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Abstract: Packet classification based on rules of packet header fields is the key technology for enabling
software-defined networking (SDN). Ternary content addressable memory (TCAM) is a widely used
hardware for packet classification; however, commercially available TCAM chips have only limited
storage. As the number of supported header fields in SDN increases, the number of supported rules in
a TCAM chip is reduced. In this work, we present a novel scheme to enable packet classification using
TCAM with entries that are narrower than rules by storing the most representative field of a ruleset
in TCAM. Due to the fact that not all rules can be distinguished using one field, our scheme employs
a TCAM-based multimatch packet classification technique to ensure correctness. We further develop
approaches to reduce redundant TCAM accesses for multimatch packet classification. Although our
scheme requires additional TCAM accesses, it supports packet classification upon long rules with
narrow TCAM entries, and drastically reduces the required TCAM storage. Our experimental results
show that our scheme requires a moderate number of additional TCAM accesses and consumes
much less storage compared to the basic TCAM-based packet classification. Thus, it can provide the
required scalability for long rules required by potential applications of SDN.

Keywords: packet classification; ternary content addressable memory; software defined networks;
OpenFlow

1. Introduction

Software-defined networking (SDN) [1] implements the control plane of a network
in one or more server-based controllers. The controller performs the functions of the
control plane and manages a network in a centralized manner. Network administrators
can deploy various applications (or services) through controllers. Currently, OpenFlow [2]
is the most widely deployed south-bound SDN protocol [1]. The data plane of OpenFlow
relies on the operations of packet classification based on packet header fields. As a packet
arrives, the packet classifier extracts inspected fields from packet header fields to form a
search key for comparison with a list of rules. Each rule is assigned a priority value and
has a designated action to process the matching packet. If there is more than one rule
matching the search key, the packet classifier selects the rule with the highest priority [3].
While numerous network applications rely on the function of packet classification, both the
scalability and performance of packet classifiers are crucial to the development of potential
network applications.

With OpenFlow, rules are generated by the applications in controllers and installed
on OpenFlow-enabled switches [4]. To increase compatibility and applicability, OpenFlow
further expands the number of supported header fields from twelve in OpenFlow 1.0 to
more than forty in OpenFlow 1.5 [2], where each rule of IPv4 can have up to 773 bits. The
deployment of IPv6 could further increase the maximal rule length to nearly one thousand
bits. Because the programmability of OpenFlow is limited by predefined protocol header
fields, the programming protocol-independent packet processors (P4) language [5] has
been proposed for data plane programmability. Protocol independent switch architecture
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(PISA) is the data plane programming model for P4 [6]. Therefore, a packet classifier of
PISA must be able to support an arbitrary number of header fields [7].

Ternary content addressable memory (TCAM) has been widely used to achieve high-
performance packet classification. It is a viable option for PISA implementation to match
wildcard rules at line rate [8–10]. TCAM can store ternary strings because each of its cells
has three states: 0, 1, and “don’t care”. Moreover, TCAM compares all entries in parallel
to yield the first matching entry in one access. Thus, it is suitable for performing packet
classification by converting rules to ternary strings and storing them in a descending order
of priority [11]. Commodity TCAM chips usually support several predefined entry widths,
while additional clock cycles are required to access longer TCAM entries. For example,
commodity TCAM chips can be configured to have one of the following entry widths:
72, 144, 288, or 576 bits [12], where accessing longer TCAM entries takes additional clock
cycles [13]. The storage of long rules in TCAM reduces the number of available TCAM
entries. Several drawbacks of TCAM, including limited capacity, high cost, and high power
consumption, are directly related to TCAM chip size [14–17]. For example, performing one
single access on a large TCAM chip with 72 megabits (Mb) consumes 1047.9 nanojoules
(nJ), whereas on a 1 Mb TCAM chip it consumes only 34.5 nJ [17]. Moreover, larger TCAM
chips have much longer access latency [17]. Therefore, packet classification for long rules
using TCAM is a challenging task.

In this paper, we attempt to improve storage efficiency for TCAM-based packet classi-
fication without degrading performance in terms of speed. First, we discuss the challenges
of TCAM-based packet classification for rules longer than TCAM entries. Then, we present
a novel algorithm for searching long rules using narrow TCAM entries. Our scheme stores
the most representative field of a ruleset in TCAM for indexing the complete rules stored in
SRAM. It is based on our previous work in [18] involving multimatch packet classification,
a technique for yielding all the matching entries in TCAM for any search key, as not all rules
can be distinguished using the same field. Although our scheme may require additional
TCAM accesses as a tradeoff, it consumes much less storage than the basic implementation
of TCAM-based packet classification. Our scheme further reduces the number of TCAM
accesses by intelligently selecting fields stored in TCAM and employing supplementary
data structures in SRAM. We propose several approaches to eliminate redundant TCAM
accesses. The simulation results show that our scheme can effectively search long rules
with a moderate number of additional TCAM accesses. Moreover, our scheme reduces the
required TCAM storage to enable faster accesses with lower cost and energy consump-
tion. As a result, the scalability of TCAM-based packet classification for long rules is
drastically improved.

The remainder of this paper is organized as follows. Section 2 reviews previous
work related to our scheme. Section 3 discusses the limitations of conventional packet
classification to highlight our idea and the challenges. Our algorithm to enable packet
classification using narrow TCAM entries is presented in Section 4, along with storage of
the data structure in SRAM to eliminate redundant TCAM accesses. Section 5 presents the
performance evaluation results for our scheme. Finally, concluding remarks are provided
in Section 6.

2. Related Work
2.1. Many-Field Packet Classification Based on Software

Because OpenFlow supports numerous fields, many-field packet classification is cru-
cial to the feasibility of OpenFlow. The existing packet classification algorithms can be either
based on software or hardware. Software-based solutions are attractive due to their flexible
implementations. Hsieh and Weng performed many-field packet classification based on
selected bits [19]. Another decomposition scheme converts the original field specifications
into primitive ranges to be stored in trees to lower the search complexity [20]. Several
approaches have aimed to reduce the storage requirement, such as rule reduction [21] and
efficient representation [22,23]. TupleMerge reduces the number of hash tables for storing
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rules by omitting bits from the rules [7]. PartitionSort divides a ruleset into several sortable
partitions, with the rules of each partition are stored in an interval tree [24]. Liang et al.
used deep reinforcement learning to improve the efficiency of decision trees [25].

2.2. Many-Field Packet Classification Based on Hardware

Hardware-based solutions can be based on either Field-Programmable Gate Array
(FPGA) or TCAM. FPGA has been used to improve the forwarding performance of network
devices through its scalability and reconfigurability, and suitable for processing long rules.
Qi et al. presented a scheme that can support 50,000 rules [26]. Jiang et al. implemented a
packet classification algorithm of multiple decision trees in FPGA [27]. Qu et al. proposed
a decomposition-based FPGA algorithm [28] by dividing a rule into multiple range strides.
All strides are compared with the corresponding bits of the search key to obtain the
matching rule. Chang et al. presented another scheme based on multiple range strides [29].

TCAM is among the most popular hardwares for packet classification. Numerous
algorithms have been proposed to solve the issues of TCAM-based packet classification.
These issues include range representation [30–33], ruleset compression [3,16,17], and energy
consumption [11,14,15,34]. A smaller TCAM has better energy efficiency and shorter access
latency [15]. Because OpenFlow switches may update the flow tables frequently, several
schemes have been proposed to enable efficient TCAM updates [35–37].

To avoid storing an excessive number of OpenFlow rules in TCAM, several schemes
attempt to store a part of the rules in TCAM. SAX-PAC attempts to store only 5–10% of
the rules in TCAM [38]. It categorizes rules into different partitions, with the rules in
the same partition being mutually disjoint. The rules that cannot be categorized into any
partitions are stored in TCAM. The drawback of SAX-PAC is that it must incorporate
another algorithmic solution for non-overlapping rules [24]. A number of proposals have
used TCAM as a cache to capture both the temporal and spatial localities of flows [39,40].
Several algorithms attempt to reduce the number of TCAM entries by transforming an
original ruleset into a semantically equivalent ruleset [41,42]. Because a transformed ruleset
is usually not updatable, resulting in high update latency, additional TCAM banks can be
employed to mitigate the latency [42]. Our recent work extends the previous work [43]
using a decision tree to select the bits of rules to be stored in TCAM [44]. However,
this approach requires considerable construction time due to the complex bit selection
procedure. Similar issues are addressed in different research areas [45,46].

2.3. Control-Plane Solutions for Many-Field Packet Classification

The storage overhead of TCAM can be alleviated with the support of controllers.
Kannan et al. converted the original field specifications to a flow identifier [47]; however,
this approach requires switches to implement the flow-identifier table and may lose fine-
grained control over the network traffic [48]. Moreover, it has to compare long rules in the
first OpenFlow switch of each incoming flow. While controllers can reduce the number of
rules by removing redundant rules [49], this approach may not be suitable for dynamic
networks because of additional TCAM update cost. For example, the removal of a high-
priority rule that covers multiple low-priority rules may result in multiple rule insertions.
Moreover, although the previous approaches can consume less TCAM for rulesets, they
do not consider the issue of rule length. On the other hand, while rules with length longer
than the TCAM word width can only be processed by algorithmic solutions, these are few
in number.

2.4. TCAM-Based Multimatch Packet Classification

Although TCAM is designed to yield the first matching entry, algorithmic solutions to
produce all matching entries have been proposed as well. Fang et al. presented a geometric
intersection scheme [50] that generates pseudo-rules for each unique intersection of any
overlapping rules. While both the original and pseudo-rules are stored in TCAM, the
pseudo-rules have higher priority, meaning that they can be reported for the search keys
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that match these overlapping rules. SSA splits rules into two or more subsets in order to
lower the number of overlapping rules [51]. MUD appends a discriminator field to each
TCAM entry in order to fulfill multimatch packet classification [52]. The field is used to
exclude specific TCAM entries from subsequent accesses. While the discriminator field
of MUD is generated based on the sequence of TCAM entries, the discriminator field
generated by Chang et al. [18] is a bitmap in which each bit corresponds to a group of
non-overlapping rules. For a ruleset of s groups, a s-bit bitmap is appended to each TCAM
entry. For a TCAM entry of rule R, only the corresponding bit of the rule group of rule R is
one, and the other bits are “don’t care”. The other bits of the bitmap field are set to “don’t
care”, allowing a search key to match TCAM entries of different rule groups simultaneously.
In this way, a search key can be designated to yield the matching TCAM entry of a specific
rule group by specifying one to the bit of the corresponding rule group. Contrarily, the
rules of a specific rule group can be excluded from matching a search key if the search key
specifies the corresponding bit as zero. Therefore, the bitmap of the initial search key has s
bits of one. When a matching TCAM entry is yielded, the corresponding bit is set to zero.
As a result, the previously matching TCAM entries can be excluded from the subsequent
searches by setting the corresponding bits in search keys to zero such that these search keys
can yield another matching TCAM entries.

2.5. Summarization

Table 1 summarizs the previous algorithms for many-field packet classification based
on TCAM. Currently, these algorithms attempt to reduce the storage overhead of TCAM by
either storing selected rules [38–40] or selected bits of rules [44] in TCAM. The algorithms
used for selecting rules may have performance issues for rules not stored in TCAM. The
algorithm for selecting bits of rules to be stored in TCAM may have high computation
overhead owing to the massive number of bit combinations. Currently, there is no effi-
cient algorithm to improve the storage efficiency of many-field packet classification based
on TCAM.

Table 1. Summary of algorithms for many-field packet classification based on TCAM.

Reference Research Goal Limitation

[38]

Reducing TCAM storage
requirements using an
algorithmic solution for
non-overlapping rules

Unpredictable performance of
the algorithmic solution

[39,40] Using TCAM as cache Unpredictable cache-miss
performance

[44] Selecting rule bits to be stored
in TCAM High construction time

3. Challenges and Ideas

In this research, we attempt to perform TCAM-based packet classification using narrow
TCAM entries. Conventional TCAM-based implementations of packet classification store
entire rules in the TCAM chip and input the search key for comparison against all entries.
The matchline of each TCAM entry indicates whether the search key matches the stored
ternary string. All matchlines are connected to a priority encoder to generate the address of
the first matchline with a match state. When a TCAM entry cannot store one entire rule, the
classification cannot be performed without algorithmic solutions. Because different rules
may specify different fields for various applications, these rules can be categorized into
different groups according to their field specifications to enable packet classification for
long rules using TCAM.

In our previous work [44], we used a multistage approach in which each stage stores a
part of the rule bits in TCAM. The result of each stage can be either a tag for the next stage
or a matching rule. However, this scheme may backtrack to previous stages due to TCAM
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mismatches in a stage. Moreover, the scheme may consume considerable computation
time. Another scheme divides the rules of packet classification into two parts, with each
part stored in different TCAM [53]. The result of searching the first TCAM is a tag for the
second TCAM. Additional TCAM entries for overlapping rules are inserted into the first
TCAM to avoid mismatch. In the worst case, this approach may result in O(N2) TCAM
entries for N rules.

Thus, our motivation is to store one selected field for each rule in TCAM for packet
classification. The remaining fields of a rule are stored in SRAM for further comparison if
the corresponding field stored in TCAM matches the search key. Although the controller
can generate the TCAM entries for the selected field of rules as well as the SRAM entries
for the rest fields of rules, transmitting the results to switches requires defining proprietary
messages. Notably, although PISA provides the flexibility of packet processing, it does not
process rules generated by controllers. Accordingly, we assume that each switch is installed
with a software module to preprocess rules from the controller and generate both TCAM
and SRAM entries based on our scheme.

This approach is non-trivial for the following reasons. First, multiple rules may share
the same or overlapping field specifications. To access these rules, we can either generate
one TCAM entry for each rule or store all rules in one SRAM entry. In the former case,
multimatch packet classification must be performed to yield all matching entries. As a
result, the search performance is affected by the maximum number of rules that share
the same field specification. In the latter case, each SRAM entry may store a different
number of rules, resulting in memory wastage. Moreover, the number of rules to be further
compared is unpredictable. Considering the rules in Table 2, where the former rules have
higher priority than the latter ones, each rule has five fields: the source IP address (SIP),
destination IP address (DIP), source port (SP), destination port (DP), and protocol (PROT).
If only the fourth field of all rules (DP) is stored in TCAM, there could be either eleven
TCAM entries which have the same specification [0:65535], or one SRAM entry that stores
eleven rules. Both cases can result in unacceptable performance in extreme cases.

Table 2. Example of rules on five fields.

Rule SIP DIP SP DP PROT

R1 011∗ 1101∗ [0:65535] [133:133] [6:6]

R2 011∗ 1101∗ [53:53] [0:65535] [6:6]

R3 0010∗ 1101∗ [0:65535] [53:53] [17:17]

R4 0010∗ 1101∗ [0:65535] [25:25] [17:17]

R5 011∗ 0110∗ [161:161] [0:65535] [17:17]

R6 011∗ 110∗ [5540:5540] [0:65535] [17:17]

R7 001∗ 11∗ [0:65535] [0:65535] [0:255]

R8 00∗ 110∗ [0:65535] [0:65535] [0:255]

R9 0100∗ ∗ [0:65535] [0:65535] [0:255]

R10 0101∗ 0001∗ [0:65535] [1433:1433] [6:6]

R11 011∗ 110∗ [22:22] [0:65535] [6:6]

R12 001∗ ∗ [0:65535] [0:65535] [0:255]

R13 ∗ 0101∗ [0:65535] [0:65535] [0:255]

R14 ∗ 0111∗ [0:65535] [0:65535] [0:255]

R15 ∗ 1001∗ [0:65535] [0:65535] [0:255]
Each asterisk indicates the “don’t care” bits of a field.

Second, when the fields stored in SRAM do not match the search key, it is necessary
to yield the next matching TCAM entry for potential matching rules. The number of



Technologies 2023, 11, 147 6 of 24

TCAM accesses without yielding any matching rules can become another performance
bottleneck. For the example in Table 2, when storing the SIP field in TCAM,the search key
[SIP : 01101b, DIP : 01110b, SP : 50, SP : 23, PROT : 46] matches the TCAM entries of R1, R2,
R5, R6, R11, R13, R14, and R15. Most matching TCAM entries cannot yield any matching
rules except that of R14. The number of redundant matches should be minimized in order
to improve search performance.

Third, the search key may match a rule with a priority that is not the highest among
its matching rules. In this case, the classifier must access the next matching TCAM entry
for possible matching rules. In the previous example, if we store the distinct specifications
of the DIP field in TCAM in order of their first appearance in the ruleset, the search key
[00101b, 11000b, 20, 80, 55] matches the TCAM entry of R8 first. However, the classification
procedure cannot stop, as the search key matches R7 as well, which has a higher priority.

To address these challenges, our scheme intelligently selects a field of each rule to be
stored in TCAM to reduce the number of accessed rules stored in SRAM entries. Because
one single field may not be able to efficiently identify all rules owing to the rules sharing
the same field specifications, our scheme selects different fields for different rules in order
to minimize redundant TCAM and SRAM accesses. Moreover, because the rules stored
in SRAM are reordered, the highest priority rule can only be determined by yielding all
the matching rules. Our scheme employs the multimatch packet classification technique
to yield all the matching TCAM entries, allowing all matching rules to be accessed from
the corresponding SRAM entries. As a result, all the matching rules with higher priority
can be retrieved to ensure the correctness of packet classification. Our previous work used
a bitwise approaches to select the bits to be stored in TCAM [43,44]; the new scheme can
avoid long construction times by selecting the field of rules to be stored in TCAM.

4. Our Scheme

In this section, we introduce the proposed scheme for employing TCAM with narrow-
width entries for packet classification in detail. Our scheme includes three procedures. The
first procedure generates both TCAM and SRAM entries from the original rules. The second
procedure performs packet classification on the previously generated TCAM and SRAM
entries. The last procedure updates the proposed data structures for new or deleted rules.

We present the procedure for generating TCAM and SRAM entries in Section 4.1 and
the packet classification procedure in Section 4.3. Section 4.4 describes the techniques for
improving the speed performance of our scheme. The update procedure is introduced
in Section 4.5.

4.1. Generating TCAM and SRAM Entries

The procedure for generating TCAM and SRAM entries starts by categorizing rules
into different groups, where the rules in each group do not overlap with each other.
Two rules do not overlap with each other if there exists at least one field in which the
specifications of both rules do not overlap with each other. The procedure may consist of
multiple iterations, where a field is selected as the index field of each iteration. A good
index field can effectively distinguish rules by including more rules in a group. If one index
field is not enough to distinguish all rules, the second iteration is conducted, and so forth.
Each iteration may select different index fields. The procedure ceases until all rules are
categorized into one group with a designated index field. For the rules of each group, their
specifications of the corresponding index field are stored in TCAM and the remaining fields
are stored in the corresponding SRAM entries. Each search key matches at most one rule
and one TCAM entry in a group. Because the search performance is tied to the number
of groups, it is desirable to minimize the number of groups by maximizing the number of
rules in each group.

Next, we describe the operations for selecting the index field in each iteration. Because
our algorithm attempts to select rules based on the specifications of one field, our algorithm
generates the complementary graph of the interval graph (hereinafter called the comple-
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mentary interval graph) of each field. Assume that there are d fields specified in the ruleset.
We convert each field specification as a range. Each range of the ith field corresponds to
one node in the complementary interval graph, Gi, where each node corresponds to exact
one rule. There are N nodes in the complementary interval graph, where N is the number
of rules. The complementary interval graph may consist of multiple nodes corresponding
to the same range. Two nodes are connected by an edge if their corresponding rules are
disjoint. With the complementary interval graph, we can translate the calculation yielding
the maximum number of identified rules as the maximum clique problem. Accordingly, the
maximum clique in Gi is equivalent to the maximum set of disjoint rules. By comparing the
clique size of each field from 1 to d, the field that can produce the largest clique is selected
as the first index field. The rules of the nodes in the largest clique are then removed from all
complementary interval graphs. The nodes without storing any rule are then removed as
well as their edges. The above procedure is repeated until all the complementary interval
graphs are empty. We depict the above procedure using a flowchart, as shown in Figure 1.

Input
ruleset

Rules
remaining?

Create
complementary
interval graph
for each field

Remove rules in
cliquemax from
each graph Gi

Compute
cliquemax

Stop

Y

N

Start

Bitmap configuration
based on index fields

Store specifications in
TCAM and rules in

SRAM entries

Figure 1. The flowchart of the procedure for generating TCAM and SRAM entries.

Next, we present our heuristic algorithm for the maximum clique problem because
the problem is an NP-hard problem [54]. Our algorithm starts by selecting the first node
of the clique with the corresponding range that has the smallest higher endpoint among
all ranges. If there is more than one range with the same higher endpoint, the node with
the rule that has more overlapping rules is selected. If two or more rules have the same
maximum number of overlapping rules, the rule priority is the tie-breaker. After selecting
the first node, only those nodes connecting the first node are considered as candidates of
the second node in the clique. Among these candidates, the selection of the second node
is the same as that of the first node. The above steps are repeated until no node can be
inserted into the clique.

The reasoning of our heuristic algorithm that selects the node with the range that
has the smallest higher endpoint is based on the observation that a smaller range usually
overlaps with fewer ranges. Thus, it is possible to include more nodes in a clique by
selecting a smaller range. The selection among nodes with the same higher endpoint is
related to the cliques generated in later iterations. As mentioned above, the multi-iteration
procedure for generating TCAM and SRAM entries may select different fields as index
fields. By removing those rules with more overlapping rules in earlier iterations, it is
possible to increase the clique sizes of later iterations.

The corresponding pseudocode is listed in Algorithm 1. The algorithm for gener-
ating a maximum clique is repeated iteratively until all nodes are removed from each
complementary interval graph. Because all complementary interval graphs have the same
number of rules, when all rules are removed from G1, the other graphs must be empty as
well. Therefore, the algorithm stops by checking whether G1 is empty. When a maximum
clique is generated, all complementary interval graphs are updated by removing the nodes
corresponding to the rules in the clique. The edges of the removed nodes are deleted
as well.
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Algorithm 1 TCAM entry generation.

Require: Gi =(V, E) for RuleSet using the ith field, 1≤ i≤d;
1: CliqueSet← ∅;
2: while G1 is not empty do
3: for 1 ≤ i ≤ d do
4: Cliquemax ← ∅;
5: Clique← MAXIMUM_CLIQUE_GENERATION(Gi);
6: if SIZE(Clique) > SIZE(Cliquemax) then
7: Cliquemax ← Clique;
8: end if
9: end for

10: CliqueSet← CliqueSet
⋃

Cliquemax;
11: for 1 ≤ i ≤ d do
12: UPDATE(Gi);
13: end for
14: end while
15: return CliqueSet;

16: function MAXIMUM_CLIQUE_GENERATION(G)
17: Clique← ∅;
18: Insert the node corresponding to the smallest higher endpoint into Clique.
19: Select the node with the smallest higher endpoint among all nodes that connect to all nodes in

Clique. Repeat this step until no node can be selected.
20: return Clique;
21: end function

We use the SIP field of the rules in Table 2 as an example to illustrate the proposed
heuristic algorithm. A complement graph of an interval graph is generated by creating one
node for each rule along with its field specification of SIP. Two nodes are connected if their
rules are disjoint, as shown in Figure 2. The heuristic algorithm selects the first node from
the nodes of R3 and R4, as both nodes have the smallest higher endpoint among all nodes.
Because both R3 and R4 overlap with three other rules, the node of R3 is selected as the first
clique node because of its higher priority. Next, the nodes of R9 and R10 are inserted into
the clique. Then, the five nodes of prefixes 011∗ are the candidates to be inserted. The node
of R1 is selected because R1 overlaps with another two rules and the other four rules (R2,
R5, R6, and R11) only overlap with at most one rule. After inserting the node of R1 into
the clique, the heuristic algorithm stops, as no other nodes can be inserted. As a result, the
algorithm generates a clique with four nodes, which are denoted by thick circles in Figure 2
for the SIP field.

The first index field, denoted as I1, is the one that can generate the largest clique
among all fields. We indicate the clique size of I1 as C1. Then, all complementary interval
graphs, Gi, 1 ≤ i ≤ d, are updated by removing the rules specified in the largest group.
As a result, the sizes of all complementary interval graphs are reduced to (N − C1) nodes.
Then, in the second iteration, another index field I2 is selected, where the clique size of I2 is
C2. After removing the rules in the clique of I2, the numbers of nodes in all complementary
interval graphs are reduced to (N− C1 − C2). Our procedure ends when N−∑m

f=1 C f = 0,
where m is the total number of iterations. Because m can be larger than d, the index fields
of different iterations can be the same header field.

Taking the rules in Table 2 as an example to illustrate the generation of all index
fields, the complementary interval graphs for all fields are generated to carry out our
heuristic algorithm. The DIP field is selected as the first index field (or I1) because it leads
to the largest clique among five fields. The clique of DIP includes the nodes of R1, R5,
R10, R13, R14, and R15. The nodes of these rules are then removed from all graphs. The
complementary interval graph of SIP after performing the first iteration of our procedure is
shown in Figure 3, where the number of nodes is reduced to nine. In the second iteration,
the SIP field is selected as I2, where its clique includes the nodes of R2, R3, and R9 (the thick
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circles in Figure 3). The third index field could be SIP, SP, or PROT, as their cliques have the
same size. We select SIP; the reason for this selection is explained in the description of the
packet classification procedure. The clique of SIP includes R4 and R11, and SIP is the index
field for the next three iterations. As a result, we obtain the following set of index fields:
I = 〈DIP, SIP, SIP, SIP, SIP, SIP〉.

00*

R8

0100*

R9

0101*

R10

011*

R5

011*

R2

011*

R1

011*

R6

011*

R11

001*

R7

001*

R12

*

R14

*

R15

*

R13
0010*

R3

0010*
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Figure 2. The complementary interval graph of the SIP field in Table 2.
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001*
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0010*
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0010*

R4

Figure 3. The complementary interval graph of the SIP field in Table 2 after performing the first
iteration of our procedure.

4.2. Improvement for Overlapping Rules

For the procedure to generate the TCAM and SRAM entries in Section 4.1, the number
of iterations is always higher than or equal to the maximum number of rules that mutually
overlap with each other, as these rules must be stored in different cliques. In the previous
example, R3, R7, R8, and R12 (or R4, R7, R8, R12) is the largest set of mutually overlapping
rules. As a result, the number of overlapping rules may become a performance bottleneck
of our scheme for packets with header fields that match these overlapping rules.

This performance bottleneck can be mitigated by increasing the number of rules
that map to a node. This improvement aims to reduce the number of TCAM accesses by
comparing more rules in each SRAM access. For commodity SRAM chips, in which the
width of an SRAM word is 512 bits [55], each SRAM word can store up to three IPv4 rules.
For the rules stored in the same SRAM entry, if one of their corresponding TCAM entries
matches the search key, all the rules are retrieved from SRAM for further comparisons.

We modify the previous heuristic algorithm for generating a clique to serve the
purpose of generating SRAM entries with multiple rules. First, we generate the same
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complementary interval graph as the original algorithm. We do not modify the node
selection for the clique; rather, an additional operation is carried out after selecting a node.
When a node of a complementary interval graph is selected as the first clique node, the
operation merges two different nodes with the clique node, where the merged nodes must
have the same or an immediately larger higher endpoint than that of the selected node
regardless of whether or not they are adjacent. After merging two nodes with the clique
node, the range of the clique node is updated to the smallest range that covers the ranges of
these nodes, i.e., the smallest enclosure range for these node ranges. The clique stores the
rules of the merged nodes. Because the merged nodes are removed from the graph, their
edges are removed and the edges of the clique node are updated based on its new range.
Then, another clique node is selected and the above operation is performed for the new
clique node. The steps in selecting a clique node and merging additional nodes repeat until
no clique node can be generated.

We illustrate the modified heuristic algorithm using the example in Figure 2. When the
node of R3 is selected as the first clique node, the algorithm merges two nodes, the nodes
of R4 and R7, with ranges that have the same or immediately larger higher endpoints. The
range of the first clique node is updated to the smallest enclosure range for these nodes,
which is 001∗. Next, the node of R9 is selected as the second clique node. Likewise, the
nodes of R10 and R1 are merged with the second clique node. Then, the algorithm stops
because it cannot generate a new clique node. The updated complementary interval graph
is shown in Figure 4. Although the generated clique consists of only two nodes, it includes
six rules.
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Figure 4. The complementary interval graph of the SIP field in Table 2 with the modified
heuristic algorithm.

When an index field is yielded by generating the cliques of all complementary interval
graphs, the rules in the clique of the index field are removed from all complementary
interval graphs, where the nodes without storing any rule are removed as well. Then, the
merged nodes in the complementary interval graphs of all fields must be restored before
the next iteration.

With the modified heuristic algorithm, it is possible to remove more rules from the
complementary interval graphs. As a result, the number of iterations required by the
procedure for generating TCAM and SRAM entries can be reduced. For the rules in Table 2,
SIP is the first index field with a clique including two nodes: (001∗/R3, R4, R7) and (01∗/R1,
R9, R10). DIP is the second index field to generate another clique with two nodes: (01∗/R5,
R13, R14) and (1∗/R2, R6, R15). The remaining rules are stored in the last clique with only
one node, (0∗/R8, R11, R12), where I3 = SIP. Because at most one TCAM access is required
for each index field, the modified heuristic algorithm can reduce the maximum number of
TCAM accesses from six to three.
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4.3. Packet Classification

We proceed to describe the procedure of packet classification based on the TCAM
and SRAM entries generated by the above procedure. The packet classification procedure
iteratively uses different index fields to access the corresponding TCAM entries, where each
TCAM entry stores the index field specification of a rule. The entire rule specifications are
then stored in their corresponding SRAM entries. However, for two reasons, only storing
the index field specification is not enough for our scheme to yield the highest priority
matching rule. First, overlapping rules must be categorized into different groups. Second,
a matching TCAM entry does not imply any matching rules, as the entire rule specification
is stored in SRAM. As a result, it is necessary to yield all the matching TCAM entries for
each unique index field.

Consequently, we present the data structure for TCAM entries. Except for the index
field specification, each TCAM entry includes the index field identification id, where
1 ≤ id ≤ d, in order to specify which field is stored in TCAM. ased on our previous
work [18], we further append a bitmap to each TCAM entry to serve as the discriminating
field. The bitmap length is equal to the number of rule groups. For each rule in the ith
group, the ith bit of its bitmap is set to one and the other bits are “don’t care” (or “∗”). We
show the TCAM entries for the previous example in Table 3, where there are three rule
groups. A three-bit bitmap is attached to each TCAM entry. The bitmaps enable the search
procedure to perform multimatch TCAM packet classification upon the entries generated
by our procedure. Specifically, there are two rule groups of the SIP field, each of which
corresponds to the first and third bits of the bitmap field. The TCAM entries of the first
rule group, 001∗ and 01∗, have the first bit of the bitmap field as one. Likewise, the TCAM
entry of the third rule group, 0∗, has the third bit of its bitmap field as one. The other bits of
the bitmap field are set to “don’t care”, allowing a search key to match the TCAM entries of
different rule groups simultaneously.

Table 3. TCAM and SRAM entries for the rules in Table 2.

TCAM SRAM

id Specification Bitmap Rules

2 01∗ ∗1∗ R5, R13, R14

1 0∗ ∗ ∗ 1 R8, R11, R12

2 1∗ ∗1∗ R2, R6, R15

1 01∗ 1 ∗ ∗ R1, R9, R10

1 001∗ 1 ∗ ∗ R3, R4, R7

The search procedure starts by extracting the header value of the first index field from
the inspected header fields. The search key includes the id field and a bitmap with bits
that are ones. Because of the id field, only TCAM entries with the same index field are
compared. If a TCAM entry of the first index field matches the search key, the rules stored
in the corresponding SRAM entry are retrieved for further comparison. Assume that the
matching entry belongs to the ith group. Then, the procedure updates the ith bit of the
bitmap in the TCAM search key to zero and proceeds to the next TCAM access. The next
TCAM access excludes the entries of the ith group, as their ith bits of the bitmap field are
one. The TCAM accesses for an index field are complete when there is no matching entry or
all groups of the same index field are excluded. The header value of the second index field
is then extracted from the inspected header fields along with the updated id field and the
previous bitmap to start another iteration of TCAM accesses. The above procedure repeats
until all index fields specified in TCAM entries are compared. The highest-priority rule
among all the matching rules is the result. Note that the sequence of extracting index fields
does not affect the correctness of the search procedure, as all index fields are compared.
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We use the example in Table 3 to illustrate the search procedure. For the header fields
inspected in an incoming packet (00101b, 11010b, 3000, 4000, 20), the specification of the first
index field, which is SIP, is extracted for the first TCAM access. The first TCAM search key
is (1, 00101b, 111b), where the first value is the id of the first index field and the last value
is a bitmap. By comparing the TCAM entries shown in Table 3, the second TCAM entry
matches the search key. The rules in the corresponding SRAM entry, R8, R11, and R12, are
fetched for comparing with the inspected header fields, where R8 and R12 are the matching
rules. Next, the search procedure updates the bitmap of the TCAM search key by setting
the third bit to zero to exclude the TCAM entries of the third group from the following
TCAM accesses. In the second TCAM access, the search key is (1, 00101b, 110b) and matches
the last TCAM entry. Then, the rules, R3, R4, and R7 are fetched for comparisons, where
R7 is the matching rule. Because there are only two groups of SIP, the search procedure
uses the second index field for the third TCAM access, with a new TCAM search key,
(2, 11010b, 010b). While the third TCAM entry matches the search key, the corresponding
rules, R2, R6, and R15, do not match the inspected header fields. The search procedure
stops because all index fields have been examined. As a result, the best-matching rule
based on the sequence in the ruleset is R7.

For another set of header fields (10110b, 01001b, 161, 23, 17), the first search key is
(1, 10110b, 111b), which does not match any TCAM entry. Then, the second search key
(2, 01001b, 010b) is generated to exclude the TCAM entries of the first index field by setting
the first and third bits of the bitmap field to zero. The second search key matches the first
TCAM entry, where the rules in the corresponding SRAM entry are R5, R13, and R14,
yielding a matching rule, R5.

In the last example, with the set of header fields (01101b, 11010b, 53, 133, 6), the
first search key is (1, 01101b, 111b), which matches the second TCAM entry to access the
rules of the corresponding SRAM entry (R8, R11, and R12). The second search key (1,
01101b, 110b) matches the fourth TCAM entry, where R1, R9, and R10 are accessed. The
third search key (2, 11010b, 010b) matches the third TCAM entry to access R2, R6 and R15.
Among the accessed rules, only R1 and R2 match the inspected header fields, and R1 is the
highest-priority matching rule.

We note that it is possible that a packet may not include the headers of index fields.
For example, when two fields, the destination IP address and VLAN tag, are selected as
the index fields, an incoming packet may only specify the destination IP address. In this
case, the incoming packet can only match rules for which the VLAN tag field is a wildcard.
Accordingly, the search procedure assigns a VLAN tag for the packet, where the VLAN
tag only matches those TCAM entries specifying a wildcard. For example, the value of the
VLAN tag could be an unused one in the ruleset or one of the reserved VLAN tags (0 or
4095). Notably, the VLAN tag does not cause any compatibility issues, as it is only used in
the forwarding engine.

We can eliminate the id field of the search key by adaptively setting the bitmap field.
By setting all bits which correspond to the groups of an index field in the TCAM search
key to zero, the TCAM entries of the index field do not report any match. Consequently,
the id field can be removed to reduce the length of a TCAM entry. The search procedure
is modified by initially setting the bitmap of the TCAM search key to zero except for the
bits of the first index field. When the search procedure completes the TCAM accesses for
the first index field, the bits of the first index field are set to zero and the bits of the second
index field are set to one. The above steps repeat until all index fields are examined.

For the previous example of header fields (00101b, 11010b, 3000, 4000, 20), by removing
the id field from the TCAM entries in Table 3, the TCAM search keys for the same header are
(00101b, 101b), (00101b, 100b) and (11010b, 010b). For the first two search keys, the second
bit of the bitmap is set to zero, meaning that the TCAM entries of the second index field
cannot match the search key even without the id field. Likewise, the third search key can
only match the TCAM entries of the second index field by setting the bits of the bitmap
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field corresponding to the first index field zero. As a result, the id field can be removed from
the search key as well as all TCAM entries.

4.4. Speed Performance Refinements

To improve search performance, we use the idea of rule reordering to eliminate
redundant TCAM accesses. We observe that there could be multiple TCAM entries sharing
the same specification. Thus, it is desirable to reduce the number of accesses for these
TCAM entries. We generate one replicated TCAM entry for TCAM entries with the same
specification. Then, the SRAM entry corresponding to the replicated TCAM entry stores a
set of bitmap masks, with each mask indicating the rule groups that are unlikely to yield
any matching rule. To generate the bitmap masks, the rules in the SRAM entries with the
same TCAM specification are rearranged by sorting them according to the field with the
most unique specifications. Thus, these rules can be assigned to new rule groups. Based on
the sorting field of these rules, we can categorize the rules into different subsets with the
rules in the same subset in the same subrange. Then, we generate one bitmap mask for each
subrange. In the bitmap mask, only the bits corresponding to the rule groups in the same
subrange are set to one, while the other bits are zero. The subranges and corresponding
masks are stored in the SRAM entry of the replicated TCAM entry. The replicated TCAM
entry must be placed before the original TCAM entries in order to improve the performance
of packet classification. When the replicated TCAM entry is accessed, the corresponding
SRAM entry is used to determine the matching subrange based on the packet header. Then,
the mask of the matching subrange is extracted to perform the bitwise AND operator with
the bitmap of the search key. As a result, only a subset of TCAM entries with the same
specification is accessed.

The number of subranges is determined based on the bitmap length to satisfy the
requirement that all subranges and the corresponding bitmap masks be storable in one
SRAM entry. Moreover, we only generate replicated TCAM entries for the case that three
or more TCAM entries have the same specifications. As a result, the number of additional
TCAM entries is moderate. Notably, the replicated TCAM entries do not require any
additional bits in the bitmap field when assigning one to all bits corresponding to all
distinct subranges. Because these entries are placed in front of the original TCAM entries,
a search key matching a replicated TCAM entry excludes the rule groups of at least one
subrange in order to keep the replicated TCAM entry from matching the search key.

Because there can be multiple rule groups corresponding to one subrange, pointers
are used to further reduce the number of TCAM accesses. The pointers are installed in
the first SRAM entry of each subrange to indicate the addresses of the subsequent SRAM
entries of the same subrange. The employment of the pointer is based on the observation
that the access time of TCAM is three times longer than that of SRAM [56]. In a pipeline
architecture, imbalanced access times result in a longer latency for packet classification.
Thus, we are motivated to retrieve additional SRAM entries in the stage of SRAM access.
When the SRAM entry with pointers is retrieved, its pointers are used to access another
SRAM entries for rule comparisons. In this way, the TCAM accesses to these accessed
SRAM entries can be eliminated.

4.5. Updates

Next, we introduce the update procedure of our scheme. First, we consider the
data structure without the proposed performance refinements. There are two common
operations for rule updates, namely, insertion and removal. For a new rule, we check
whether there exists an SRAM entry to store the rule without altering the corresponding
TCAM entry. If the answer is positive, the rule is inserted into the SRAM entry. Otherwise,
we check whether there exists a rule group with specifications of the index field that are
disjoint to the corresponding field of the new rule. If the answer is positive, one TCAM
entry and one SRAM entry are inserted into the group for the new rule. If the rule cannot
be stored in any groups of all index fields, a new rule group is created. In this case, one
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TCAM entry and one SRAM entry are inserted. Because the bitmap field of all existing
TCAM entries stores “don’t care” bits except for one bit, allocating one additional bit for
the new group does not affect any existing TCAM entries. For our scheme, each TCAM
entry insertion does not cause any TCAM entry movements, as TCAM entries can be stored
arbitrarily. There are two reasons for this flexibility. First, there is no order relationship
between different bits of the bitmap field. Second, the entries of the same group do not
overlap with each other. This flexibility can minimize the update cost for TCAM entries.

When a rule is removed, its specification can simply be wiped from the corresponding
SRAM entry. If the SRAM entry does not store any rules, it can be removed with its TCAM
entry. Because our scheme does not replicate any rules, at most one TCAM entry and one
SRAM entry are updated.

We further consider the update procedure with the proposed performance refinements,
in which the rules in the SRAM entries of the same TCAM specifications must be sorted
according to the specifications of a field. When a new rule is inserted into an existing SRAM
entry or a new SRAM is inserted, the other rules of the same TCAM specification can be
relocated. The corresponding bitmap masks and pointers are updated as well. Therefore,
the maximum number of updated SRAM entries is tied to the number of TCAM entries
with the same specification.

In summary, while each rule insertion or removal may generate or remove one TCAM
entry, no TCAM movement is required, as our search procedure does not presume rule
priority based on the sequence of TCAM entries. The update performance is mainly tied to
the number of updated SRAM entries with the same TCAM specification. However, because
the proposed algorithm of TCAM entry generation attempts to minimize the number of
rule groups, the number of SRAM entries with the same TCAM specification is usually
moderate. Notably, incremental updates may degrade the efficiency of the proposed data
structures, resulting in additional storage consumption and extra memory accesses. Thus,
efficiency can be improved by periodically reconstructing data structures.

4.6. Time and Space Complexity Analysis

We start by analyzing the time complexity of our scheme. First, we consider the
procedure for generating TCAM and SRAM entries. The time complexity of the proposed
heuristic algorithm for the maximum clique problem is O(dN log N), as determined by
sorting the nodes in a graph according to the higher endpoints of the corresponding field for
N d-field rules. The time complexity for the search procedure is O(MMOR), where MMOR
is the maximum number of rules that overlap mutually. Because mutually overlapping
rules must be categorized into different rule groups, for a packet header matching these
rules, the search procedure must access the TCAM entries of these groups. As a result,
the time complexity of the search procedure is tied to the maximum number of mutually
overlapping rules in a ruleset. The time complexity for updating TCAM entries is O(1) and
that for updating SRAM entries is O(N′), where N′ is the maximum number of rules with
the same field specification.

Because our algorithm does not incur any rule replications, the number of TCAM
entries is equal to the number of rules in the worst case and the storage requirement of
SRAM is identical to the ruleset size. Thus, the space complexity for both TCAM and SRAM
is the same: O(N).

5. Performance Evaluation

In this section, we evaluate the performance of our scheme using rulesets of three
difference types, namely, access control list (ACL), firewall (FW), and IP chain (IPC). For
each type, there is one real ruleset and several synthetic rulesets, with the latter generated
by ClassBench [57]. The largest synthetic ruleset has about 10,000 rules. The statistics of
these rulesets are listed in Table 4. Although there could be redundant rules in each ruleset,
we do not remove them in order to show the performance in the worst case. We assume
that range-to-prefix conversion is performed for any entries stored in TCAM, where the
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FW rulesets have higher expansion ratios than others due to wide range specifications in
both port fields. Each SRAM word stores up to three rules.

Our performance evaluation consists of three parts. In Section 5.1, the storage per-
formance of our scheme is evaluated. Section 5.2 presents the speed performance of our
scheme. In Section 5.3, we extend the five-field rules to twelve fields and show the per-
formance of our scheme for twelve-field rules. The last part, Section 5.4, evaluates the
update performance.

Table 4. Statistics of real and synthetic rulesets.

Type ACL FW IPC

Rules Expansion Rules Expansion Rules Expansion

REAL 683 1471 269 914 1550 2180
1 K 916 1225 791 3306 938 1223
5 K 4415 6148 4653 15,778 4460 5916
10 K 9603 12,947 9311 32,136 9037 12,127

5.1. Storage Performance

First, we show the storage performance of our scheme in terms of TCAM storage. We
present the number of required bits for each TCAM entry. Each TCAM entry stores the
specification of the index field and the bitmap field. In our experiments, the destination IP
address prefix is the longest index field for all rulesets. Therefore, the length of each TCAM
entry is equal to the number of groups plus 32, where the gray areas in Figure 5 denote the
bits for the bitmap field. In the worst case, each TCAM entry requires 64 bits.

Index	Field Bitmap	Field

ACL FW IPC

Th
e	
nu
m
be
r	o

f	T
C
A
M
	b
its

0

12

24

36

48

60

72

84

Ruleset

REAL 1	K 5	K 10	K REAL 1	K 5	K 10	K REAL 1	K 5	K 10	K

Figure 5. The number of bits for each TCAM entry.

We reveal the number of TCAM entries in Figure 6. Storing the entire rule specifications
in TCAM usually has much higher storage penalty because there are two range fields in
a rule. The FW rulesets occupy the most TCAM entries among all rulesets because they
usually specify wide port ranges. Our scheme can effectively reduce the number of TCAM
entries. Although there are additional TCAM entries for performance improvement, these
entries are few and can be negligible as compared the number of TCAM entries for storing
entire rules. Because our procedure of generating TCAM and SRAM entries may merge
different field specifications into one TCAM entry, it can reduce the number of TCAM
entries by 50% or more. We also note that our scheme does not suffer from the cost of
range-to-prefix conversion because most selected fields are IP address prefixes.
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Figure 6. The number of TCAM entries.

The storage requirements of TCAM and SRAM are shown in Figure 7. The required
TCAM storage is calculated by multiplying the number of TCAM entries by the entry width
of a commodity TCAM chip. As mentioned above, a commodity TCAM chip may allocate
72, 144, 288, or 576 bits for each entry. We will select the smallest entry width that is larger
than the required bits of each TCAM entry for our scheme. Since our scheme requires
less and narrower TCAM entries, the storage requirements can be effectively reduced to
improve the scalability of supporting large OpenFlow flow tables. For our scheme, the
number of SRAM entries is equal to that of TCAM entries, where each SRAM entry has 512
bits. As compared to the native implementation of TCAM-based packet classification, our
scheme consumes much higher SRAM storage. We believe that this is a reasonable tradeoff
since TCAM has higher cost than SRAM [57].
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Figure 7. The storage requirements of TCAM and SRAM.

5.2. Speed Performance

Next, we reveal the speed performance of our scheme. Because the speed performance
of our scheme is correlated to the number of groups, we show the number of groups in
Figure 8. In this figure, we set the threshold value to the number of distinct index fields for
generating rule groups, where the maximum threshold value is d. The threshold value is
used to limit the selected index fields for rule grouping. When the number of distinct index
fields is equal to the threshold value, only a field appeared in the previous index fields can
be selected.
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Figure 8. The number of generated groups for different number of unique index fields.

A higher threshold value can provide more flexibility for rule grouping to reduce the
number of groups. However, only the rule groups of the same index fields can share the
same search key to reduce redundant TCAM accesses. Moreover, the pointers in SRAM
entries are only effective for the groups of the same index fields. It is thus desired to
increase the number of groups of the same index field. We correlate the threshold value
with the number of rule groups in Figure 8. When the threshold value is set to one, near one
thousand groups are generated for the 10 K FW ruleset due to numerous rules specifying
wildcard in the first index field. One additional distinct index field can significantly reduce
the number of rule groups. More distinct index fields can further reduce the number of
rule groups, but the improvements are less significant for most rulesets.

We further show the maximum number of TCAM accesses for different threshold
values in Figure 9. Although using fewer index fields results in more rule groups, the
proposed approach of bitmap masks can greatly reduce the number of TCAM accesses
since there are more TCAM entries with the same specifications. As the number of index
fields increases, the effectiveness of bitmaps masks is reduced to result in more TCAM
accesses. However, additional index fields can reduce the number of rule groups to avoid
severe increase of TCAM accesses.
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Figure 9. The maximum number of TCAM accesses for different number of unique index fields.

For TCAM entries with two index fields, the performance improvement achieved
by employing bitmap masks and pointers is shown in Figure 10. Without the proposed
refinements, our scheme may require more TCAM accesses than the number of rule groups
because of the TCAM accesses that do not match any TCAM entries. The bitmap masks can
effectively eliminate redundant TCAM accesses by excluding rule groups that are unlikely
to yield matching rules. The pointers further lower the number of TCAM accesses by



Technologies 2023, 11, 147 18 of 24

retrieving SRAM entries to be accessed. As a result, the number of TCAM accesses in the
worst case can be greatly reduced. We also show the average numbers of TCAM accesses
with and without the proposed refinements in Figure 10 by using darker shade on each bar.
The result shows that the bitmap masks can also improve the speed performance in the
average case, where our search procedure can accomplish one packet classification with
four TCAM accesses. Therefore, although our scheme requires additional TCAM accesses
for packet classification, we believe that this is a reasonable tradeoff for the scalability and
feasibility to support rules with numerous fields.
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Figure 10. The performance improvement with the proposed refinements.

5.3. Performance for Twelve-Field Rules

In the following experiment, we extend the rules to twelve fields to show the perfor-
mance difference caused by additional fields. To generate twelve-field rules, we append
seven additional fields to each ClassBench rule used in the previous experiments. For each
ruleset, we further use three wildcard ratios, 20%, 50% and 80%, to show the performance
differences caused by wildcards.

We start from the storage performance of our scheme for different wildcard ratios in
Figure 11. First, we consider the required TCAM storage. As the number of fields in a rule
increases, the storage requirements for storing entire rules are also expanded because the
length of each TCAM entry is extended to 264 bits [58]. In contrast, our scheme can achieve
the result that the storage requirements for the twelve-field rules are similar to those for the
five-field rules, where the storage saving comes from generating less and narrower TCAM
entries. In particular, our scheme requires about 8–40% of the original TCAM entries, and
each entry does not require more than 66 bits. As a result, our scheme requires only 10%
or less TCAM storage as compared to the basic implementation of TCAM-based packet
classification. The storage requirement of SRAM for our scheme is also much higher than
that of native implementation as a tradeoff for consuming less TCAM storage.

Then, we investigate the speed performance for the twelve-field rules shown in
Figure 12. The average numbers of TCAM accesses are also shown in Figure 12 by using
darker shade on each bar. There are nine rulesets, whose speed performance is not degraded
by additional fields. The worst case occurs for ACL 5 K and IPC 5 K with 80% wildcards,
where the number of TCAM accesses is increased to 10.
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Figure 11. The TCAM/SRAM storage for twelve-field rules with different percentages of wildcards.
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We also reveal the number of accessed SRAM entries and rules in Figure 13. Our
algorithm only accesses SRAM entries that could produce matching rules by using bitmap
masks. Therefore, it also reduces the number of accessed rules, where the average number
of compared rules is less than ten for all rulesets.
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Figure 13. The number of accessed SRAM and rules for twelve-field rules with different percentages
of wildcards.

To evaluate the influence of packet throughput caused by additional TCAM accesses,
we use a program, TCAM-Model [59], to generate the access latency of TCAM chips. We
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first generate the access latency of a TCAM chip which can store entire rules by using the
following configurations: 32,768 288-bit rows, 14 nm, and eight sub-banks. The TCAM
chip has 9 megabits, where the access latency is 2.49 ns. Another TCAM chip for storing
the entries generated by our scheme has 288 kilobits, or 4096 72-bit rows. The estimated
access latency is 0.21 ns. Accordingly, the total TCAM access delay of our scheme (2.10 ns)
is shorter than that of the basic implementation, which stores entire rules. Since the latency
of SRAM accesses can be hidden by TCAM accesses, the packet throughput based on our
scheme is not affected by the additional TCAM accesses. With the estimated access latency,
our scheme can achieve more than 400 million packets per second to support line rate of
200 Gbps with 64-byte packets.

5.4. Construction Time and Update Performance

We show the construction time of our scheme for both 5-field and 12-field rulesets. Our
program is executed on a desktop PC with a 2.1 GHz CPU (Intel Core i7-12700), 16 GB main
memory, and Ubuntu operating system. As shown in Figure 14, our scheme consumes
less than one-second construction time for all real and 1 K rulesets. As the number of
rules increases to 5 K, the construction time is extended to up to two seconds for 5-field
rulesets. For 12-field rulesets, the construction time could be as long as eight seconds due
to the processing time for additional fields. For 10 K rulesets, the 5-field rulesets require
up to eight-second construction time, and the 12-field rulesets may consume up to 18 s.
Because our scheme can support incremental updates, the construction time does not affect
the performance of packet forwarding. It is feasible to periodically reconstruct the data
structures to improve the efficiency of packet forwarding.
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Figure 14. Construction time for different rulesets.

In the last experiment, we further show the update performance of our scheme for both
5- and 12-field rulesets. For each ruleset, we randomly select 20% rules from each ruleset
for insertion. The remaining rules are used to create the proposed data structure. The
numbers of updated TCAM and SRAM entries for each rule insertion are then calculated,
where the worst-case results are shown in Figure 15. The number of updated TCAM entries
in the worst case is shown by using darker shade of each bar. Because our scheme does
not mandate the order of TCAM entries, only one TCAM entry is updated in the worst
case. The number of updated SRAM entries is tied to the number of TCAM entries with the
same specification. For rulesets whose all TCAM entries have different specifications, only
one SRAM entry is updated. The results show that the number of updated SRAM entries
in the worst case is moderate.
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Figure 15. The number of updated TCAM/SRAM entries for different rulesets.

6. Conclusions

In this paper, we improve the storage efficiency of TCAM-based packet classification
by using narrow-entry TCAM chips. Our scheme stores only one field of a rule in TCAM
to minimize the width of each TCAM entry. The other fields of a rule are stored in the
corresponding SRAM entry. When a search key matches the TCAM entry, the rules stored
in the corresponding SRAM entry are then retrieved to determine the matching rules.
Because the fields stored in SRAM may cause mismatches, our scheme has the tradeoff
that the correctness of packet classification is maintained by yielding all the matching
TCAM entries. We design an SRAM-based data structure to enable multimatch TCAM
packet classification. Our data structure eliminates redundant TCAM accesses by storing
pre-computed information. The cost of TCAM updates in our scheme can be minimized, as
TCAM entries can remain unchanged for rule updates. The experimental results show that
our scheme requires a moderate number of TCAM accesses for each packet classification
and that it has superior storage performance for improved scalability in the case of more
and longer rules. Because smaller TCAM chips can be employed for storing the entries
of our scheme, the TCAM access latency of our scheme can remain shorter than that of
basic implementations that store entire rules. We show that our scheme has acceptable
update performance for the pre-computed information in SRAM entries. In summary, our
scheme provides an efficient and feasible solution for packet classification of long rules
by employing a small TCAM chip of narrow entries, and can improve the scalability of
TCAM-based packet classification for long rules.

Currently, the speed performance of our scheme is limited by the number of mutually
overlapping rules. In future work, we intend to develop a hybrid architecture to improve
the overall speed performance by accommodating heavily overlapping rules with an
algorithmic solution.
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