)

KJ’ Upsampling (by 2) y






nav.xhtml


  technologies-11-00104


  
    		
      technologies-11-00104
    


  




  





media/file18.png





media/file16.png
-
w
J

5 3D U-Net 3 3D attention U-Net
3 I R P ——c— | T o TSI )
;E, S
= 1 o 1+t
$ 2
a 75,000 (+1.96SD) | & T ——
£ o s g
g 0.5 e o . .E_. 05 %
g . .. '.‘. . g sl @
9 - ® 14,000 [p=0.02] ) . S .
S o ; . e S o} s °
: o . ! o -7300 [p=0.56]
2 ' &
& £ . . ”
2-05 -48,000 (-1.96SD) 2 05
— e —_ a®
[ [
X 2 2
o é a
c |~
- I 8 af =
5 5 Y
g 3
o B [|lhiasntcaanuanannioansannose T I TS i T T
15 15 - : - - 140,000 (-1.96SD
0.5 1 15 2 25 3 0 05 1 15 2 25 3
Ground truth pixel number 10° Ground truth pixel number <10%
5
1510 DAU-Net 5,24 U-Net++
£ £
- k-3 3
= 3 = I
* ” 82,000 (+1.96SD) %
Q & a
£ . E=
2 05t ? v 2 os}
- W A " 30,000 [p=0.00] -
3 . LR . — G et et 14.000 (+1.96SD
o i T o . 3 000 (+1. )
S ot . e e S o ° e n.2 ..0 - -
3 | ] Pt -8800 [p=0.00]
8 22,000 (-1.96SD) | & N
€ . g . -32,000 (-1.96SD
€ 05 € 05
T T
X x
Q Q
|~ c
S L af
B B
3 3
a a
15 - - - . - : 1.5 - : - : - :
05 1 15 2 25 3 05 1 15 2 25 3
Ground truth pixel number <10° Ground truth pixel number <10°






media/file2.png





media/file5.jpg
tax X'

-

.A faxsm
-

L
+
© Caxmxuxu
] -
1 (R,
! fax XX
i 2
H
H
i
i
i
i
i
i
i
i

'A AR
Y






media/file3.jpg
P (comsnetusen 2

b Maxpooling oy 2)
> Upsamping 0y 2)






media/file1.jpg





media/file7.jpg
@ atentioncate D Eementise sum

Gating signal ¢

o, —> IR —
py

S

Atention coeffcients

Sigmoid ()

s

P ——

Input features 3,

Rosamplor






media/file10.png
Downsampling
Upsampling
Concatenation

Convolution

~






media/file12.png
T

ﬁrﬁf

RZr=

e N

R =

e

T T

oGy

fEy

e

FEy .

Rrr=

N

[RZ =

L S






media/file9.jpg





media/file0.png





media/file14.png
<10° <10°
15 15 .
S 3D U-Net 3 3D attention U-Net
£ € o
2 <
5 s I 98,000 (+1.96SD)
X X
Q ™ Q
= £
2 05 : 57,000 (+1.96SD) 2 os| el &
T o ©
& c o ®
5 .0 ° ‘. . § L ... .. .. .. "
S o L O of 2800 [p=0.76]
= * T -8200 [p=0.18] o o ®
2 g = 2 o B :
E ® 9 £
2 -05 & 2 05
° o °
.g_ il -73,000 (-1.96SD) -;-S_ w
_S p 5 el T s S -93,000 (-1.96SD)
k3] B
g B .
a a
-1.5 15 A L L s s J
0 0.5 1 15 2 25 3 0 05 1 15 2 25 3
Ground truth pixel number 10° Ground truth pixel number <10%
5 5
18,10 DAU-Net 18" U-Net++
= =
2 | . 2 |
© )
< % 69,000 (+1.96SD) £
2 os} " . 2 05t 2
g %0 o 26,000 (020,00 g _________________________ i RN, 29,000 (+1.96SD)
8 R T Yl % 4 ,000 [p=0.00] 3 i .,,.’.-’.. .:_ 7800 [p=0.00]
0t 0t P
! . '. ° B Lot e B e . — -14,000 (-1.96SD)
-  DI—— 30,000 (-1.96SD) | &
g 05 2 05
2 2
a (=8
c c
Qo af Qo .t
B B
8 8
o o
_15 s 1 'S ' 1 J _15 ,l [ 1 1 1 ']
0 05 1 15 2 25 3 05 1 15 2 25 3
Ground truth pixel number <10% Ground truth pixel number <10°






media/file8.png
. Attention Gate @ Element-wise sum

5 (<) Element-wise multiplication
Gating signal g

FX HXW,x D, —3 Wilx1x1 — _ " Attention coefficients
ReLU(q,) Sigmoid (o) .
ol - - o—
| Resampler |
Input features x,

ExH xW,xD, —|—) Bolnlel —






media/file11.jpg
Ground truth 3DU-Net  Attention U-Net

(a) Segmentation results trained with pericardium masks.

Ground truth 3DU-Net  Attention U-Net  DAU-Net

h EAT labels.





media/file6.png
uonejuswbag

ax'Mx'mx'q _

A
'A T XM X XY
A
AXMXH XY
4
. A Eq X M X SH X Y
I

A

XM X XY
A

'A T XM X TH X T
A

L

b

§

-
8 @
’ mﬁMlma
23 928 o T
faxmxHxd s3I L5 L D
’ .mwm.gmm
SEXE 8 S
S§0=0 5 <
VN A
laxmxExT !
.

)
)
> >
D
\

abew 1nduj






media/file15.jpg
R R ——"——
1 ol
I —_—
.
1 — N
e 1
I I -
- DAU-Net - U-Nets+
. 82000 (+1.9650)

2ot 13650)

e

azconresol

[






media/file17.jpg





