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Abstract: The Internet of Things (IoT) enables smart devices to connect, share and exchange data
with each other through the internet. Since an IoT environment is open and dynamic, IoT participants
may need to collaborate with unknown entities with no proven track record. To ensure successful
collaboration among these entities, it is important to establish a mechanism that ensures all entities
operate in a trustworthy manner. We present a trust and reputation model that can be used to select
the best service provider in an IoT environment. Our proposed model, IoT-CADM (Comprehensive
Agent-based Decision-making Model for IoT) is an agent-based decentralised trust and reputation
model that can be used to select the best service provider for a particular service based on multi-
context quality of service. IoT-CADM is developed using a smart multi-agent IoT environment
where information about entities is collected and evaluated using a trust and reputation algorithm.
We evaluated the performance of the proposed model against some other well-known models in a
simulated smart factory supply chain system. Our experimental results showed that the proposed
IoT-CADM achieved the best performance.

Keywords: Internet of Things; multi-agent system; decision making; trust; reputation; multi-context;
smart factory; supply chain

1. Introduction

The Internet of Things (IoT) is a network of inter-connected devices that enables
communication and sharing of data with one another. It offers effective real-time solutions
for both simple and complex systems [1,2]. IoT encompasses a wide array of connected
devices equipped with sensors such as radio frequency identification (RFID) tags, personal
digital assistants (PDAs), sensors, actuators, smart mobiles, refrigerators, medical devices
and security systems. IoT also includes virtual objects, such as data and virtual desktops in
the cloud. Due to its characteristics, IoT appeals to a wide variety of intelligent applications.
To address distinct market sectors and use cases, sub-categories of IoT have been created to
assist individuals in making more informed decisions, resulting in savings of both money
and time [3,4]. The Industrial Internet of Things (IIoT) is one of these categories. IIoT is
specifically tailored to devices designed for use in industrial settings. Smart Factories and
Industry 4.0 leverage IIoT and other computing technologies to enhance automation.

The increased utilisation of IIoT and the prevalence of automatic and autonomous
behaviour necessitates specific mechanisms for assessing the trustworthiness of data from
external sources and identifying misbehaving actors within the system, whether caused
by misconfiguration, failure, or malicious intent. In addition, the need to evaluate trust-
worthiness when collaborating with other entities is becoming more urgent, especially in
dynamic open environments [5–7]. This is accomplished through the development of Trust
Management systems.

Current trust management systems predominantly rely on physical attributes, in-
cluding factors like memory error rates, radio signal strength, number of packets re-
ceived/forwarded, repetition rate, delay factors, and energy consumption, to gauge and
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assess trustworthiness [1,7]. However, relying solely on physical characteristics is insuffi-
cient for measuring trustworthiness, especially when these devices become increasingly
intelligent and IoT environments become more decentralised, dynamic, and inter-connected.
Trust management systems that depend on non-physical parameters have also been es-
tablished but they often encounter challenges, such as collecting essential information
about the entities, storing information, scoring and ranking, and selecting entities. There
is also a need to address how these systems can tackle various IoT challenges, including
integrity, heterogeneity, scalability, openness, security, and data storage. Additionally, these
systems must also address how to handle misbehaving entities or those delivering inferior
or unsatisfactory services.

Trust Management systems are important in internet and social computing systems
to assess the level of confidence and trustworthiness that should be attributed to other
parties before initiating cooperation and interaction [1,7–10]. This enables IoT devices to
contact a predefined service provider to determine how, when and with whom to establish
connections without jeopardising their objectives. In this context, the central research
question of this study is: “How to select the best service provider in a dynamic smart IoT
environment (such as IIoT) based on the trust and reputation of the service provider?”.

To address this question, we introduce an IoT agent-based decentralised trust and
reputation model known as IoT-CADM (Comprehensive Agent-based Decision-making
Model for IoT). This model selects the most trustworthy and dependable service providers
for specific services based on multi-context service quality. IoT-CADM collects data from
various entities and employs a trust and reputation algorithm to guarantee that service
consumers are serviced by the best service providers in the IoT environment, thereby
enhancing service consumers’ satisfaction. The trust score is calculated by taking into
account the direct experience, the indirect experience and the market value of each agent.
The direct and indirect experiences are calculated based on the quality of the service
provided (QoS) for the service required and the quality of the service provider (QoP) in
providing other services other than the service required. As the objective of this study is
to select the best service provider for a particular service, we have included market value
in the calculation of the trust score to ensure that only agents with a good track record
are selected. The use of multi-context QoS and QoP in evaluating the direct experience
and indirect experience in combination with the market value to calculate the trust score
differentiates our approach from other existing models. In addition, it also allows new
entrants to be considered in the absence of information on direct experience and indirect
experience. Our model can also deal with malicious agents.

This study employs quantitative research methodology combined with a case study
approach. To evaluate the performance of the proposed model against other existing
models (ReGreT [11], SIoT [8], and R-D-C [12]), we simulated a smart factory based on
the SIPOC-Supply-Chain approach (SIPOC stands for suppliers, inputs, process, outputs,
and customers.). This smart factory was developed using a multi-agent framework, JADE
(JAVA Agent Development Framework). The proposed scenario was intended to mirror
the anticipated requirements of agent-based smart factories in the future. We evaluated the
models using the multi-criteria decision analysis technique known as TOPSIS (Technique
for Order of Preference by Similarity to Ideal Solution) [13]. This evaluation was based on a
selection of distinct parameters carefully chosen to ensure a fair and equitable comparison.

The remainder of this paper is structured as follows. Background information and the
current state of the art is discussed in Section 2. Section 3 provides a detailed discussion of
the IoT-CADM model. Section 4 reports the evaluation results of the model in environments
populated by honest and dishonest agents and compares its performance with other trust
and reputation models. Section 5 concludes and outlines avenues for further work.

2. Related Work

Trust can be defined as the subjective likelihood that an individual A anticipates
another individual B to execute a specific action upon which the well-being of A relies [14].
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In their definition, ref. [14] incorporated the notion of dependence on the trusted party,
and the perceived reliability (probability) of the trusted party from the perspective of the
trusting party. However, trust can be more complex. For example, having high trust in
a person in general is not sufficient to determine whether one should become reliant on
that individual in a specific situation. Trust is important in business activities because it
forms the foundations for healthy and productive relationships between individuals and
organisations. The concept of trust is also introduced in social science to depict a scenario in
which a community member called the trustor relies on the actions of another community
member known as the trustee [15,16]. On the other hand, reputation often relies on third-
party ratings and recommendations. According to [4,14,15,17], reputation is the perception
people hold about someone or something, formed through past experiences following
direct or indirect interactions with that entity. Both trust and reputation are used to support
data and service management and to boost entities’ collaboration in IoT environments.

Trust is represented using a single value with many properties. Ruan and Duressi [18],
Yu et al. [7] and Jøsang et al. [14] used the term dimension to denote a number of parameters;
separated distrust, time stamp, context-aware and confidence. Firstly, separated distrust
(which is the complement of trust) can be used as a representation of trust. A high value of
separated distrust represents a high level of trustworthiness, and a low value represents a
low level of trustworthiness (untrustworthiness). Secondly, a time stamp is incorporated in
the trust value to address the dynamicity of trust. This time stamp can be updated and is
used to handle malicious attacks. Thirdly, trust is context-dependent, whereby a trustee
may exhibit different trust degrees based on various contexts. Finally, confidence is used to
measure the extent to which the trustor is certain about the trust assessment.

Trust can be derived from three sources [18–20]: attitude, experience and behaviour.
Attitude represents the trustor’s opinion towards the trustee. With experience, the trustor
evaluates the trustee’s performance based on previous interactions or transactions with the
trustee. Trust can also be evaluated based on similarity, social or physical behaviours.

Alhandi et al. [21] classified trust models based on trust characteristics, trust archi-
tecture, trust distribution, trust aggregation technique, trust model type and attack type.
Two types of trust attributes can be found in IoT environments: non-social trust and QoS
and social trust. Non-social trust deals with high quality services in response to service
requests and social trust deals with the owners of the IoT devices. Trust architecture can
be centralised, distributed or decentralised, while trust distribution can be direct, indirect
and hybrid. Hybrid is the most common source of trust and combines direct trust and
indirect trust.

Trust Management Systems (TMSs) play an important role on the Internet and social
computing systems. Applications are designed to help users make better decisions based on
trust information. TMSs can be divided into three parts [1,7,18,22]. Firstly, trust modelling
deals with how to represent trust relationships in computational models. Secondly, trust
management describes how to collect evidence and perform risk evaluation. Finally,
decision making allows TMSs to work more intelligently and efficiently.

TMSs have been developed as a mechanism for open and dynamic environments,
where unknown parties can interact with the purpose of acquiring or offering services;
this mechanism allows parties to decide which requesters are qualified to gain access to
the resource, and which server is trusted to provide the requested resource, based on the
certified statements provided by the interacting parties [22].

To date, research on data sensitivity and privacy has primarily concentrated on as-
sessing trustworthiness with the aim of optimising satisfaction and performance in IoT
applications, particularly those involving decision-making and partner-selection [5–7,23].
In addition, work on trust management has focused on distributed wireless networks [24],
applications of trust techniques in IoT domains, including the use of an intelligent agent [25],
as well as wireless sensor networks and RFIDs [21]. The literature on trust and reputation
models can be broadly categorised into three types: trust and reputation in IoT, trust and
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reputation in a Multi-Agent System (MAS) and the combination of IoT and agent-based
trust and reputation.

2.1. Trust and Reputation in IoT

IoT can be viewed as a peer-to-peer, owner-centric community, comprising of a vast
array of devices (or things) that either request or offer services on behalf of their owners.
Given that conventional IoT systems are typically sensitive to information security and
privacy concerns [5–7], it is important to assess trustworthiness for two primary reasons.
Firstly, it enhances the satisfaction and performance of IoT applications. Secondly, it is
crucial to maintain effective collaboration among the nodes deployed within the network
and to guarantee trustworthy operation of these nodes [5–7]. The rationale for providing a
trust management system for IoT systems is to safeguard against misbehaving devices (or
owners) conducting discriminatory attacks and to ensure that the IoT ecosystem remains
secure and fair [1,4,12,26].

In Public Reputation Systems (PRSs), users rate each other to establish trust by means
of reputation. This kind of reputation system relies on a central unit (server), which collects
and consolidates all feedback following each event. Four models based on a centralised
model have been proposed. These are IoTrust [27], HAMS (Health/Accessibility Monitoring
Service) [23], IoT-TM (IoT-Trust Management) [5], and Hierarchical Zones [1]. IoTrust is a
centralised trust architecture comprising of five layers: the nodes layer, software defined
network layer, the organization layer, and the reputation management layer [27]. The goal
of the model is to identify reliable and trustworthy partners. The reputation management
layer evaluates the behaviour-based organisation reputation for all organisations and
nodes engaged in the collaborative activities. This is intended to prevent a malicious
node (or organisation) from gaining access to the tags in the objects layer and potentially
initiating various attacks that could severely damage the network. In a similar context,
Shayesteh et al. introduced the HAMS model [23]. HAMS serves as a centralised service
that gathers real-time observations from peers, assesses their contributions and calculates
trust scores for users (entities) using Bayesian learning-based procedure. IoT-TM is a cluster-
based approach designed to tackle IoT trust management issues, including countering
bad-mouthing attacks and memory-efficient trust computation [5]. The architecture of
IoT-TM comprises cluster nodes, master nodes, clusters and a super node. These IoT nodes
are organised into clusters according to their trustworthiness. The trust values of these
nodes may fluctuate (rise or fall) depending on the interactions with others within the same
cluster. A hierarchical network concept for intrusion detection by partitioning IoT nodes
into distinct zones or clusters was introduced by [1]. The trusted base station manages these
zones, ensures the security of data transmission, and identifies and removes any malicious
nodes that are attempting to spy on others. Each node must evaluate the trustworthiness of
a peer node that wishes to communicate with it based on physical network parameters,
such as received radio power, noise, and number of received packets.

Utilising a centralised reputation system like PRS carries inherent risks which may
result in single points of failure. These include physical and logical network failures and
security attacks. To mitigate these risks, a range of decentralised trust and reputation
systems and mechanisms have been developed. A smart trust management method was
introduced by [3] to diminish the influence of On–Off attackers. Using machine learning
and an adaptable sliding window technique, this model evaluates the trustworthiness of
IoT resources by categorising the data into classes and flexibly adjusting the window size
according to these classes. Only values that are within the presumed trust range (values
between the lower and upper bounds of the elastic sliding window) are acceptable. Other-
wise, out-of-range values are considered as outliers. The Social Internet of Things (SIoT)
is a trust management scheme [8]. SIoT operates within an edge computing environment,
which requires each active node (person) to use a handheld device (mini-edge servers) to
handle traffic forwarding and computational functions. SIoT calculates the trustworthiness
of any entity keen to collaborate with its peers. The trust score is calculated by adding the
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scores for direct observations, indirect recommendations, centrality, energy and service.
Since all devices in SIoT are low-powered and use less energy, energy consumption is used
to identify if a node is involved in an attack.

An innovative three values (3v) trust model was introduced by [28] for IoT-ad hoc
systems with the purpose of mitigating the presence of misbehaving entities within IoT-ad
hoc network-based applications. The model uses a novel logic called 3v-TCTLC to reason
about commitments in uncertain environments regarding trust. The proposed model was
validated using smart health monitoring and smart home systems.

Recent research on trust management in IoT systems includes an adaptive trust model
based on recommendation filtering algorithms for IoT systems [29], tackling the uncertainty
of trust by introducing a new trust method using behavioural similarity between sensor
nodes [30], and the development of a hybrid trust management approach using Probabilistic
Neighbourhood Overlap in combination with a mix of a dynamic and static approach [31].
Another study proposed a context-dependent trust management technique (ConTrust) for
job selection and allocation in a SIoT environment [32], while [33] proposed a decentralised
trust measurement model that combines edge computing and blockchain technology. Other
works on trust models focused on mobile edge computing [34–36], resource sharing [37],
mobile vehicle networks [19,38], intrusion detection [39–41] and fog computing [42–44].

2.2. Trust and Reputation in MAS

Trust and reputation mechanisms are one of the key elements in designing multi-agent
systems (MASs). In distributed environments, agents have no prior information about
the behaviour of their potential partners. As such, these agents have no choice but to rely
on trust and reputation mechanisms to assess this behaviour. In this context, trust and
reputation mechanisms are employed to manage interactions among the agents and to
safeguard good agents from fraudulent ones [45].

Marsh, in 1994 [46], presented a formalism approach for a trust and reputation mech-
anism in MAS. The proposed mechanism can be employed by an agent to determine
whether it is advantageous to collaborate with another agent by relying on their prior
direct interactions. This model describes three types of trust: basic trust, general trust, and
situational trust. Basic trust is the general disposition to trust irrespective of who is the
agent in question and is calculated from past experiences for all situations. General trust
represents the general trust between the agent (x) and another agent (y) without reference
to any particular situation. Situational trust is used to compute the degree of trust that one
agent holds for another agent in a specific situation. In this model, the trust value ranges
from −1 to + 1, where −1 denotes a negative trust (distrust), 0 indicates no trust, and +1
signals a strong positive trust.

Context-aware Bernoulli Neural Network-based Reputation Assessment (COBRA) [47]
is a framework that accurately predicts the trustworthiness of a target agent. In this model,
an agent attempts to predict the conditional probability p to determine the trustworthiness
of the other agent for a given context. This approach does not make any assumptions about
the presence of stereotypical or socio-cognitive information. In MAS, computational trust
and reputation models have traditionally considered two types of information sources: the
direct interactions among agents, and information provided by society members about their
past experiences. The Comprehensive Reputation Model (CRM) [17] is a probabilistic-based
reputation model with the goal of securing multi-agent systems by mitigating the influence
of self-interested agents. In the online evaluation, agents assess the trustworthiness of
other relatively unknown agents by collecting relevant information. This data is collected
from their own previous direct interactions or other trustworthy agents, who can offer
recommendations in the form of ratings (indirect interactions). In the offline evaluation,
the trustor agents are expected to update the consulting agents with their information
about the trustee agent after a variable period of direct interactions. This is to minimise the
estimation error, which improves the accuracy of the system.
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The R-D-C model [12] calculates trust by combining the scores for “Reputation-
Disrepute-Conflict” for all other parties in the environment. Disrepute describes negative
opinions, while conflict captures the consistency of the agent behaviours. Reputation
represents positive opinions and is used to improve the selection process for a trustworthy
provider in a multi-agent system. In this model, the agent calculates the R-D-C value for
each provider and picks the most trustworthy provider using a decision matrix.

The ReGreT system [11] uses social relations as a third source of information, apart
from the information obtained from direct and indirect interactions. ReGreT bolsters the
agent’s abilities to handle trust and reputation. The main goal is to enhance the agent’s
performance in a complex e-commerce environment and assist consumers in making
rational decisions. ReGreT takes into account direct experiences, information from third-
party agents (indirect experiences), and social structures to compute trust, reputation, and
credibility values. The result of experiments indicated that a dynamic method to collect
and combine the different sources of information is the preferred method.

2.3. Agent-Based Trust and Reputation in IoT

The concept of multiple agents working together and collaborating with each other in
an IoT environment is very appealing. A new generation of IoT devices have the potential
to work autonomously, make rational decisions and negotiate with other IoT devices to
achieve a specific goal. In this environment, IoT applications will have the ability to solve
complex problems and, in turn, maximise their performance.

Trustworthy Agent Execution Chip (TAEC) is an autonomic-agent-trust model for
IoT systems [48], implemented on a physical chip to improve security in dynamic IoT
environments. The Trustable Agent comprises the task entity, the attributes and a security
and reliability protection module. These agents are embedded in the sensor nodes and it is
assumed that each sensor node must install a TAEC. These agents run in containers, which
are managed by agencies. Agencies provide services, such as communication, registration,
management, migration, persistence and security and reliability protection.

In a similar work, a centralised Trust Management System (TMS) manages security
procedures by monitoring previous interactions in the network to identify malicious attacks
and self-serving behaviour in the context of IoT [9]. In this model, the TMS obtains
information about the trustworthiness of the available proxies and service providers. After
the evaluation process and service provision, the node is required to submit an evaluation
report (feedback with values −1, 0 and 1) to the TMS. This report is used in the subsequent
trustworthiness evaluation by other nodes and is accessible to any node needing to interact
with available proxies.

Privacy-preserving and reputation in the distributed Machine-to-Machine (M2M-REP)
environment was proposed by [49]. M2M-REP detects infected and malicious machines that
compromise the network integrity. The presence of these malicious machines reduces data
security and increases financial losses. M2M-REP evaluates the global reputation scores
for any machine by aggregating the direct trust scores from other machines it interacted
with. This process is carried out using a directed weighted graph, which represents the
human–machine or machine–machine network.

A study on the development of a trust estimation model as part of a decision-making
framework was conducted by [50]. The model empirically computes and evaluates the
trustworthiness of agents in MAS. In this setting, an agent can choose to cooperate and
collaborate with trustworthy agents only. The evaluation model used in this work is
adapted from reinforcement learning and Markov Games. The result of the experiments
showed that the trust estimation model performed better than other existing trust models.

An efficient and effective technique for organising ad hoc teams of free moving ve-
hicles, sensors and smart devices (known as Automated Guided Vehicles (AGV)) within
a smart factory environment was proposed by [51]. This work defined a trust measure
based on the reliability and reputation of AGVs, which are computed based on the feed-
back released for the AGVs’ activities in the factory. Additionally, they designed a trust
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framework that utilises the trust measure to support the formation of virtual, temporary
and trust-based teams of mobile intelligent devices. The trustworthiness of a single AGV
is calculated based on effectiveness and efficiency. Effectiveness is defined as customer
satisfaction with respect to the job performed by the AGV. This can be thought of as the
reputation of the AGV in the customer community. Efficiency is defined as the capability of
the AGV in complying with the assembly constraints (such as time) during the product
assembly process. In this work, it was assumed that there are no malicious agents in
the smart factory. This work was evaluated through a set of experimental results and
showed that the proposed trust framework can improve workshop performance in terms
of effectiveness and efficiency.

In summary, IoT devices will become more intelligent in the future, and will have
the ability to communicate and cooperate with other entities that are not predefined.
These agents should be able to decide “how”, “when” and “with whom” to engage in
collaboration, negotiation and operations on behalf of their owner and should take into
account multi-context Quality of Service (QoS). The majority of existing models rely on
physical properties to determine trust and reputation over metrics that measure actual
performance. On the other hand, existing trust management systems, which rely on non-
physical parameters, have not fully considered how information about entities can be
collected, stored, scored and ranked. In addition, limited work has been carried out on
how malicious entities are dealt with. To address these gaps, we developed a trust and
reputation model (IoT-CADM).

3. IoT-CADM Design

IoT-CADM is a decentralised agent-based decision-making model with the primary
objective of avoiding the drawbacks associated with centralised reputation systems. These
drawbacks include issues such as dishonest agents trying to manipulate overall ratings
to their advantage. These agents may use various tactics, such as self-promotion attacks,
bad-mouthing attacks, and ballot-stuffing attacks. IoT-CADM is also a context-aware agent-
based framework, as it can handle multiple contexts in its trust evaluation. It calculates
the trustworthiness and degree of confidence of other agents using IoT-TESM (IoT-CADM
Trust Evaluation and Selection model). This trust score is calculated by aggregating the
trust scores for information from multiple sources. IoT-TESM uses a dynamic technique
called ASW (Auto-Scale Weight) to dynamically adapt the weights of the different trust
scores. The adaptation of these weights is based on the prevailing conditions with the
objective of generating an accurate representation of the overall trust score.

3.1. IoT-CADM Trust Evaluation and Selection Model (IoT-TESM)

Within IoT-CADM, a service consumer agent uses IoT-TESM to calculate the trust
scores of provider agents that offer the required service. By computing and assessing the
trust score of each provider agent, this service consumer agent can decide how, when and
whom to collaborate with. The trust score is calculated based on multi-context quality
of service (QoS). In this setting, QoS is defined as the measure of the agent’s overall
performance in the provision of a specific service. IoT-CADM proposes two approaches to
measure the quality of service: the quality of service provided (QoS) and the quality of the
service provider (QoP). The inclusion of QoP provides more opportunities for new service
providers to be considered and decreases the effect of bad-mouthing (negative ratings)
and ballot-stuffers (fake ratings). There are seven parameters for QoS as shown in Table 1.
In more detail, to consider a specific service offered by a service provider, the service
consumer needs to access information related to the service, which includes the service
lead time (duration between the initiation of the service and the execution of the service),
the service similarity (how similar is the service to the specific service being requested), the
description accuracy of the service (how similar is the service description to the specific
service being requested), the service guarantee (what guarantee is provided by the service),
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service satisfaction (customer ratings of the service), service cost (the cost of the service)
and over request (whether there add-on values provided by the service).

Table 1. Evaluation properties (multi-context QoS).

Acronym Definition Description

SLTPe Service Lead Time The latency between the initiation and the
execution of the process.

SSIM Service Similarity The similarity between the service requested and
the service to be provided.

SDAv Description Accuracy
The similarity between the description of the
service requested and the description of the

service to be provided.

SGUR Service Guarantee

A service guarantee is a promise by a company
that it will perform at a certain level. If that level
is not met, the company promises to compensate

the customer in some way.

SATv Service Satisfaction
A measure of how happy customers are with a
company’s products, services, and capabilities

using customers’ surveys and ratings.

SCOST Service Cost The value of producing or consuming the goods
or services.

SOvRq Over Request The total values that are over the expected
values for previous services.

Similarly, the multi-context QoP contains the seven parameters in Table 1 for other
services (apart from the service being offered) provided by the same service provider.
Qualitative values, such as service similarity, description accuracy and service guarantee,
are converted to a numeric value and normalised so that these can be used to calculate the
trust score.

IoT-TESM evaluates the trustworthiness of an agent by combining information col-
lected from different sources. These sources are Direct experiences (αDtSPi), Indirect
experiences (IndtSPi), and Market Evaluation (MrkVal), as shown in Figure 1. The ser-
vice consumer agent (aSC) selects a service provider agent (aSP) by evaluating the trust
score calculated using IoT-TESM for every service provider aSP who provides a particular
service SRi.
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IoT-TESM computes the trust score using Equation (1), where the aSP with the highest
score will be selected to perform the service.
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Trust = αDtSPi + βIndtSPi + γMrkVal (1)

In Equation (1), α, β and γ are weights, and α + β + γ = 1. The values of these
weights can be set manually by the system’s users, or automatically using the proposed
ASW (Auto-Scale Weights) method discussed in the next section. The use of ASW provides
a balanced and fair value of the weights based on the current situation so that a more
accurate trust score can be obtained.

Direct experience (DtSPi) is the main source of information, which comprises all
the previous transactions between the aSC and aSP. The value of DtSPi is calculated by
evaluating the QoS and QoP of the service SRi using Equation (2).

DtSPi = xDQoSSRi + yDQoPSRi (2)

where x + y = 1. DQoSSRi is calculated using Equation (3) based on the seven parameters
described in Table 1.

DQoSSRi =
7

∑
p=1

wp ∗ Pro(SRi) (3)

where wp is the weight of the properties, SRi is a service ∈ Provided Services List and Pro
is the individual property (in Table 1).

DQoPSRi is calculated using Equation (4) to evaluate the behaviour of aSP in providing
other services apart from SRi.

DQoPSRi =
all y ̸=i

∑
y=1

7

∑
p=1

avg(wp ∗ Pro(SRy)) (4)

where SRy is a service ∈ Provided Services List and SRy ̸= SRi.
The second source of the information that is used in this model is the indirect experi-

ence (IndtSPi), which generally reflects the experience and relation between the same aSP
with the others, and how others think about the aSP. IndtSPi is calculated by evaluating
the QoS of the service SRi and QoP using Equation (5).

IndtSPi = xIndtQoSSRi + yIndtQoPSRi (5)

where x + y = 1, and the value of IndtQoSSRi and IndtQoPSRi are calculated using
Equations (6) and (7), respectively, for the service SRi based on the parameters described
in Table 1. IRSI is a list of all the requests from the other parties who responded.

IndtQoPSRi =
7

∑
p=1

IRSI[avg(wp ∗ Pro(SRi))] (6)

IndtQoPSRi =
all y ̸=i

∑
y=1

7

∑
p=1

IRSI[avg(wp ∗ Pro(SRy))] (7)

Again, the wp is the weight of the properties, Pro is the properties, and SRy is a
service ∈ Provided Services List and SRy ̸= SRi.

Finally, the market evaluation (MrkVal) is used to increase the evaluation accuracy
and reduce the risk of the having to deal with a new service provider. MrkVal combines
the value of the properties: spsv (stock value), spni (annual net income), spnb (number
of branch), spnc (number of customers), and spc f (cash flow), and is calculated using
Equation (8).

MrkVal = avg{a(spsv) + b(spni) + c(spnb) + d(spnc) + e(spc f )} (8)

where the weights a + b + c + d + e = 1.
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MrkVal l is commonly used in the investment community to denote to the market
capitalization of a publicly traded company. It is used to assess various exchange-traded
instruments, such as stocks and futures. Moreover, it is a valuable indicator of how investors
perceive a company business prospects. which can lead to a reduction in investment risks.
This is because the dynamic nature of market value is dependent on many factors, such
as physical operating conditions, economic conditions and the supply and demand. IoT-
CADM leverages this point to gauge the performance indicators of the suppliers (companies
or investors). This can reduce the selection risk and provide more opportunities for new
service providers to be selected.

For all equations, the parameter STime is used to indicate the time effect, where recent
transactions are more important than older ones. This is calculated using the time relevance
function as shown in Equation (9)

STime(i.j) = e–φln(∆t(i,j) (9)

where the variable φ is application-dependent and ∆t(i, j) is the time difference between
the current time and time at which interaction j of type i took place.

Taken together, in this evaluation mechanism, aSC selects the most trustworthy aSP
(the one with the highest trust score) to provide the service.

3.2. The Auto-Scale Weights (ASW)

IoT-TESM is an evaluation technique to assess the trustworthiness of the IoT-CADM
environments’ members, by combining the information collected from direct experience
(DtSPi), indirect experience (IndtSPi), and market evaluation (MrkVal), as discussed earlier.
Based on Equation (1), the values of the weights α, β and γ need to be set correctly and
carefully. In this model, there are two ways to set these values: by giving the owner the
ability to adjust them manually or by using the proposed ASW technique.

ASW is a dynamic technique which aims to calculate balanced and fair values of the
weights to increase the overall performance. ASW calculates the values of a, β and γ based
on Equations (10), (11) and (12), respectively.

a =

(
wDtSPi

wDtSPi + wIndtSPi + wMrkVal

)
(10)

β =

(
wIndtSPi

wDtSPi + wIndtSPi + wMrkVal

)
(11)

γ =

(
wMrkVal

wDtSPi + wIndtSPi + wMrkVal

)
(12)

where wDtSPi, wIndtSPi, and wMrkVal are the scaled weights of the direct, indirect, and
market value. These values are calculated using Equations (13)–(15), respectively. The
scaled weights in ASW are calculated as the average of the highest three values (AvgMax3)
of aSPs for each of the DtSPi, IndtSPi, and MrkVal values, and ∆t(i, j) is the time difference
between the current time and the time at which interaction j of type i took place.

wDtSPi = abs
(

AvgMax3(DtSPi ∗ ∆t(i, j)DtSPi)

AvgMax3(DtSPi) + AvgMax3(IndtSPi) + AvgMax3(MrkVal)

)
(13)

wIndtSPi = abs
(

AvgMax3 (IndtSPi ∗ ∆t(i, j)IndtSPi)

AvgMax3(DtSPi) + AvgMax3(IndtSPi) + AvgMax3(MrkVal)

)
(14)

wMrkVal = abs
(

AvgMax3(MrkVal ∗ ∆t(i, j)MrkVal)

AvgMax3(DtSPi) + AvgMax3(IndtSPi) + AvgMax3(MrkVal)

)
(15)
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3.3. Detecting Dishonest Agents Using Principal Component Analysis (PCA)

IoT-CADM exploits Principal Component Analysis (PCA) [52] to analyse the infor-
mation collected from different sources in order to detect dishonest agents. PCA is a
dimensional reduction technique that uses statistical procedures (including the mean, vari-
ance, covariance, covariance matrix, eigenvectors, and eigenvalues) to identify patterns in
data and express the data in such a way as to highlight their similarities and differences. To
identify dishonest agents, seven parameters used for QoS (SLTPe, SSIM, SDAv, SGUR, SATv,
SCOST, and SOvRq), discussed in Section 3.1, are collected from all agents who offered
to provide the service requested. Then, a relationship between two selected parameters
is identified. Next, PC1 and PC2 are calculated using mean, variance, covariance matrix,
eigenvectors and eigenvalues. Dishonest agents are defined as agents that are located
outside the predefined borders of Min PC1, Max PC1, Min PC2 and Max PC2. Figure 2
shows a relationship between the cost and quality of the service offered by the provider
agents. In this example, the two red agents are considered as dishonest (ambiguous) agents
as they are located outside the predefined boundaries. This process is then repeated for
other parameters (e.g., SCOST vs. SLTPe, SATv vs. SLTPe). When detected, IoT-CADM can
terminate, notify, or allow the agent to continue.
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3.4. IoT-CADM Environment

IoT-CADM can be implemented for range of real-life applications, such as intelligent
vehicular systems, intelligent surveillance for smart house, and intelligent health systems.
As we are interested in investigating the application of IoT-CADM in an IIoT setting, we
developed a simulated smart factory supply chain and used this environment to evaluate
the behaviour of the IoT smart agents. These IoT smart agents assume the roles of buyers
and sellers that are involved in the manufacturing and distribution of COVID-19 personal
protective equipment products. In this simulated environment, it is assumed that the prod-
ucts being manufactured are medical masks, gloves, respirators, and oxygen concentrators.
These are essential for the provision of clinical care and for the well-being of healthcare
professionals. During the COVID-19 pandemic, the demand for these products was high
due to supply chain disruption, the inability to fulfil supply, increased cost and workforce
dislocation. In the context of supply chain, the additional challenge is for distributors to
find trustworthy suppliers, who can deliver replacements for raw materials at the highest
quality with the lowest cost.

We implemented this scenario using a multi-agent system to enable agents to make
autonomous decisions based on the trust and reputation score. The simulated environment
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is shown in Figure 3. In stage Stg(i) (i is the stage number of the stage Stg), the smart
factory (SF) has three roles: service consumer, service producer, and service provider. For
example, SF(Y) utilises services provided by service provider (SF(X)) at stage Stg (i − 1) to
manufacture products and/or services for onward distribution in the subsequent stage,
Stg (i + 1), where it operates as service provider. In this scenario, SF(Y) acting as a service
consumer needs to select one (or more) service providers to source services from SF(X) in
the preceding cycle. These service providers might be unfamiliar to the service consumer.
The service consumer needs to ascertain whether these unknown service providers can
deliver superior (or satisfactory) service quality. Additionally, these newly established
service providers must promote and offer their services to thrive in the competitive market.
These service consumers, service producers and service providers are modelled as agents
in the simulation, and they can interact and negotiate with one another.
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IoT-CADM consists of several components: Service Registry List (SRL), Market Value
Registry List (MVL), aSP, and aSC (see Figure 4). All components are interlinked through an
IoT network and monitored and controlled remotely by its owner using IoT technology. SRL
is a database that contains current information about the services that are available in the
environment. As such, all services are registered on start-up and deregistered on shutdown
so that the SRL can maintain the latest information about all the available services. MVL
contains the latest general information about the market value for all registered aSPs. aSPs
can take the form of an agent-based organisation, a business entity or an individual who
offers services to others within the IoT-CADM environment in exchange for payment
or any equivalent form of compensation. aSPs offer various services depending on the
knowledge, expertise, and the nature of the aSP itself. Finally, an aSC represents an agent-
based organisation, a business entity or an individual that makes payment in exchange for
consumption of goods and services provided. aSCs are supported by service providers
within the IoT-CADM environment.

As shown in Figure 4, every service provider (aSPi) needs to register their new services
by submitting a Register New Service (RNS) request to the SRL. This action renders the
service accessible to all aSCs. The service consumer aSCi monitors the environment for
any newly needed services, whether they are physical or logical. Once the aSCi detects a
new required service (SRi), it dispatches a Service Lookup (SLUi) to the SRL. This message
contains the details of the service SRi and specifies the Minimum Similarity. Subsequently,
SRL replies to aSCi by providing a list of aSPs that can supply the service Sri, or delivers
a “NoResult” message if no aSPs are available. Once aSCi receives the list of aSPs from
SRL, aSCi proceeds to establish contact with each aSP on the list. It then waits for their
responses, which include accurate details about the service SRi and a list of referees that
can be contacted by aSCi.
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When aSCi receives responses from aSPs, it initiates two types of checks. The first,
known as “Evaluate_Contract_Satisfaction”, is designed to sort and reduce the number
of aSPs based on the contract satisfaction and similarity between the requested and the
responded contracts. After that, aSCi proceeds by forwarding a request to the Referees
(aSCx), Trusted Friends (aSCy), and the Neighbour Agents (aSCz) to inquire about aSPis
(those that have successfully passed the initial check). The request does not specify the
exact service, to minimise the messages that will be conveyed back to the requester. In this
model, it is assumed that the referees, trusted friends and neighbour agents are willing
to provide the requested information. After collecting all the required information from
its database and from other parties for each aSPi, aSCi proceeds with the second check
“Check_NHA_PCA”. The purpose of this is to detect dishonest agents using PCA. When
aSCi requests this information, “Check_NHA_PCA” is performed. aSCi will then compute
the trust and reputation score for all the filtered aSPs that have successfully cleared the
second check. This computation is carried out using IoT-TESM and the provider with
the highest trust score is selected. Finally, aSCi revises the details of all the participants
involved in the evaluation process.

It should be noted that, to increase the chance of the unselected aSPs being selected
in the future, aSPi must consider adapting its behaviour. This may involve increasing its
market value and offering additional promotions and incentives to attract aSCs. This course
of action is usually initiated after a certain number of unsuccessful selections (cα) by aSCs.
The exact value of cα can be determined based on the behaviour of aSPi and the nature of
the services it offers.

4. Experimental Evaluation

To evaluate the effectiveness of our proposed IoT-CADM model, we conducted a
comparative analysis against three existing model: ReGreT [11], SIoT [8] and R-D-C [12].

ReGreT [11] is one of the pioneering models in multi-agent systems that incorporates
reputation and trust management to improve the agent’s performance in an e-commerce
environment. The trust value of this model is calculated using Equation (16), which
combines the scores from direct experiences, indirect information and the social dimension.

Tij = direct experiences + indirect in f ormation + social dimension (16)
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SIoT [8] calculates the trust of a node j with respect to node i using Equation (17),
where 0 < (α,β, λ,γ,ω, and η) < 1, 0 < Tij < 1.

Tij = αDij + (1 − α − β)Gij + λCIij + γCOij + ωEresidual,j + ηSij (17)

Dij is the direct trust of node j with respect to node i during direct contact, Gij is the
centrality of the object j with respect to i, CIij is the community interest of nodes i and j,
COij is the cooperativeness between nodes i and j, Eresidual,j is the energy consumption of
node j and Sij is the service score of node j with respect to node i.

In R-D-C [12], the requester calculates the reputation, disrepute, and conflict of each
suggested provider using Equation (18).

Tij = Reputation + Disrepute + Con f lict (18)

where Reputation is based on the ratings for previous satisfying interactions, Disrepute on
the ratings for previous dissatisfying interactions and +Con f lict on the ratings for conflict
in previous interactions.

We chose these models for comparison as they are similar to our proposed model and
the calculation of the trust score is primarily based on direct and indirect experience. In
addition, ReGreT and R-D-C are both agent-based trust and reputation models and SIoT is
a trust and reputation model for IoT. There is no comparable model for a combination of
agent-based and IoT trust and reputation.

4.1. Experimental Setup

IoT-CADM was developed and implemented using the JADE framework. In this
environment, the following steps are performed: (1) detects new service, (2) collects
information, (3) calculates the trust and reputation score, (4) selects service provider, and
(5) finalises the contract agreement with the selected provider. This sequence of steps is
defined as a transaction, which can be completed in one simulation tick. Each time tick is
equal to 6 h. To replicate the real-world, we run the simulation for 10,000 time ticks, which
is equivalent to seven years. By setting this to 10,000 time ticks, we allow ample time for
the selection process to be repeated many times and the databases to be populated with
historical data. Once the simulation begins, the agent logs the transaction in its database
and continues until the simulation is completed. The Clearance Time is added as extra
time to the simulation to allow ongoing transactions that are started before completion of
the run time to be completed. Table 2 shows the main environment settings. A service is
identified by a service ID, service name, start and end time. Examples of services in this
simulation are face masks, hand sanitiser and goggles.

Table 2. Main Environment Settings. * represent Multiplication sign (×).

Parameter Name Value Format and Unit Notes

Simulation run time 10,000 ticks

Clearance time 2000 ticks extra clearance time

Simulation tick-size 500 ms

Cycle delay period 1000 ms

Waiting time before reordering Xct * ReO ticks

Accepted responses 90 % accepted number
of responses

Number of provided services 2–8 service/agent

Number of consumer services 2–6 service/agent
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When an agent needs a service, the first step is to collect information from its sources.
In this instance, there are three possible scenarios that may occur during the evaluation
and selection process:

1. Starts the evaluation and selection process if there is at least one or more potential
provider and responses have been received.

2. Starts the evaluation and selection process if there is at least one or more potential
provider and responses have been received after a certain waiting time.

3. If no potential providers are available, the agent starts the Reordering process. This
process may be repeated many times (ReO) for a particular service SRi. A waiting
time is set before repeating the reordering process. The waiting time can be set to a
constant value (Xct) or by multiplying the ReO value by Xct.

In this experiment, we assume that the environment is populated with varying number
of honest and dishonest agents. Dishonest agents (or attackers) are generated randomly.
These dishonest agents are assumed to use bad-mouthing and/or on–off attacks. In a
bad-mouthing attack, a dishonest agent can ruin the trust level of honest agents by giving
them bad recommendations. Consequently, their reputation is negatively affected and
the chance of these honest agents being selected for service is reduced. With the on–
off attack, dishonest agents can randomly perform a trustworthy service to hide their
untrustworthy behaviour.

The values for the multi-context QoS and QoP (shown in Table 1) are randomised
based on normal distribution and bounded between 0 and 100 to simulate the service
providers’ overall performance in the provision of a specific service. This mimics the
diversity of the service providers and the services being offered. In a real-world setting,
it is expected that this data will need to be collected qualitatively and then converted to
numeric values. For example, for a given Service X, Agent A has the following values:
80, 70, 70, 90, 80, 80, 80, while Agent B has the following values: 50, 60, 60, 70, 70, 60,
50. Based on these QoS parameters, it can be said that Agent A offers a better service for
service X as it offers a better lead time and the service offered is more similar to Service X.
Its description of the service is also more similar to Service X when compared to that of
Agent B. In addition, Agent A offers a better service guarantee, service satisfaction, service
cost, and over request. We have simplified this in our model so that we can focus on the
trust evaluation and the selection of agents. We assume that the service consumer agent
has access to these parameters.

There are five sets of agents’ distributions in this environment: 70, 110, 150, 190, and
230 agents. In addition, a different percentage (0%, 25%,50%, and 75%) of dishonest agents
was used in different scenarios. We decided to limit the percentage of dishonest agent to
75% as, in the real world, it would be uncommon to have more than 75% dishonest agents
in the environment. Based on this, there were a total of twenty sub-scenarios (SSR) used to
study and evaluate the performance of all competing models comprehensively (Table 3).
These agents are randomly positioned, and they start their activities based on an active
time parameter. Figure 5 shows how agents are distributed in an environment that has
190 agents. The value of active time is generated randomly based on a normal distribution.
These agents can operate all the time during the simulation as Full-time Agents or operate
for a specific period as Part-time Agents. These distributions adhere to the supply chain
concept, as previously discussed, with the first level (L1) representing the final service
consumer, and the fourth level (L4) corresponding to the raw material providers. Between
L1 and L4, agents in L2 and L3 both consume services from the lower level and offer
services to the higher level.

We also implemented ReGreT, SIoT and R-D-C in the same environment with the
necessary adjustments made to the calculation of their trust scores.
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Table 3. Agents’ Distribution.

Sub-Scenario Name Dishonest Agents
Number of Agents

L1 L2 L3 L4 Total

SSR1.1

0%

10 15 20 25 70

SSR1.2 20 25 30 35 110

SSR1.3 30 35 40 45 150

SSR1.4 40 45 50 55 190

SSR1.5 50 55 60 65 230

SSR2.1

25%

10 15 20 25 70

SSR2.2 20 25 30 35 110

SSR2.3 30 35 40 45 150

SSR2.4 40 45 50 55 190

SSR2.5 50 55 60 65 230

SSR3.1

50%

10 15 20 25 70

SSR3.2 20 25 30 35 110

SSR3.3 30 35 40 45 150

SSR3.4 40 45 50 55 190

SSR3.5 50 55 60 65 230

SSR4.1

75%

10 15 20 25 70

SSR4.2 20 25 30 35 110

SSR4.3 30 35 40 45 150

SSR4.4 40 45 50 55 190
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4.2. Performance Measures

IoT-CADM employed a set of performance metrics to measure and compare its results
with the other three models. In this work, we evaluated the performance of the proposed
model using the following metrics:

1. Trustworthiness: the trust and reputation score of all trustees or other peers in the
environments. A high trust score represents a higher level of trustworthiness.
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2. Cash utility (CU): the total cash gained by the individual agent and the model is
determined by the amount of cash (won or lost) after a fixed number of rounds.
Equation (19) is used to calculate the cash utility, (where PoT represents positive
transactions, NgT denotes negative transactions, n is the total number of transactions,
Tc is the completion time, Ts is the service starting time and Te is the expected agreed
time to complete the service).

CU = ∑n
i=1

{
+Pro f it value , f or positive transactions

−Transaction cost ∗
(

Tc−Ts
Te−Ts

)
, f or negative transactions

(19)

We also evaluated and ranked the performance of our model and the three existing
models using the TOPSIS technique. TOPSIS is a widely adopted multi-criteria decision
analysis method renowned for its simplicity and ease of comprehension. TOPSIS chooses
the best solution by identifying the one with the shortest distance from the positive-ideal
solution, and the furthest distance from the negative-ideal solution [13]. In addition to cash
utility and trustworthiness, we included additional parameters. These parameters cover
various performance measures related to physical measurements, accuracy and utility, and
social measurements. These are context awareness (ability to understand and respond to
requests), the quality of service, the quality of provider, the number of active agents, the
number of completed transactions, the average evaluation and selection time, the average
number of service providers per selection, the total number of communication messages
through the network and the average number of communication messages per transaction.
Each of these parameters is then given a weight to indicate its importance. A parameter can
also be excluded in the TOPSIS ranking by setting its weight to 0. For example, if we are
not interested in the physical measurements, we can set the weights for average evaluation
and selection time, average number of service providers per selection, the total number
of communication messages and the average number of communication messages per
transaction to 0. In our experiment, all the parameters were considered with equal weights.

4.3. Results

In this section, we will discuss the results in two parts; an environment with no
dishonest agents (0%) and an environment with up to 75% dishonest agents.

4.3.1. Honest Environment (0% Misbehaving Agents)

Figure 6 shows the trust scores for the four models with varying agent distributions
(SRR1.1–SRR1.5). Initially, when the simulation starts, none of the agents have sufficient
information in their database or from the witnesses about the environment. This means
that aSCs have no alternative but to work with unfamiliar witnesses to choose a service
provider. IoT-CADM has the highest trust scores for all scenarios when compared to the
other models. It can be seen that, during the first quarter, ReGreT recorded the lowest trust
scores. In contrast, SIoT and R-D-C recorded higher scores, as both models used physical
information to avoid random selection. However, at time tick 5000, ReGreT outperformed
SIoT and R-D-C, signalling the importance of incorporating social information within the
environment after a certain period of time. By leveraging on the social information and
employing the dynamic ASW method (with appropriately scaled weights), IoT-CADM
maintains consistent performance at all times across all scenarios. We also computed the
PDS (percentage of difference and superiority) for all models. PDS calculates the percentage
of difference between two values to determine how close they are relative to the larger
value. Based on these calculated values, IoT-CADM surpassed ReGreT by 38%, SIoT by
40%, and R-D-C by 41% in selecting the most trustworthy aSP.
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The total cash gained by each model from all successful transactions during the
simulation is shown in Figure 7. It can be seen that the proposed model gained more cash
than the other models for all scenarios. In the first sub-scenario (SSR1.1), the total cash
gained by all the models is much lower compared to SSR1.2–SSR1.5. It should be noted
that the number of agents in SSR1.1 is 70 and this number is gradually increased to 110 in
SSR1.2 and eventually to 230 in SSR1.5 (see Table 3). This means that, as the number of
agents in the environment increases, there are more service requests which, in turn results
in more business transactions. An increase in the number of successful transactions leads
to an increase in monetary gain. R-D-C recorded the lowest profit at the beginning of
the simulation but eventually converged to a value similar to those of the ReGreT and
SIoT models after time tick 2000. The performance of the three models (ReGreT, R-D-C
and SIoT) is very similar across all scenarios. Even though the cash gained by the three
models increased over time for all scenarios, their total cash gained is much lower than that
for IoT-CADM.

In more detail, Figure 8 shows the total cash gained by each model, with IoT-CADM
delivering the highest total cash gained to service consumers, followed by ReGreT, SIoT
and R-D-C.
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Next, we applied the TOPSIS method to perform a mathematical comparison and
ranking based on all the models’ performance. Table 4 shows that IoT-CADM achieves the
highest performance when all the agents in the environment are honest. This is followed by
SIoT, ReGreT and R-D-C. Furthermore, IoT-CADM also recorded the highest performance
even when the weight (pw) for each parameter was altered. This suggests that IoT-CADM
demonstrates more stability and adaptability for use in diverse environments and scenarios.
This finding also indicates that IoT-CADM outperforms the other three existing models.

Table 4. TOPSIS performance ranking in an honest environment. * represent Multiplication sign (×).

Parameter Weight (pw)
(Xi/SQR(SUM(Xˆ2)) * 100

Ideal Best Ideal Worst
IoT-CADM ReGreT SIoT R-D-C

Context Aware 0.10 50.00 50.00 50.00 50.00 max 50.00 min 50.00

Quality of Service (QoS) 0.10 57.70 57.70 57.70 0.00 max 57.70 min 0.00

Quality of Provider (QoP) 0.10 100.00 0.00 0.00 0.00 max 100.00 min 0.00

Number of Active Agents 0.10 61.00 48.30 48.10 40.30 max 61.00 min 40.30
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Table 4. Cont.

Parameter Weight (pw)
(Xi/SQR(SUM(Xˆ2)) * 100

Ideal Best Ideal Worst
IoT-CADM ReGreT SIoT R-D-C

Number of
Completed Transaction 0.10 65.20 44.70 44.20 42.40 max 65.20 min 42.40

Total Cash Utility 0.10 65.30 44.60 44.20 42.30 max 65.30 min 42.30

Average Evaluation and
Selection Time 0.10 24.10 67.20 66.90 20.80 min 20.80 max 67.20

Average Number of SPs
per Selection 0.10 52.40 57.10 56.60 28.30 max 57.10 min 28.30

Total communication
messages in the network 0.05 51.40 58.50 57.80 24.50 min 24.50 max 58.50

Average communication
messages per transaction 0.05 38.50 62.40 62.20 27.40 min 27.40 max 62.40

Average Trust
Evaluation (0–3000) 0.05 83.00 15.10 37.80 38.30 max 83.00 min 15.10

Average Trust
Evaluation (3000–~) 0.05 64.00 49.80 42.00 40.80 max 64.00 min 40.80

Models

Function IoT-CADM ReGreT SIoT R-D-C

Ideal Best (IB) 0.0156 0.1223 0.1200 0.1276

Ideal Worst (IW) 0.01367 0.0652 0.0658 0.0537

Performance = IW/(IB + IW) 0.8976 0.3477 0.3541 0.2962

Final Rank 1 3 2 4
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4.3.2. Dishonest Environment (0–75% Misbehaving Agents)

In this experiment, we ran all the models in four sub-scenarios in an environment
populated with 230 agents only. This is because it was observed in Section 4.3.1 that the
results obtained for 70, 110, 150, 190 and 230 agents were quite similar and consistent across
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the four models. An environment populated by up to 75% dishonest agents means that
there is a high likelihood of potential attack.

The trust scores for IoT-CADM, ReGreT, SIoT, and R-D-C are shown in Figure 9. Here,
SRR1.5 is a sub-scenario with no dishonest agents, SRR2.5 is a sub-scenario with 25%
dishonest agents, SRR3.5 is a sub-scenario with 50% dishonest agents and SRR4.5 is a sub-
scenario with 75% dishonest agents and the total number of agents in the simulation is 230.
It can be observed that IoT-CADM has the highest trust score, which suggests that it has the
most trustworthy aSPs for the aSCs compared with the other models. This demonstrates
the ability of the model to detect malicious agents, thereby preventing them from being
selected. As before, none of the agents have enough information in their database or from
the witnesses about the environment at the start of the process, which forced aSCs to
collaborate with unknown witnesses to select service providers. In this setting, ReGreT
has the lowest trust scores in the first quarter, while the SIoT and R-D-C used physical
information to avoid the random selection during this period. Once these agents have
enough information, their performances converge. IoT_CADM was able to maintain a high
trust score for all scenarios throughout the simulation, as it used the market evaluation
as the main selection criteria in the absence of direct experience and indirect experience.
In addition, new entrants (service providers) can increase their chance of being selected
in the future by adapting their behaviour, such as by offering additional promotions and
incentives to attract service consumers. Towards the end of the experiment at time tick
5000, IoT-CADM and ReGreT performed higher than SIoT and R-D-C, which signals the
importance of using the social information in the environment after a certain period of time.
The results also shows that the performance of the SIoT was affected more than the other
models when the number of dishonest agents increased in the environment. This is because
SIoT uses physical information, which does not contribute to the identification of dishonest
agents. In contrast, the other models have superior methods for detecting malicious agents.
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The total cash gained by each model for each scenario is shown in Figure 10. It can be
seen that the total cash gained by all the models decreases as the number of dishonest agents
increases in the environment (see Figure 11a). The increase in the number of dishonest
agents meant that more dishonest agents were successful in obtaining the contract to fulfil
the service. However, these dishonest agents were not able to complete the service on
time, which resulted in additional completion time and a reduction in the total cash gained.
In all the sub-scenarios (SRR1.5–SRR4.5), IoT-CADM has the highest cash utility when
compared to the three models. Figure 11a shows that cash utility decreases for all models
as the number of dishonest agents increases in the environment. The lowest cash gained is
recorded when there were 75% dishonest agents in the environment. Figure 11b shows that
IoT-CADM gained the most cash followed by R-D-C, ReGreT and SIoT. This shows that
IoT-CADM has a superior evaluation and selection method for service providers, and it
was able to accurately detect malicious agents.
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Table 5 summarises the result of comparing these models using TOPSIS. It can be seen
that the proposed model IoT-CADM still has the highest performance in an environment
with a varying number of dishonest agents. The result also shows that IoT-CADM ranked
higher than ReGreT, SIoT and R-D-C in dishonest environments.
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Table 5. TOPSIS performance ranking in a dishonest environment (0–75%). * represent Multiplication
sign (×).

Parameter Weight (pw)
(Xi/SQR(SUM(Xˆ2)) * 100 Ideal Best Ideal Worst

IoT-CADM ReGreT SIoT R-D-C

Context Aware 0.10 0.0500 0.0500 0.0500 0.0500 max 0.0500 min 0.0500

Quality of Service (QoS) 0.10 0.0580 0.0580 0.0580 0.0000 max 0.0580 min 0.0000

Quality of Provider (QoP) 0.10 0.1000 0.0000 0.0000 0.0000 max 0.1000 min 0.0000

Number of Active Agents 0.10 0.0606 0.0483 0.0483 0.0408 max 0.0606 min 0.0408

Number of Positive
Transaction (0–3000) 0.05 0.0353 0.0212 0.0192 0.0209 max 0.0353 min 0.0192

Number of Positive
Transaction (3000–~) 0.05 0.0357 0.0200 0.0196 0.0210 max 0.0357 min 0.0196

Total Cash Utility (0–3000) 0.05 0.0355 0.0198 0.0166 0.0240 max 0.0355 min 0.0166

Total Cash Utility (3000–~) 0.05 0.0391 0.0180 0.0170 0.0188 max 0.0391 min 0.0170

Average Evaluation and
Selection Time 0.10 0.0292 0.0661 0,0662 0.0199 min 0.0199 max 0.0662

Average Number of SPs per
Selection 0.10 0.0575 0.0552 0.0539 0.0272 max 0.0575 min 0.0272

Total communication
messages in the network

(0–3000)
0.05 0.0329 0.0249 0.0253 0.0126 min 0.0126 max 0.0329

Total communication
messages in the network

(3000–~)
0.05 0.0264 0.0287 0.0289 0.0135 min 0.0135 max 0.0289

Average communication
messages per transaction 0.05 0.0213 0.0304 0.0303 0.0143 min 0.0143 min 0.0304

Average Trust Evaluation 0.05 0.0343 0.0202 0.0203 0.0225 max 0.0343 min 0.0202

Models

Function IoT-CADM ReGreT SIoT R-D-C

Ideal Best (IB) 0.0264 0.1195 0.1205 0.1255

Ideal Worst (IW) 0.1329 0.0652 0.0645 0.0559

Performance = IW/(IB + IW) 0.8343 0.3530 0.3486 0.3082

Final Rank 1 2 3 4
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5. Conclusions and Future Work

In this paper, we described IoT-CADM, a trust and reputation model that can be used
to select the best service provider in an IoT environment. IoT-CADM uses IoT-TESM to
evaluate each service provider. IoT-TESM calculates the trust score of a service provider
agent by considering its direct experience, indirect experience and market evaluation. Multi-
context QoS and QoP are used in evaluating both direct experience and indirect experience.
The inclusion of multi-context QoP provides more opportunities for new service providers
to be considered and decreases the effect of negative ratings and fake ratings. Our approach
differs from other existing works in two ways. Firstly, we consider multi-context QoS and
QoP in evaluating direct and indirect experiences. Secondly, we included market valuation
in the calculation of the trust score to solve the cold start problem, where none of the agents
have complete information at the beginning of the simulation.

We demonstrated the superiority of our model against three existing models, ReGreT,
R-D-C and SIoT, where IoT-CADM outperformed all three models in both performance
measures for trustworthiness and cash utility in honest and dishonest environments. In
addition, the TOPSIS technique was used to rank the competing models, and our model
achieved the highest ranking. Our work advances the state of the art by providing a multi-
agent framework than can be used evaluate the trust and reputation of service providers in
an IoT setting capitalising on IoT-TESM, which uses multi-context QoS in evaluating direct
experience and indirect experience and market evaluation.

There are several limitations to our work. In our simulation, we have randomised the
values of all the QoS parameters. It would have been advantageous to implement various
methods to convert qualitative data to quantitative data. We did not implement this, as the
focus of this work is on the trust score evaluation and selection of agents. We also assumed
that the referees, trusted friends and neighbour agents are willing share the information
of a given service provider. We acknowledge that in the real-world, some parties may be
unwilling to share this information due to privacy issues. The QoS parameters are also
available to all the service consumer agents. Even though our model can detect malicious
agents, it does not penalise these malicious agents. Honest agents are also not rewarded.
As IoT-CADM is a flexible framework, these limitations can be addressed in future work
building on the current implementation.

A further extension of this work would be to examine the impact of unsecured network
connection on trust and reputation. In this study, it was assumed that the agents are
transacting in a fully secured environment. It would be interesting to investigate the
performance of our model in an unsecured environment. We are also keen to implement
the proposed models in other smart environments with the aim of developing a universal
trust and reputation model that can be applied in any IoT settings.
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