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Abstract: Communication is integral to every human’s life, allowing individuals to express them-
selves and understand each other. This process can be challenging for the hearing-impaired pop-
ulation, who rely on sign language for communication due to the limited number of individuals
proficient in sign language. Image classification models can be used to create assistive systems to
address this communication barrier. This paper conducts a comprehensive literature review and
experiments to find the state of the art in sign language recognition. It identifies a lack of research in
Norwegian Sign Language (NSL). To address this gap, we created a dataset from scratch containing
24,300 images of 27 NSL alphabet signs and performed a comparative analysis of various machine
learning models, including the Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and
Convolutional Neural Network (CNN) on the dataset. The evaluation of these models was based
on accuracy and computational efficiency. Based on these metrics, our findings indicate that SVM
and CNN were the most effective models, achieving accuracies of 99.9% with high computational
efficiency. Consequently, the research conducted in this report aims to contribute to the field of NSL
recognition and serve as a foundation for future studies in this area.

Keywords: Norwegian Sign Language recognition; machine learning; image classification; assistive
technologies; fingerspelling

1. Introduction

An integral part of every human’s life is communication. It is the way they express
themselves and understand each other. For most humans, communication comes naturally.
They use their ears as input and mouths as output. A less fortunate minority of humans
cannot use their hearing or voice to communicate. They must rely on sign language to
communicate, where visual movements and hand gestures are used.

According to the World Health Organization, 5% of the world (430 million) struggle
with hearing loss, which is likely to increase [1]. Seventy million out of those 430 million are
completely deaf [2]. For the deaf and hard of hearing, it is often difficult to communicate
with most of the population because a minority speaks sign language. This can cause issues
in their daily lives that can be tough to deal with. Using machine learning models to create
sign language translation models is one way to assist the deaf and hard of hearing [3].

Typically, when humans do not speak the same language, they use a translator to help
them understand each other. The same goes for someone who communicates through sign
language when trying to understand an individual who uses oral communication. Sign
interpreters are a common way to help the deaf and hard of hearing by translating for
them [4]. This is an excellent service where individuals can receive aid from professional
sign language interpreters in real-time. The issue with such services is availability because
there is a lack of interpreters worldwide for this service always to be available [5]. Ma-
chine learning classification models can be implemented to complement sign interprets by
recognizing sign language to assist the deaf and hard of hearing.
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Using machine learning models for sign language recognition is a well-researched
topic. However, despite advancements in sign language recognition, there is a lack of
research focused on NSL recognition. Therefore, further research is needed to determine
the most effective classification model for NSL recognition to assist the deaf and hard of
hearing in Norway and build a foundation for future work.

Our paper compares machine learning classification models to determine which
approach is most suitable for NSL recognition to address this issue. The research will use
a custom-made dataset containing 24,300 images of 27 NSL alphabet performed by two
signers using different backgrounds and lightning.

However, it is essential to note some limitations of our study. The dataset includes
images from only two signers, which may limit the model’s ability to generalize across
a diverse range of signers. Additionally, while our research provides valuable insights
into recognizing NSL signs, it does not offer comprehensive guidelines for creating and
implementing complete NSL recognition systems. The results obtained in this study should
be seen as a foundation for further research and development.

2. Literature Review

Vision-based sign language recognition is a well-researched topic involving developing
machine learning models to recognize sign language. These models use various inputs,
such as cameras or sensors, to identify and interpret sign language [6]. There are several
categories within sign language recognition, including fingerspelling, isolated words,
lexicons of words, and continuous signs [7].

Despite the promising potential of this technology, there is a noticeable gap in research
focusing on NSL recognition. This is surprising, considering an estimated 250,000 to
300,000 hearing-impaired individuals in Norway, with 3500 to 4000 being completely
deaf [8].

We aim to research specific machine learning models, examining their strengths and
weaknesses. We aim to highlight why these models are suitable in our comparative analysis
of NSL recognition. We also reference results from previous research papers to provide
context and results from research on other sign languages.

2.1. K-Nearest Neighbor

K-Nearest Neighbor (K-NN) is a simple yet fundamental non-parametric supervised
classification model requiring little data distribution knowledge [9]. It is known as a lazy
learner because there are no parameters for KNN [10]. The general steps to how the K-NN
model works written by [11] goes as follows: Based on the input data, KNN finds the
K most similar instances to an unseen observation by calculating the distance between
them. Then, the algorithm picks the k points based on the training set closest to the new
observations made and calls it set A. The last step is assigning the new observations to the
most probability class. This is determined by searching for the match that closely looks
like the new example among the learned training observations. Because KNN offers such
simplicity, it is a commonly used classification algorithm, but when the dataset and its
features are large, the model can lose much of its efficiency [12].

Because KNN is a classifier that employs the scikit-learn library in Python, the optimal
hyperparameters for the model can be determined using GridSearchCV or Randomized-
SearchCV methods. These methods explore all possible parameter combinations and
samples from parameter distributions and can leverage cross-validation schemes and score
functions provided by scikit-learn [13].

In [14], they created an ISL recognition system where the input image was first catego-
rized as either a single-handed or two-handed sign language gesture using a HOG-SVM
classifier. Then, they used feature extraction using SIFT and HOG, and finally, they used
KNN to classify the images. They used a dataset containing 520 images to train their model
and 260 images to test their model, where 60 of those images were from 6 single-handed
sign language gestures and 200 images were divided into 20 double-handed sign language
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gestures. They achieved an accuracy of 98.33% on their single-handed data and 89.5% on
their double-handed data.

In [11], they created a KNN ASL sign language recognition model where they used
logarithmic plot transformation and histogram equalization for image reprocessing, then
canny edges and L*a*b color space for segmentation. They used HOG for feature extraction
on a dataset containing 26 alphabet signs, with 14 samples for training and eight for testing.
Their KNN model achieved 94.23% accuracy on their test set.

2.2. Convolutional Neural Network

Convolutional Neural Network (CNN), inspired by the organization of the visual
cortex in the human brain, is a popular, supervised machine learning model for image
classification tasks due to its ability to generalize well and handle large-scale datasets [15].
CNN models generally consist of convolutional, pooling, and fully connected layers and are
trained using backpropagation to recognize visual patterns from the pixels of images [16].
The process is as follows in [6]. First, the convolutional layer extracts the input data by a
convolution operation, reduces feature dimensionality through a pooling layer, then passes
the most significant features to the fully connected layer to categorize the images.

When creating CNN models, the creator has many options, and the hyper-parameters
one chooses will significantly impact the model’s accuracy [15]. A large dataset is crucial
for training an effective deep learning model such as a CNN [17]. Dropout is also often
an added technique used in CNN models to prevent overfitting. Randomly dropping out
neurons during training with a specified probability makes the model more robust and
generalized, reducing reliance on any single neuron [18].

In [19], they used CNN for their real-time ASL recognition model, skin color detection,
and convex hull algorithm for segmentation of the hand location. Then resized that hand
region to 28 × 28 pixels and converted it to grayscale as part of their feature extraction.
They achieved 100% accuracy on their test data and 98.05% on their real-time system.
Their model was trained on a static fingerspelling dataset created by [20], which consists
of 900 images of 25 hand gestures. Reference [21] created a SLRNet-8 CNN model ASL
recognition, which was trained and tested on four different datasets containing a combined
size of 154,643 in 38 classes (alphabet, 0–9, delete, nothing, space). They grayscaled the
images, performed normalization, and resized them to 64 × 64 pixels. Their model achieved
an average accuracy of 99.92% on the mixed dataset. Reference [22] created a CNN model
using a public dataset from MNIST to create a better-performing model. They performed
augmentation to create a total of 34,627 28 × 28 static images of the alphabet (excluding J,
Z). The paper was written to compete with state-of-the-art methodologies and achieved an
accuracy of 99.67%, which beat other models such as SVM, DNN, and RNN.

2.3. Support Vector Machine

Support Vector Machine (SVM) is a supervised learning model used for pattern recog-
nition and classification or regression analysis. It works by finding an optimal hyperplane
that separates the data classes by maximizing the distance between the margin and the
classes, reducing classification errors [6]. SVM is an effective machine learning algorithm
for sign language prediction, particularly in high-dimensional spaces and when the number
of samples exceeds the number of dimensions [23]. While SVM is excellent at classifying, it
requires a lot of computational power if the dataset size is too large. Therefore, it can also
have computational issues if implemented in real-time applications [24]. According to [24],
having a good training set with quality labels and balanced data is essential to creating a
successful SVM model. Such as the KNN classifier, SVM is a classifier that employs the
scikit-learn library in Python to build the model. Therefore the optimal hyperparameters
for the model can be determined using GridSearchCV or RandomizedSearchCV.

Ref. [25] used SVM to create a static PSL (Pakistan Sign Language) model. They used
K-means clustering segmentation to separate the fingers and palm area (foreground) from
the background. They then used multiple kernel learning to test which feature extraction
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method was the most effective. They tried EOH (Edge Orientation Histograms), LBP (Local
Binary Patterns), and SURF, and the results showed that HOG combined with linear kernel
function achieved the best accuracy of 89.52%. They used a dataset containing 6633 static
images of 36 alphabet signs from 6 signers to build this model. In [26], they created an SVM
model that performed pre-processing by converting the images to grayscale, normalizing
the data, and applying gamma correction. For feature extraction, they used Multilevel-
HOG. They performed this on an ISL complex background dataset containing 2600 images
of 26 classes in grayscale and an ASL dataset containing 2929 images of 29 classes in
grayscale. They achieved 92% accuracy on the ISL complex background dataset and 99.2%
accuracy on the ASL dataset.

2.4. Key Findings

The finding in our literature search reveals that sign language recognition is a well-
researched topic. Primarily for static sign language recognition models, there was a lot of
research on KNN, CNN, and SVM models. Based on our summary in Table 1, we can see
that the segmentation varied across all three classification models. Still, HOG was very
popular for feature extraction across all the models. CNN seems to have a lot of research
that does not include segmentation or feature extraction of their datasets. Still, they usually
balance that out with quality pre-processing and large datasets, one of the most important
aspects of CNN models. The accuracy of all the models is very good, and there is no clear
indication of which model best suits sign language recognition.

Table 1. Summary of finding different machine learning models.

References Segmentation Feature Extraction Classification Dataset Accuracy

(B. Gupta,
Shukla, and
Mittal 2016)

NaN SIFT and HOG

HOG-SVM to
categorize images as
single or two-handed
gestures, then KNN

for classification

780 ISL images of
6 one-handed and

20 two-handed
alphabets

98.33% for
one-handed

89.5% for
two-handed

(Mahmud
et al. 2018)

Canny edges and
L*a*b color space HOG KNN 572 ASL images on

26 alphabets 94.23%

(Taskiran,
Killioglu, and

Kahraman
2018)

Skin color
detection and
convex hull
algorithm

Rezised hand
region to

28 × 28 pixels and
grayscaled it

CNN 900 ASL images on
25 alphabets

100% on test
data 98.05% on

real-time
system

(Rahman
et al. 2019) NaN NaN SLRNet-8 CNN

154,643 ASL images on
38 gestures from four

different datasets
99.92%

(Mannan
et al. 2022) NaN NaN CNN 34,627 ASL images on

26 alphabets 99.67%

(Shah
et al. 2021)

K-means clustering
to separate

foreground and
background

HOG Linear SVM
6633 PSL images on
36 alphabets from

6 signers
89.52%

2600 ISL images on
26 grayscale alphabets

92% accuracy
on ISL

(Joshi, Singh,
and Vig 2020) NaN Multilevel-HOG SVM with complex

background
2929 ASL images on

29 grayscale alphabets.
99.2% accuracy

on ASL

During our research, we found some gaps in the literature that we hope we can assist.
Upon studying the literature, there is no research provided on Norwegian Sign Language.
We aim to close this gap by creating SVM, KNN, and CNN models for Norwegian Sign Lan-
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guage recognition. Another gap we identified was that many of the datasets the researchers
used to train their models were simple images with non-complex backgrounds. While this
will achieve great accuracy for the models, an important aspect of image recognition is to
build robust models that can generalize. If the models are trained on simple images, it is
tough to see how these can be used in real-life applications. We, therefore, aim to create our
NSL model based upon a combination of non-complex and complex images with different
lighting and backgrounds to develop models that would generalize well. While this might
negatively affect our model’s accuracy, we hope it is better suited for real-life situations to
further assist the deaf and hard of hearing in Norway.

3. Methods

This section covers the methodology and implementation to find the most effective
classification models for NSL recognition. All tests were performed on our local computer
with the specs: RTX 3060ti GPU, AMD Ryzen 7 5700G CPU @ 3.8 GHz, and 16 GB of
RAM. Figure 1 displays a summary and visualization of the entire data pipeline that was
conducted for our methodology and implementation. We started by using our camera for
image capturing. The images are then stored as a dataset. Once completed, the dataset is
used for three different classification models using their distinct segmentation and feature
extraction methods. Finally, the three classification models predict signs of the unseen test
set to evaluate their performance.

Technologies 2023, 11, x FOR PEER REVIEW 6 of 27 
 

 

 
Figure 1. Flowchart illustrating the pipeline of our method. 

3.1. Image Acquisition 
To build our NSL (Norwegian sign language) recognition model, we had to acquire 

a dataset containing images or videos of NSL. During our extensive research, we could 
not find any public NSL dataset and therefore had to start creating our own from scratch. 
The first step in creating our NSL dataset was determining which sign language category 
we wanted to create. Because little to no research has been conducted on NSL recognition, 
we decided that the best approach would be to create a static fingerspelling dataset of the 
NSL alphabet. We chose this sign language category because languages are built from the 
ground up, starting with the alphabet. Therefore, we wanted to create a strong base for 
further work in NSL recognition by creating a baseline for NSL alphabet recognition. 

The signs must be performed and statically read to develop a static fingerspelling 
sign language model. The Norwegian Sign Language (NSL) includes 29 signs from A to 
Å. However, the letters Å and H cannot be statically displayed, so they were excluded 
from our research. Static images can display the other 27 signs, most of them as one-
handed, but J, P, Q, U, X, Z, and Ø had to be represented as two-handed as there is no 
static one-handed version. All information about the NSL alphabet and the drawn images 
in Figure 2 was gathered from the Norwegian Sign Language Dictionary, www.tegnord-
bok.no, which was developed by Statped (State Special Needs Education Service) on be-
half of the Norwegian Directorate for Education and Training [27]. 

Figure 1. Flowchart illustrating the pipeline of our method.

3.1. Image Acquisition

To build our NSL (Norwegian sign language) recognition model, we had to acquire
a dataset containing images or videos of NSL. During our extensive research, we could
not find any public NSL dataset and therefore had to start creating our own from scratch.
The first step in creating our NSL dataset was determining which sign language category
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we wanted to create. Because little to no research has been conducted on NSL recognition,
we decided that the best approach would be to create a static fingerspelling dataset of the
NSL alphabet. We chose this sign language category because languages are built from the
ground up, starting with the alphabet. Therefore, we wanted to create a strong base for
further work in NSL recognition by creating a baseline for NSL alphabet recognition.

The signs must be performed and statically read to develop a static fingerspelling
sign language model. The Norwegian Sign Language (NSL) includes 29 signs from A to Å.
However, the letters Å and H cannot be statically displayed, so they were excluded from
our research. Static images can display the other 27 signs, most of them as one-handed, but
J, P, Q, U, X, Z, and Ø had to be represented as two-handed as there is no static one-handed
version. All information about the NSL alphabet and the drawn images in Figure 2 was
gathered from the Norwegian Sign Language Dictionary, www.tegnordbok.no accessed on
11 July 2023, which was developed by Statped (State Special Needs Education Service) on
behalf of the Norwegian Directorate for Education and Training [27].

Our dataset contains images captured using a Lenovo Performance FHD Webcam
with a resolution of 1920 × 1080. However, because we focused on extracting the hand
from the images, we implemented a technique called Range of Interest (ROI) to restrict the
area of interest to 256 × 256 pixels. This allowed us to retain the high-definition quality of
the webcam while minimizing the amount of noise and background the training algorithm
had to deal with. In other words, by using an ROI, we ensured that the training process
was optimized for accuracy and efficiency.

The Dataset

For our dataset, we created 900 images for each of the 27 NSL alphabet signs, resulting
in 24,300 images. The images of one female and one male were taken to ensure that the
model could generalize better. We captured 600 images inside with natural and artificial
lighting on a white background. Of those, 300 images were taken by the female and 300
by the male. We also captured 300 more images with a complex background to help the
model better handle real-world scenarios. These images were taken by the male participant
indoors with various objects in the background. Table 2 shows the distribution of the
dataset, and Figure 3 illustrates the different scenarios. We also ensured that the dataset
was balanced and that all the classes had the same number of pictures, as this is an
essential step in making recognition models that are good at generalizing and aim for a
high accuracy [28].

While different backgrounds and people are important steps in creating a dataset for a
well-generalized model, we also ensured that the signs we performed during our image
acquisition consisted of different angles and rotations of the different signs. In the same
way that people pronounce words differently with their voice, signers have different hand
orientations when they perform sign language gestures. By incorporating rotated images
in the dataset, we can help the model learn to recognize the gestures regardless of the
orientation of the signer’s hands. Examples of signs with different angles are shown in
Figure 4, and different rotations are illustrated in Figure 5.

Based on the literature we have gathered on sign language recognition, a dataset
consisting of 24,300 images represents a substantial baseline for most machine learning
models. It should be noted that specific machine learning models may not optimally
perform when trained on excessively large datasets. Hence, we decided not to create a
larger dataset, recognizing that various machine learning models have different limitations
and requirements. In the case of machine learning models such as CNN, which require a
considerable amount of data for effective training, data augmentation techniques can be
employed to expand the dataset size as needed.

www.tegnordbok.no
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Table 2. Distribution of the NSL dataset.

Alphabet Male Complex
Background

Male Artificial and
Natural Lighting,

White Background

Female Artificial and
Natural Lighting,

White Background
Total

A–Ø (Å and H
Excluded)

300 300 300 24,300
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Based on the size of the dataset and the measures taken during the image acquisition
process, we are very confident in the quality and diversity of our dataset for NSL recognition.
The dataset includes a variety of lighting conditions, backgrounds, and hand orientations.
By capturing images from male and female singers and incorporating different angles and
rotations, we sought to enhance the generalizability of the dataset for use across various
machine learning models. Overall, our dataset can serve as a strong foundation for our
own and future research in NSL recognition.

3.2. KNN Model

After creating the dataset, we decided that the first recognition model to create was
KNN. We chose this model because it is a simple yet respected model for classification.
Additionally, many sign language recognition research studies have utilized KNN, and
we wanted to provide similar research for NSL recognition to compare our results. Due to
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KNN’s struggle with large datasets, we decided not to perform augmentation and use the
dataset as is.

3.2.1. Preparing the Data

The KNN classifier is sensitive to noise and large complex datasets. Therefore, the
data preparation process plays a crucial role in ensuring the optimal performance of the
model. The process we have implemented consists of three primary steps: pre-processing,
segmentation, and feature extraction. These steps are designed to transform the raw image
data into a structured and standardized format, which can be efficiently utilized to train
and evaluate the KNN model while mitigating the impact of noise and complexity. Figure 6
illustrates the different steps described below.
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3.2.2. Pre-Processing

The pre-processing step ensures consistency among the images in the dataset. We
achieved this by resizing the images from 256 × 256 pixels to a uniform dimension of
64 × 64 pixels. This guarantees that all images have the same dimensions, which is crucial
for comparing and processing the images during the later stages of the process. Addition-
ally, it reduces the computational time of the model. This step is illustrated in Step 1 in
Figure 6.

3.2.3. Segmentation

The segmentation process isolates specific regions of interest within the images, reduc-
ing noise and allowing for more accurate classification. We achieved this using LAB color
space segmentation, which provides a more uniform representation of color differences
than the RGB color space. The resized images are first converted to the LAB color space,
and the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique is applied
to the L channel to enhance the image’s contrast. After that, the images are segmented into
skin and non-skin regions based on a predefined color range, focusing on the regions con-
taining skin color and effectively removing irrelevant areas within the images. Illustrated
are Steps 2 and 3 in Figure 6.

3.2.4. Feature Extraction

Once the images have been segmented, feature extraction provides the KNN model
with the most relevant features. We applied the Canny edge detection technique to the
grayscale version of the segmented images to achieve this. Subsequently, the skin color
mask is applied to the edge image, further refining the features by focusing on the regions
of interest. The HOG features are then computed for the masked edge image, generating a
feature vector that effectively captures the essential shape and characteristics of the images.
L2 normalization is employed to ensure that the HOG features have the same scale and can
be effectively compared across images. Illustrated are Steps 4 and 5 in Figure 6.

3.2.5. Model Training and Hyperparameter Tuning

After performing all these steps on the images, the normalized HOG features are
flattened and added to a ‘data’ list. The corresponding labels for the images are added to
the ‘labels’ list. Finally, the ‘data’ and ‘labels’ lists are converted to numpy arrays. The
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‘data’ array is reshaped, maintaining the number of samples (rows) and arranging the HOG
features into a 2D array with the appropriate number of columns. This structured format is
crucial to train and evaluate the KNN model.

Having prepared the images and extracted their HOG features, we found the best
parameters for the KNN model. We began by dividing the dataset into training and testing
sets, using a 30–70% split to ensure that the model’s performance could be evaluated on
previously unseen data. Following this, we conducted a randomized search combined with
cross-validation to find the optimal hyperparameters for the model.

To carry out this process, we constructed a parameter grid containing various com-
binations of the number of neighbors (K values ranging from 1 to 100), weights (uniform
or distance), and distance metrics (Euclidean, Manhattan, and Minkowski). Using cross-
validation, we then instantiated a RandomizedSearchCV object to search for the best
hyperparameters. To enhance the search efficiency, we set the number of iterations to
50 and employed 10-fold cross-validation. The search process was further expedited by
running it in parallel, utilizing all available CPU cores.

Because KNN is already a high computational time model, we decided to create two
identical models, one with a 64 × 64 resized image and one with 32 × 32, to compare
computational time and accuracy trade-offs.

3.2.6. Experiment 1: 64 × 64 Images

Figure 7 displays the accuracy for the different values of K and the different metrics.
Upon completion of the randomized search and cross-validation process, the optimal
hyperparameters for the KNN model with a 64 × 64 resolution were identified as follows:
‘metric’: ‘Manhattan’, ‘n_neighbors’: 4, and ‘weights’: ‘uniform’. By training the KNN
model with these parameters, we achieved an outstanding accuracy of 99.9% on the unseen
test dataset. This accuracy illustrates the effectiveness of the methods we have implemented
in this model.
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In Table 3, we present the performance of the 64 × 64 KNN model. The classification
report from sklearn metrics provides a comprehensive view of the precision, recall, F1-score,
and support for each sign, as well as the number of errors made by the model.
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Table 3. Classification report of the 64 × 64 KNN model.

Sign Precision Recall f1-Score Support Number of Errors

A 1.00 1.00 1.00 271 0
B 1.00 1.00 1.00 271 0
C 1.00 1.00 1.00 272 0
D 1.00 1.00 1.00 267 0
E 1.00 1.00 1.00 280 0
F 1.00 1.00 1.00 261 0
G 1.00 1.00 1.00 272 0
I 1.00 1.00 1.00 280 0
J 1.00 1.00 1.00 247 0
K 1.00 1.00 1.00 262 0
L 1.00 1.00 1.00 295 0
M 1.00 1.00 1.00 255 0
N 1.00 1.00 1.00 285 0
O 1.00 1.00 1.00 263 0
P 1.00 1.00 1.00 252 0
Q 1.00 1.00 1.00 276 0
R 1.00 1.00 1.00 256 0
S 1.00 1.00 1.00 244 0
T 1.00 1.00 1.00 281 0
U 1.00 1.00 1.00 268 0
V 1.00 1.00 1.00 281 0
W 1.00 1.00 1.00 274 0
X 1.00 1.00 1.00 279 0
Y 1.00 1.00 1.00 271 0
Z 1.00 1.00 1.00 283 1
Æ 1.00 1.00 1.00 256 0
Ø 1.00 1.00 1.00 296 0

Accuracy 1.00 1.00 1.00 7298 1

Precision, which measures the model’s ability to identify positive instances correctly,
is at 1.00 for all signs, indicating that the model has a high degree of accuracy when it
predicts a sign. Recall, which measures the model’s ability to find all the positive instances,
is also at 1.00 for all signs, showing that the model is highly effective at identifying all
instances of a sign in the dataset. The F1-score, the harmonic mean of precision and
recall, is also at 1.00 for all signs, indicating a balance between precision and recall in the
model’s performance.

Despite the model’s high accuracy of 99.99%, it is important to note that it took the
model 188 s to make predictions on the unseen data. This trade-off between accuracy and
time is a consideration for the practical implementation of the model. However, the overall
performance of the model demonstrates its robustness and effectiveness in NSL recognition.

To further confirm the model’s accuracy, we aimed to display correctly and wrongly
predicted images. Figure 8 shows randomly selected correctly predicted images, where the
actual image is displayed as the original image input, and the predicted image is presented
as the image version of the HOG features. Figure 9 displays the wrongly predicted image
found in the entire model, highlighting the exceptional overall accuracy achieved by
the model.

3.2.7. Experiment 2: 32 × 32 Images

The second part of the KNN model result testing involved resizing the images to
32 × 32 to see if the computational time could be reduced without sacrificing too much
accuracy. Because all the steps were the same as in Experiment 1, only the results are
summarized here. Firstly, a RandomizedSearchCV was performed on the 32 × 32 images,
which resulted in the optimal hyperparameters for the KNN model as ‘metric’: ‘Manhattan’,
‘n_neighbors’: 4, and ‘weights’: ‘distance’, with an accuracy of 97.2%. This model only used
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18 s to predict the signs of the unseen test data. The result of the RandomizedSearchCV is
shown in Figure 10.
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Table 4 provides a detailed performance report of the model for each sign. While the
model performs well overall, with an accuracy of 97%, certain signs such as W, V, F, and L
have shown sub-optimal performance.
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Table 4. Classification report of the 32 × 32 KNN model.

Sign Precision Recall f1-Score Support Number of Errors

A 1.00 1.00 1.00 265 0
Æ 0.99 1.00 0.99 273 3
B 0.99 1.00 0.99 270 5
C 0.98 0.98 0.98 264 10
D 0.96 0.95 0.96 276 5
E 0.98 0.97 0.98 247 18
F 0.91 0.98 0.94 278 2
G 0.96 0.97 0.97 255 12
I 0.94 0.98 0.96 293 1
J 0.98 0.99 0.99 270 8
K 0.98 0.97 0.97 265 10
L 0.97 0.91 0.94 278 16
M 0.96 0.97 0.96 287 7
N 0.98 0.95 0.96 267 10
O 0.96 0.96 0.96 259 0
Ø 1.00 1.00 1.00 258 5
P 0.99 0.98 0.99 282 4
Q 0.99 1.00 0.99 269 6
R 0.99 0.99 0.99 258 11
S 0.95 1.00 0.97 263 4
T 0.97 0.98 0.98 299 21
U 0.98 0.99 0.99 247 19
V 0.91 0.95 0.93 266 9
W 0.91 0.84 0.88 269 10
X 0.99 0.99 0.99 283 0
Y 0.99 0.95 0.97 280 1
Z 1.00 0.99 0.99 277 0

Accuracy 0.97 0.97 0.97 7298 159

Precision varies across signs, with the lowest being 0.92 for the sign ‘V’. This indicates
that the model has a slightly lower accuracy when predicting this sign. Recall also varies,
with the lowest being 0.88 for the sign ‘W’, indicating that the model has slightly lower
completeness when identifying this sign. The F1-score is lowest for the sign ‘W’ at 0.90,
indicating a slight imbalance between precision and recall for this sign.

The confusion matrix in Figure 11 provides further insights into errors, showing that
‘W’ was wrongly predicted as ‘V’ 18 times, ‘V’ was predicted as ‘W’ 9 times, ‘L’ was wrongly
predicted as ‘F’ 7 times, and ‘Y’ was wrongly predicted as ‘I’ 6 times.

Despite these errors, the model’s overall performance demonstrates its effectiveness,
highlighting areas for improvement.

3.3. CNN Model

CNNs are known for their ability to handle noise and perform well on image data, so
we opted to create the model without employing any segmentation or feature extraction.
This is also the approach most of the CNN literature we came across took, such as [21,22].

We chose TensorFlow as the framework for developing our CNN model due to its
support for GPU acceleration, enabling faster training. TensorFlow is an open-source
platform for large-scale machine learning, which we utilized for importing, pre-processing,
splitting, training, evaluating, visualizing, and testing our dataset [29].

3.3.1. Preparing the Data

Although we decided against segmentation or feature extraction, data preparation
remains essential for achieving optimal performance with CNN models. We used Tensor-
Flow’s image_dataset_from_directory function to load and pre-process the dataset. The
images were resized to 64 × 64 pixels, and the pixel values were normalized to a range
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of 0–1. We shuffled the data during loading to avoid any biases during training and set
a batch size of 32. Once the dataset was prepared, we divided the data into training 70%,
validation 15%, and testing 15% sets.
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3.3.2. Building the Model

Figure 12 shows the architecture of our CNN model. The CNN model consists of three
convolutional layers, each followed by a max pooling layer. The model is then flattened to
a 1D array, which is used for the connected layer consisting of two dense layers. Before
both dense layers, a dropout layer is added to prevent overfitting. For the convolutional
layers, we use ReLU because it is a commonly used activation function.
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3.3.3. Model Training and Hyperparameters Tuning

Once the model was built, we started finding the best hyperparameters. Using stan-
dard procedures in CNN, we compiled the model using the Adam optimizer, as it is a
popular choice for its computational efficiency and low memory requirements [30]. We
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selected a learning rate of 0.0001, which balances convergence speed and accuracy. The
sparse categorical cross-entropy loss function was used, as it is appropriate for multi-
class classification problems where the target classes are mutually exclusive. To prevent
overfitting during training, we employed an early stopping callback with a patience of 3,
which halts the training process if there is no improvement in validation loss after three
consecutive epochs.

We initially trained the model for up to 50 epochs so the model could train until it
no longer improved and used a batch size of 32. We did this to find the optimal number
of epochs for our model to create an accurate model without overfitting it to the training
data. The image in Figure 13 displays the results of our initial model, displaying training
loss versus validation loss and training accuracy versus validation accuracy. As we can see,
the model stopped at epoch 10, meaning the validation loss did not improve starting from
epoch 7. This makes sense as it seems like the model achieves close to 100% accuracy on the
validation data after 5 epochs. A good indication that the model is not overfitting is that
the validation error is lower than the training error, and the validation accuracy is higher
than the training accuracy. This is because it indicates that the model is performing well on
new unseen data. Due to these findings, we decided to go for 7 epochs for our final model.
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3.3.4. Results Analysis

After we had found all the best parameters for our model, we no longer had a use for
validation data and divided the data into a new 70% (train) and 30% (test) split for optimal
testing. After training the model, we tested the model on the unseen test data. Table 5
provides a comprehensive performance report of the model for each sign. The precision,
recall, and F1-score metrics, all at 99.9%, illustrate the effectiveness of the model. However,
a few signs such as ‘V’, ‘N’, and ‘W’ have shown minor errors.

Precision is at 1.00 for almost all signs, with a slight dip to 0.99 for ‘V’. This suggests a
marginally lower accuracy when predicting this sign. Recall also maintains a high score of
1.00 for most signs, with a minor decrease to 0.99 for ‘N’ and ‘W’, indicating slightly lower
completeness when identifying these signs. The F1-score is at 1.00 for almost all signs,
with a slight decrease to 0.99 for ‘V’, ‘N’, and ‘W’, indicating a minor imbalance between
precision and recall for these signs. The model had a training time of 22 s, and predictions
on the unseen test data took 22 s.
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Table 5. Classification report of the CNN model.

Sign Precision Recall F1-Score Support Number of Errors

A 1.00 1.00 1.00 271 0
B 1.00 1.00 1.00 281 1
C 1.00 1.00 1.00 247 0
D 1.00 1.00 1.00 292 1
E 1.00 1.00 1.00 287 0
F 1.00 1.00 1.00 256 0
G 1.00 1.00 1.00 252 0
I 1.00 1.00 1.00 276 0
J 1.00 1.00 1.00 270 0
K 1.00 1.00 1.00 282 0
L 0.99 1.00 0.99 257 0
M 1.00 1.00 1.00 283 0
N 1.00 0.99 1.00 262 2
O 0.99 1.00 0.99 295 0
P 1.00 1.00 1.00 271 0
Q 1.00 1.00 1.00 260 0
R 1.00 1.00 1.00 263 0
S 1.00 1.00 1.00 275 0
T 1.00 1.00 1.00 290 0
U 1.00 1.00 1.00 270 0
V 1.00 0.99 0.99 275 3
W 1.00 1.00 1.00 269 1
X 1.00 1.00 1.00 256 0
Y 1.00 1.00 1.00 281 0
Z 1.00 1.00 1.00 250 0
Æ 1.00 1.00 1.00 259 0
Ø 1.00 1.00 1.00 246 0

Accuracy 1.00 1.00 1.00 7276 8

To gain further insight into the wrongly predicted signs, we decided to display the
incorrectly predicted images. In Figure 14, we loop through the indices of the incorrectly
predicted images and display each image along with its actual and predicted label. It also
displays the top three predicted probabilities for the image as a bar chart, with the color of
each bar indicating the confidence of the model for different labels, the actual label (green),
wrongly predicted label (red), or another label (gray). Looking at the images, we can see
that in the two occurrences where the model predicted L but it was N, the model almost
achieved the correct answer. While two errors are a very small sample size, and it is hard
to say anything conclusive, it could indicate that L and N share some features. The same
situation is with V and O, where the model twice predicted that V was O. Again, the model
is very close to labeling it correctly, which indicates that although the model predicted
wrong, it was still very close to the correct label. Again, because the sample size of wrongly
predicted images is so small, we found it hard to conclude anything and decided that these
errors were acceptable.

3.4. SVM-Model

The final model we decided to create was an SVM model. This is because it is a
powerful and versatile machine learning model that is commonly used in sign language
recognition. Because SVM is great at high-dimensional spaces where the number of samples
is greater than the number of dimensions, this also makes it a good fit for implementing it
in our research towards NSL recognition because the images contain a lot of features.
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3.4.1. Data Preparation

The data preparation steps for our SVM model are very similar to that of the KNN
model. The reason for this is twofold, it is not a deep learning model such as CNN, and we,
therefore, want to train the model on the most important features. Most of the literature
we came across, such as [25,26], used feature extraction, segmentation, or both as part of
their data preparation. Such as the other models we have created, the pre-processing of
the images was to resize them to a fixed size of 64 × 64 for consistency and computational
efficiency. Figure 15 illustrates the data preparation steps for our SVM model.
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3.4.2. Segmentation

A lot of consideration was given when it came to the image segmentation approach for
our SVM model. Our initial thought was to use the same approach we had performed in
our KNN model because the LAB color spacing and skin color segmentation we performed
for our KNN model were very effective. We did, however, conclude that choosing a
different approach for our SVM model would serve greater research value in the field of
NSL recognition and decided to choose a different approach.

Such as the segmentation performed in our KNN model, we used LAB color spacing,
but instead of segmenting the image based on skin color, we decided to segment the image
by separating the foreground from the background. While there are similarities in the
approaches, the intent and execution are different.

3.4.3. Feature Extraction

For feature extraction, we decided to go with HOG features as this is a commonly
used feature extraction for SVM models. We also found earlier that we had success with
HOG for our KNN model. We, therefore, wanted to replicate it for our SVM model without
edge detection. In combination with our new approach to segmentation, we concluded
that this would lead to valuable research in NSL recognition research.

3.4.4. Model Training and Hyperparameter Tuning

After preparing the dataset and extracting the HOG features, the next step of our
process was to proceed with training the SVM model and fine-tuning its hyperparameters.
We started by dividing the dataset into training and testing sets, using a 30–70% split to
ensure that the model’s performance could be evaluated on unseen data. Following this,
we conducted a randomized search combined with cross-validation to find the optimal
hyperparameters for the model.

To carry out this process, we first created separate parameter grids for each kernel type:
linear, radial basis function (RBF), polynomial, and sigmoid. The grids contained various
combinations of hyperparameters specific to each kernel, such as regularization parameters
‘C’, gamma, degree, and coef0. Next, we instantiated RandomizedSearchCV objects for each
kernel type to search for the best hyperparameters, utilizing cross-validation. To enhance
the search efficiency, we set the number of iterations to 25 for each of the four kernels (total
of 100) and employed 5-fold cross-validation. The search process was further expedited by
running it in parallel, utilizing all available CPU cores.

Once the randomized search was complete, we extracted the top three models for each
kernel type based on their mean cross-validation accuracy. This gave us a total of 12 models
to compare. To evaluate the performance of these models on previously unseen data, we
trained each of them using the optimal hyperparameters found during the randomized
search and tested their accuracy on the validation set.

To visualize and compare the performance of these models, we created a bar plot
displaying the accuracy of each model compared with their training time. This allowed us
to identify the best-performing and most effective models across different kernel types.

Such as with our KNN model, we decided to conduct two experiments for our SVM
model, one with images resized to 64 × 64 and one SVM model resized to 32 × 32.

3.4.5. Experiment 1: 64 × 64 Images

The result of the performance from the top three models for each kernel is displayed
in Figure 16. All the models managed to obtain above 99% accuracy. Because there was
very little difference in accuracy for the different models, we decided to calculate which
model had the best accuracy compared to training time. This was calculated by dividing
the accuracy of each model and then their training time to find the optimal model. By
considering both accuracy and training time, we found that the kernel that strikes the best
balance between performance and computational efficiency is the linear kernel with a C
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value of 1. This kernel, along with the corresponding hyperparameters, was chosen as the
final SVM model for our application.
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Using these hyperparameters for our SVM model, we split the data into a 70/30 split
and trained the model with a linear kernel with a C value of 1. The result of the model on
the unseen data is an incredible accuracy of 99.9%.

Table 6 provides a comprehensive performance report of the Support Vector Machine
(SVM) model for each sign. The precision, recall, and F1-score metrics, all at 1.00, offer a
detailed understanding of the model’s performance. However, a few signs such as ‘D’, ‘L’,
and ‘W’ have shown minor errors.

Precision is at 1.00 for all signs, with a slight dip to 0.99 for ‘V’. This suggests a
marginally lower accuracy when predicting this sign. Recall also maintains a high score
of 1.00 for most signs, with a minor decrease to 0.99 for ‘V’, indicating slightly lower
completeness when identifying this sign. The F1-score is at 1.00 for all signs, indicating a
balance between precision and recall for all signs. The training time for this model was 43 s,
and the time it took to make predictions on the unseen data was 53 s, indicating a relatively
efficient model.

3.4.6. Experiment 2: 32 × 32 Images

Because the data preparation steps in this experiment are the same as in the 64 × 64
one, we will simply provide the results and discuss them later. Figure 17 displays the
RandomizedSearchCV for our 32 × 32 model, and the optimal parameters based on training
time and accuracy for this dataset is an RBF kernel with a gamma of 0.1 and C value of 100.

Table 7 presents the performance metrics of the 32 × 32 SVM model for each sign.
Despite the overall precision, recall, and F1-score metrics being at 1.00, minor errors were
observed for signs ‘E’, ‘I’, ‘N’, ‘O’, ‘Q’, and ‘W’. The model’s precision slightly dipped to
0.99 for ‘O’, and recall marginally decreased to 0.99 for ‘V’. The model’s training time was
5.9 s, and the prediction time was 14.9 s, demonstrating its efficiency. With an impressive
accuracy of 99.9%, the model’s effectiveness in NSL recognition is evident.
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Table 6. Classification report of the 64 × 64 SVM mode.

Sign Precision Recall f1-Score Support Number of Errors

A 1.00 1.00 1.00 280 0
B 1.00 1.00 1.00 270 0
C 1.00 1.00 1.00 284 0
D 1.00 1.00 1.00 274 1
E 1.00 1.00 1.00 275 0
F 1.00 1.00 1.00 272 0
G 1.00 1.00 1.00 263 0
I 1.00 1.00 1.00 276 0
J 1.00 1.00 1.00 277 0
K 1.00 1.00 1.00 252 0
L 1.00 1.00 1.00 281 1
M 1.00 1.00 1.00 253 0
N 1.00 1.00 1.00 270 0
O 1.00 1.00 1.00 280 0
P 1.00 1.00 1.00 261 0
Q 1.00 1.00 1.00 276 0
R 1.00 1.00 1.00 271 0
S 1.00 1.00 1.00 274 0
T 1.00 1.00 1.00 254 0
U 1.00 1.00 1.00 260 0
V 1.00 0.99 1.00 270 0
W 1.00 1.00 1.00 239 1
X 1.00 1.00 1.00 288 0
Y 1.00 1.00 1.00 260 0
Z 1.00 1.00 1.00 259 0
Æ 1.00 1.00 1.00 271 0
Ø 1.00 1.00 1.00 300 0

Accuracy 1.00 1.00 1.00 7290 3
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Table 7. Classification report of the 32 × 32 SVM mode.

Sign Precision Recall f1-Score Support Number of Errors

A 1.00 1.00 1.00 280 0
B 1.00 1.00 1.00 270 0
C 1.00 1.00 1.00 284 0
D 1.00 1.00 1.00 274 0
E 1.00 1.00 1.00 275 1
F 1.00 1.00 1.00 272 0
G 1.00 1.00 1.00 263 0
I 1.00 1.00 1.00 276 1
J 1.00 1.00 1.00 277 0
K 1.00 1.00 1.00 252 0
L 1.00 1.00 1.00 281 0
M 1.00 1.00 1.00 253 0
N 1.00 1.00 1.00 270 1
O 0.99 1.00 1.00 280 1
P 1.00 1.00 1.00 261 0
Q 1.00 1.00 1.00 276 1
R 1.00 1.00 1.00 271 0
S 1.00 1.00 1.00 274 0
T 1.00 1.00 1.00 254 0
U 1.00 1.00 1.00 260 0
V 1.00 0.99 0.99 270 0
W 1.00 1.00 1.00 239 1
X 1.00 1.00 1.00 288 0
Y 1.00 1.00 1.00 260 0
Z 1.00 1.00 1.00 259 0
Æ 1.00 1.00 1.00 271 0
Ø 1.00 1.00 1.00 300 0

Accuracy 1.00 1.00 1.00 7290 6

4. Results and Discussion

In this section, we will look at the results of our research, discussing the findings
from our comparative analysis to find the most effective machine learning models for NSL
recognition. All the models are evaluated based on accuracy, training time, and prediction
time shown in Table 8. We will also take the time to discuss the different use cases and
limitations for each model to offer insight into their suitability for NSL recognition. For
consistency in our comparative analysis, all the models were evaluated on the same dataset
size with a training and test split of 70/30%.

Table 8. Model comparison of all the created models.

Model Pre-Processing Segmentation Feature
Extraction Accuracy Training

Time
Prediction

Time

KNN 64 × 64,
Normalization

LAB Color Space & CLAHE,
Skin Color detection

HOG, Edge
Detection 99.9% 0 188 s

KNN 32 × 32,
Normalization

LAB Color Space & CLAHE,
Skin Color detection

HOG, Edge
Detection 97.2% 0 18 s

SVM 64 × 64,
Normalization

Foreground/Background detection
using LAB Color space HOG 99.9% 43 s 53 s

SVM 32 × 32,
Normalization

Foreground/Background detection
using LAB Color space HOG 99.9% 6 s 18 s

CNN 64 × 64,
Normalization None None 99.9% 23 s 21 s
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4.1. KNN Model

Accuracy-wise, the KNN model performs well on our self-made dataset achieving
results of 99.9% on the 64 × 64 images and 97.2% on the 32 × 32 images. The results
also show the effectiveness of the pre-processing, segmentation, and feature extraction
performed on the dataset. However, the results in the table illustrate some of the problems of
the KNN classification model, as the model that used the 64 × 64 images took 188 s to make
predictions on the unseen test set. When we resized the images to 32 × 32, the prediction
time significantly decreased to only 18 s, 1/10th of the one trained on 64 × 64 images. These
findings align with the general literature of sign language recognition, as KNN quickly
loses its efficiency when the dataset becomes too big or has many features.

4.2. SVM Model

The SVM classification model also achieves an impressive accuracy of 99.9% for
64 × 64 and 32 × 32 image sizes, unlike the KNN model, which has different accuracies
for the two sizes. Looking beyond accuracy, the model using the 64 × 64 resized images
has a training time of 43 s and a prediction time of 53 s, whereas the model using the
32 × 32 resized images has a training time of 6 s and a prediction time of 18 s. That means
that the 32 × 32 SVM model is significantly faster than the 64 × 64 SVM model, with an
86% faster training time, a 66% faster prediction time, and overall, 75% faster in combined
computational time.

4.3. CNN Model

The CNN model we created was the only model we decided against creating a 32 × 32
version. This was because the model performs extremely well on the 64 × 64 resized images
both in terms of accuracy and prediction time, matching the time of the 32 × 32 SVM model.
A very successful model can scale if the dataset can be expanded further by using more
subjects and background scenarios.

4.4. Discussion

Based on the results from all our models, all three models can perform NSL recogni-
tion with high accuracy. However, there are various trade-offs regarding computational
efficiency for the different models. This impacts how these models could be used in real-life
scenarios or for future research.

For the KNN model, it is clearly effective and quick if the dataset is not complex
or big. Because it is a very easy-to-implement model, we still believe that it has its use
cases in niche situations where scalability is not needed. Another potential issue with the
KNN model we have created is that it uses skin color detection for segmentation. This is a
potential limitation for this model in real-world scenarios as the dataset currently mainly
consists of individuals with white skin color. Therefore, the model could face problems if a
person of different skin color would use it or if the lighting was different.

The SVM model struck a great balance between accuracy and computational efficiency,
making it a very versatile model for many NSL recognition tasks. We were surprised
to see that the model maintained its accuracy even when the images were resized to
32 × 32, displaying its robustness and adaptability. While the foreground/background
segmentation we performed on the dataset for the SVM model might be sensitive to
lightning and background, our dataset contains images with various backgrounds, and we
are therefore confident that this would also work well for real-world scenarios.

The results of the CNN model were really encouraging as it offered a high accuracy
while maintaining a low prediction time. Because CNN models only become more effective
as they are exposed to more data, this model could be trained further on more images
to grow and expand. The fact that CNN does not require any segmentation or feature
extraction makes it a very attractive model because we do not have to consider lighting,
skin color, or other uncontrollable factors. Due to its robustness against noise would also
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serve as an optimal model for future researchers/contributors willing to create an even
more comprehensive data set.

While all three of the models show great results in terms of accuracy, the SVM and
CNN model stands out as the absolute strongest contenders in terms of accuracy and
computational efficiency in terms of predicting new unseen data. The findings from our
comparative analysis of image classification models for NSL recognition offer valuable
insights that contribute to further research in the field, ultimately identifying the most
effective classification model for NSL recognition.

An observation regarding the near-perfect accuracy leads to the consideration of
making the dataset more challenging. Computational enrichment could be explored in
future research for more rigorous testing of the model’s robustness and adaptability, such
as adding noise or varying image orientations.

5. Conclusions

A significant portion of the global population struggles with hearing impairments, and
image classification models can potentially assist the deaf and hard of hearing by translating
sign language. During our research, we explored the state-of-the-art for sign language
recognition. While our study found that sign language recognition is well-researched, we
identified a significant gap in the literature concerning NSL recognition. To address this
gap, we conducted a comparative analysis of various machine learning models to provide
further research to determine the most effective classification model for NSL recognition.
This research aims to assist in communication capabilities for the deaf and hard of hearing
in Norway and hopefully take a step closer to implementing machine learning models to
help the deaf and hard of hearing, reducing the communication gap between those who
are deaf and hard of hearing and those who are not.

Our literature review revealed several popular machine learning models for sign
language recognition. Based on the literature, we chose KNN, CNN, and SVM for our
comparative analysis as they represent different paradigms in machine learning and have
demonstrated promising results in various applications. Our research aimed to effectively
compare these models’ data preparation techniques, accuracy, and computational efficiency
when applied to NSL recognition.

We created a dataset specifically for NSL recognition. The dataset consists of 24,300 images
covering 27 of the 29 NSL alphabet signs, with varying lighting conditions, backgrounds,
and hand orientations performed by both male and female signers. The dataset’s compre-
hensiveness and diversity make it a valuable resource for future research in NSL recognition.
It also provides a strong foundation for developing and testing machine learning models in
this field.

The study conducted a detailed comparative analysis of three popular machine learn-
ing models: KNN, CNN, and SVM. This analysis provided insights into the strengths and
weaknesses of each model for NSL recognition. It also provided valuable insight into the
effectiveness of different data preparation techniques, such as pre-processing, segmentation,
and feature extraction. This will assist future researchers of NSL recognition, and we see
this contribution as a benchmark for future work.

Based on the comparative analysis, the research identified CNN and SVM as the
best-performing models for NSL recognition regarding accuracy, efficiency, adaptability,
and scalability. This finding provides a foundation for future research to implement, refine,
improve, and scale these models for practical applications.

The contribution and findings of this paper serve as an incentive for future research
and development of advanced, accessible, and cost-effective solutions for NSL recognition.
Our work also emphasizes the need for such recognition systems in Norway to improve
communication between the deaf and hard of hearing and the hearing majority, thereby
reducing communication barriers and enhancing overall accessibility.
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