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Abstract: The visual fidelity of virtual reality (VR) and augmented reality (AR) environments is
essential for user immersion and comfort. Dynamic lighting often leads to chromatic distortions
and reduced clarity, causing discomfort and disrupting user experience. This paper introduces
an AI-driven chromatic adjustment system based on a modified U-Net architecture, optimized for
real-time applications in VR/AR. This system adapts to dynamic lighting conditions, addressing
the shortcomings of traditional methods like histogram equalization and gamma correction, which
struggle with rapid lighting changes and real-time user interactions. We compared our approach
with state-of-the-art color constancy algorithms, including Barron’s Convolutional Color Constancy
and STAR, demonstrating superior performance. Experimental results from 60 participants show
significant improvements, with up to 41% better color accuracy and 39% enhanced clarity under
dynamic lighting conditions. The study also included eye-tracking data, which confirmed increased
user engagement with AI-enhanced images. Our system provides a practical solution for developers
aiming to improve image quality, reduce visual discomfort, and enhance overall user satisfaction in
immersive environments. Future work will focus on extending the model’s capability to handle more
complex lighting scenarios.

Keywords: AI-driven image enhancement; virtual reality; augmented reality; image quality; deep
learning; lighting conditions

1. Introduction

Virtual reality (VR) and augmented reality (AR) technologies are rapidly transforming
industries such as gaming, education, healthcare, and virtual tourism by offering users
immersive experiences that merge digital content with real or simulated environments. The
success of VR and AR, however, hinges on visual fidelity—high-quality imagery is crucial
for maintaining user immersion and reducing discomfort. Even small flaws in image clarity
or color accuracy can disrupt a user’s sense of presence and lead to visual discomfort,
reducing the overall quality of the experience [1].

In AR, seamless integration of virtual objects into real-world environments is par-
ticularly sensitive to lighting variations, requiring precise chromatic adjustments for a
convincing visual experience. In VR, visual consistency across immersive environments is
essential to avoid breaking the user’s sense of presence. In both cases, failures in color ac-
curacy or clarity can contribute to motion sickness and visual fatigue, negatively impacting
the user experience.

Poor image quality, especially under dynamic lighting conditions, can lead to reduced
task performance, eye strain, and shorter engagement times in VR/AR environments [2].
This is particularly critical in professional applications like remote medical diagnostics
or virtual collaboration, where visual accuracy is paramount [3]. Additionally, emerging
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AR applications, such as mobile AR with depth estimation, further highlight the need for
accurate visual information in real-time dynamic environments [4].

Managing image quality under changing lighting conditions presents a major chal-
lenge in VR/AR systems. Traditional chromatic adjustment techniques, such as color
balancing, contrast enhancement, and tone mapping, often fall short in dynamic or low-
light scenarios, leading to issues like washed-out images or over-saturation [5].

Traditional methods such as histogram equalization (HE) and gamma correction
(GC) are particularly inadequate for the real-time demands of VR/AR, where lighting can
change rapidly and user interactions must be fluid. These methods lack the adaptive color
constancy needed for immersive environments, leading to degraded visual quality [6].

Recent advances in artificial intelligence (AI), particularly in deep learning and com-
puter vision, offer promising solutions to these challenges. AI-driven models, such as
convolutional neural networks (CNNs) and generative adversarial networks (GANs), have
shown great potential in enhancing image quality through tasks like super-resolution, color
correction, and image restoration [7]. These techniques can dynamically adapt to real-time
lighting and scene changes, offering a significant advantage over traditional methods.

Our proposed AI-driven chromatic adjustment system leverages a real-time adaptive
approach designed specifically for handling dynamic lighting in VR/AR environments.
We compare our system to state-of-the-art color constancy algorithms such as Barron’s
Convolutional Color Constancy [8] and the STAR Retinex model [9], demonstrating superior
performance in maintaining visual fidelity.

Despite the potential of AI-driven techniques, current solutions often overlook the
complexities of rapid user perspective changes and the dynamic lighting typical of immer-
sive environments. There remains a need for adaptive, real-time solutions that enhance
image quality while reducing user discomfort and improving overall user experience.

This paper addresses the challenge of maintaining image quality in VR/AR environ-
ments under dynamic lighting conditions by proposing an AI-driven chromatic adjustment
system. Our contributions are threefold:

1. We develop a real-time AI model based on a modified U-Net architecture tailored
for immersive media, capable of dynamic chromatic adjustments. Our approach
is comprehensively evaluated against traditional image processing techniques and
state-of-the-art color constancy algorithms.

2. We conduct extensive experiments using subjective user evaluations and objective eye-
tracking data to assess performance. The results show up to 41% improvement in color
accuracy under low-light conditions, significantly outperforming traditional methods.

3. We demonstrate the practical benefits of our AI-based system in enhancing image
quality and reducing visual discomfort in VR/AR environments.

These enhancements are crucial for professional applications like virtual collaboration
and medical diagnostics, as well as consumer-focused applications such as gaming, where
improved visual quality correlates with higher engagement and satisfaction.

The rest of this paper is organized as follows:

• Section 2: Related Work reviews research on image quality in immersive environments
and advancements in AI-based image processing.

• Section 3: Methodology outlines the AI model architecture, experimental setup, and
data collection process.

• Section 4: Experimental Results presents and analyzes user study data, comparing
AI-enhanced and non-enhanced images under varying lighting conditions.

• Section 5: Discussion interprets the findings, emphasizing the improvements intro-
duced by the AI-based system and discussing implications for VR/AR applications.

2. Related Work

The visual quality of immersive VR and AR environments plays a crucial role in user
experience, affecting factors such as presence, immersion, and even physical comfort [10].
Maintaining high visual fidelity is essential to ensure user engagement and reduce issues
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such as motion sickness or visual fatigue. This section reviews the existing literature
on the challenges of image quality in immersive environments, the advancements in AI-
driven image enhancement, and the limitations of traditional image processing techniques,
highlighting the gaps that our work seeks to address.

2.1. Challenges and Techniques in Image Quality for VR/AR Environments

Ensuring high visual fidelity in VR and AR is critical for creating engaging and im-
mersive user experiences. Poor image quality, such as low clarity and inaccurate color
representation, can disrupt immersion and cause physical discomfort like motion sickness
or eye strain [11]. In VR, visual inconsistencies become more noticeable due to the immer-
sive nature of the environment [12], while AR requires precise color matching and visual
consistency to integrate virtual objects seamlessly with real-world surroundings [13].

Dynamic lighting conditions, commonly encountered in both VR and AR environ-
ments, exacerbate these challenges. As users move through different environments or
experience changing ambient light, maintaining consistent image quality becomes difficult.
Traditional image processing techniques struggle to adapt in real time, often producing ar-
tifacts like noise or over-saturation in low-light scenarios [14]. Moreover, existing methods
for chromatic adjustments are inadequate for immersive environments, where lighting can
change unpredictably, further highlighting the need for advanced techniques such as color
constancy algorithms [6].

Recent advancements in AI have shown promise in overcoming these challenges.
Deep learning methods, particularly convolutional neural networks (CNNs) and generative
adversarial networks (GANs), have been used for tasks such as super-resolution, denoising,
and color correction. For example, SRGAN, a GAN-based model introduced in [15], im-
proved image quality by enhancing fine details. Similarly, deep CNNs have outperformed
traditional denoising methods, as shown in [16]. In color correction, Gharbi et al. [17] used
deep learning for real-time photo enhancement, but their approach was tailored to 2D
images and did not address the specific challenges posed by immersive environments.

While these AI-driven techniques offer significant improvements, they do not fully
address the demands of VR and AR, particularly when it comes to real-time performance
and handling dynamic user perspectives. In this work, we extend the use of AI to
immersive environments, focusing on real-time chromatic adjustments under variable
lighting conditions.

2.2. Limitations of Traditional Image Processing Techniques and Proposed AI Solutions

Traditional image processing methods such as histogram equalization, gamma correc-
tion, and tone mapping have long been used to enhance image quality. However, these
methods are often static and unable to adapt to the rapidly changing lighting conditions in
immersive environments. For example, histogram equalization improves global contrast
but can amplify noise in low-light images, while gamma correction adjusts luminance
without considering color balance, leading to distortions [18]. Tone mapping, often used
for HDR images, is computationally intensive and may fail to meet the real-time processing
demands of VR and AR systems [19].

In comparison, AI-based solutions provide more flexibility and adaptability. By lever-
aging architectures such as U-Net, our approach adapts to dynamic lighting in real time
using sensor data from VR/AR hardware. This allows for accurate chromatic adjust-
ments and enhanced image clarity, outperforming traditional techniques like histogram
equalization and gamma correction across various metrics.

Real-time chromatic adjustments are particularly challenging in VR/AR due to the
need for high-resolution processing with low latency. Techniques like those proposed
by [20,21] focus on low-light image enhancement and image harmonization in AR, respec-
tively. However, these studies do not fully address chromatic adjustments under dynamic
lighting, which are essential for maintaining immersion in VR/AR environments. Further-
more, these methods do not consider comparisons with color constancy techniques such as
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Convolutional Color Constancy [8] and STAR Retinex [9], which are designed to handle
varying lighting conditions.

2.3. Research Gap and Our Contribution

While significant progress has been made in AI-driven image enhancement, its appli-
cation to real-time immersive environments remains underexplored. Traditional methods
are insufficient for the unique demands of VR/AR, where dynamic lighting, user move-
ment, and the need for real-time processing complicate image enhancement. Existing AI
approaches also lack the necessary adaptability and efficiency for these environments.

Our work addresses this gap by developing an AI-based chromatic adjustment system
specifically designed for VR/AR applications. By utilizing a modified U-Net architecture
optimized for real-time performance, our model adapts to changing lighting conditions
using sensor data from VR/AR hardware. This allows us to maintain high visual fidelity
and user immersion in various lighting scenarios. Additionally, by comparing our method
with state-of-the-art color constancy algorithms, we demonstrate the superiority of AI-
driven chromatic adjustments in dynamic immersive environments.

3. Methodology

This section outlines the design, implementation, and evaluation of the proposed AI-
driven chromatic adjustment system for VR and AR environments. We detail the AI model
architecture, dataset preparation, training procedures, and evaluation metrics to ensure
reproducibility. Additionally, comparisons with state-of-the-art color constancy algorithms
are included to validate the performance of our system under dynamic lighting conditions.

Our system is built upon a modified U-Net architecture [22]; U-Net is known for
its performance in image-to-image translation tasks. U-Net was chosen for its ability
to preserve spatial information using skip connections, crucial for maintaining image
fidelity in VR/AR environments. Key modifications enhance real-time performance and
adaptability in handling dynamic lighting variations common in immersive settings.

The model follows an encoder–decoder structure with skip connections to preserve
spatial details. The encoder captures hierarchical features, while the decoder reconstructs
the chromatically adjusted image in real time. The encoder consists of five convolutional
blocks, and the decoder has five deconvolutional blocks with symmetric skip connections.
The output layer uses a tanh activation to produce the adjusted image. We benchmarked
our model against color constancy algorithms like CCC [8] and STAR Retinex [9], showing
significant improvements in real-time adaptability for VR/AR environments.

Training settings and hyperparameters:

The model was trained using the Adam optimizer with a learning rate of 2 × 10−4,
batch size of 16, and a total of 100 epochs. Dropout (0.5) was applied in the first three
decoder layers to prevent overfitting, and the loss function was mean absolute error (MAE).
The learning rate was kept fixed for the first 50 epochs, and then, linearly decayed for
the remaining 50 epochs. Early stopping was employed based on validation loss with a
patience of 10 epochs to ensure optimal performance across different lighting conditions.

The model was implemented in PyTorch 1.8.1 and trained on an NVIDIA RTX 3090
GPU. Libraries such as NumPy and OpenCV were used for numerical computations and
image processing.

3.1. Dataset Preparation and Augmentation

A dataset comprising 12,000 images was curated, covering a broad range of lighting
conditions in both real-world and simulated VR/AR scenarios. Real-world images were
captured using DSLR cameras in indoor and outdoor settings, while simulated scenes were
generated using Unity 3D and Unreal Engine. Images were resized to 256 × 256 pixels to
balance computational efficiency and detail.
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The dataset was split into training (70%), validation (15%), and test (15%) sets, ensuring
balanced representation across various lighting conditions. Data augmentation techniques,
including random rotations, scaling, color jitter, and horizontal flipping, were applied to
the training set to improve generalization and robustness.

3.2. Training and Evaluation Procedures

The training procedure used the Adam optimizer with β1 = 0.5 and β2 = 0.999 to
balance convergence speed and stability. A fixed learning rate was applied for the first
50 epochs, followed by linear decay. The loss function was MAE, chosen for its robustness
against outliers, ensuring smoother outputs. Dropout (0.5) was employed in the first three
decoder layers for regularization, and early stopping was based on validation loss.

The model’s performance was validated across different lighting conditions, using
both objective metrics (color accuracy and image clarity) and subjective evaluations (visual
appeal). Comparisons with state-of-the-art methods (CCC, STAR Retinex) further validated
the system’s performance.

3.3. Experimental Setup and Data Collection

Experiments were conducted using adjustable LED panels to simulate three lighting
conditions (200 lux, 500 lux, and 1000 lux). A Microsoft HoloLens 2 and an Oculus Quest 2
were used to assess the system’s performance in both AR and VR environments, respectively.
These headsets provided real-time sensor data, which was integrated into the model to
adjust chromatic properties dynamically.

Participants (60 individuals) were recruited for subjective evaluations. Eye-tracking
data were collected using integrated headsets to measure user engagement, focusing on
fixation duration and saccade patterns. These metrics provided objective insights into how
participants interacted with the images and their visual experience.

3.4. Evaluation Metrics

The system was evaluated using both quantitative and qualitative measures:

• Quantitative metrics: Mean absolute error (MAE) and structural similarity index
(SSIM) were used to measure the model’s performance in terms of color accuracy and
image clarity.

• Qualitative metrics: Subjective user ratings of image clarity, color accuracy, and visual
appeal were collected to assess the user experience in immersive environments.

The collected data were analyzed to determine the effectiveness of our AI-based chro-
matic adjustment system compared to traditional methods and state-of-the-art techniques
under varying lighting conditions.

3.5. Ethical Considerations and Data Collection

The opinion data used in this study were collected across various universities and
polytechnic institutes in Portugal, in full compliance with the General Data Protection
Regulation (GDPR) and relevant Portuguese laws regarding data protection. The data
collection process adhered to the legal frameworks that govern the collection of non-
sensitive opinion data for research purposes, without requiring explicit written consent
from participants, as outlined in Article 6(1)(f) of the GDPR, which allows for the processing
of personal data when it is necessary for the purposes of legitimate interests pursued by
the data controller, provided that such interests are not overridden by the fundamental
rights and freedoms of the data subject.

In this case, the legitimate interest was to collect subjective feedback and opinions on
user experiences for academic research. The questions posed to participants were limited
to general opinions on image quality, clarity, and satisfaction with immersive experiences
in VR and AR environments. No sensitive personal data, such as health information or
financial details, were collected. Furthermore, participation was entirely voluntary, and all
responses were anonymized to protect participant identities.
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Participants were informed about the purpose of the study and were given the option
to opt out at any time. This process ensured transparency and respected the autonomy of
all individuals involved in the study.

Below is the list of questions used during the data collection process:

• Color accuracy: How would you rate the color accuracy of the images you viewed on
a scale from 1 to 5 (1 being poor, 5 being excellent)?

• Image clarity: How clear did the images appear to you on a scale from 1 to 5 (1 being
not clear at all, 5 being very clear)?

• Overall visual appeal: How visually appealing did you find the images on a scale
from 1 to 5?

• Fixation duration perception: Did you find yourself looking at certain parts of the
images for an extended period of time? (Yes/No)

• Saccade exploration perception: Did you feel like you needed to move your eyes
around a lot to explore the image? (1 being not at all, 5 being very much so)

• Discomfort or eye strain: Did you experience any discomfort or eye strain while
viewing the images? (Yes/No)

• Engagement level: How engaged did you feel while interacting with the images?
(1 being not engaged at all, 5 being fully engaged)

• Impact of lighting conditions: Did the lighting conditions (low, medium, high light)
affect your viewing experience? (Yes/No). If yes, please specify how it affected
your experience.

• Preference for AI-enhanced images: Do you prefer the AI-enhanced images over the
non-enhanced images? (Yes/No)

• Recommendation: Would you recommend this type of immersive visual experience to
others? (Yes/No)

The responses collected from these questions provided valuable insights into the
effectiveness of our AI-driven chromatic adjustment system in VR/AR environments.

4. Experimental Results

This section presents a comprehensive analysis of the performance of our AI-driven
chromatic adjustment system in VR and AR environments. We evaluated the system using
both subjective user ratings and objective eye-tracking data, comparing it against traditional
image processing techniques such as histogram equalization (HE) and gamma correction
(GC), as well as state-of-the-art AI models. Additionally, the system was compared with
color constancy methods like Convolutional Color Constancy (CCC) and STAR to assess
performance in dynamic lighting conditions.

The experiments aimed to evaluate how well the AI-based chromatic adjustment
system enhances image quality and user experience under varying lighting conditions
(200 lux, 500 lux, and 1000 lux). A total of 60 participants interacted with both AI-enhanced
and non-enhanced images, with the following key performance metrics: Color accuracy,
image clarity, overall visual appeal, fixation duration, and saccade patterns.

4.1. Visual Comparisons and Subjective Results

We begin with visual comparisons of AI-enhanced versus non-enhanced images under
low-, medium-, and high-lighting conditions. Figures 1–3 demonstrate that the AI-enhanced
system consistently outperformed the non-enhanced images across all lighting conditions.

Under low-light conditions (200 lux), the AI-enhanced images show significant improve-
ments in color representation, noise reduction, and enhanced detail. This pattern continues
under medium-light (500 lux) and high-light (1000 lux) conditions, where AI-enhanced images
exhibit superior contrast and natural color tones, as shown in Figures 2 and 3.
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Figure 1. Comparison of non-enhanced (left) vs. AI-enhanced (right) images under low-light
conditions (200 lux).

Figure 2. Comparison of non-enhanced (left) vs. AI-enhanced (right) images under medium-light
conditions (500 lux).

Figure 3. Comparison of non-enhanced (left) vs. AI-enhanced (right) images under high-light
conditions (1000 lux).
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These subjective improvements were quantified through participant ratings, which
revealed that AI-enhanced images received the highest scores across all metrics, as seen
in Table 1. The AI system consistently outperformed traditional methods (HE, GC) and
color constancy methods (CCC, STAR), particularly in low-light conditions, where dynamic
adjustments provided substantial improvements in color accuracy and overall appeal.

Table 1. Mean subjective ratings (mean ± SD) across all lighting conditions.

Metric AI-Enhanced HE GC Non-Enhanced

Color Accuracy 4.45 ± 0.60 3.80 ± 0.70 3.50 ± 0.75 3.10 ± 0.80
Image Clarity 4.60 ± 0.55 3.70 ± 0.66 3.40 ± 0.70 3.10 ± 0.75
Overall Visual Appeal 4.61 ± 0.58 3.75 ± 0.68 3.45 ± 0.72 3.00 ± 0.80

4.2. Detailed Analysis of Color Accuracy and Image Clarity

Figures 4 and 5 provide a detailed comparison of color accuracy and image clarity
across different lighting conditions. Both AI-enhanced VR and AI-enhanced AR methods
significantly outperformed traditional methods, such as histogram equalization (HE) and
gamma correction (GC), as well as state-of-the-art color constancy algorithms (CCC and
STAR), particularly in low-light scenarios.

Low-light conditions (200 lux): In low-light conditions, AI-enhanced methods deliv-
ered outstanding performance. AI-enhanced VR achieved a mean color accuracy rating of
4.60, and AI-enhanced AR followed closely with a score of 4.40. These values far exceed the
3.5–3.6 range observed for traditional methods such as HE and GC. The color constancy
methods (CCC and STAR), while showing better results than traditional techniques, still
lagged behind the AI-driven approaches, with CCC scoring 4.00 and STAR reaching 4.10.

A similar trend was observed for image clarity, with AI-enhanced VR scoring 4.70
and AI-enhanced AR 4.60, again far surpassing traditional methods and even CCC/STAR,
which scored in the range of 3.80–3.90. These results indicate that AI-based systems, partic-
ularly in immersive VR and AR applications, handle low-light conditions with superior
effectiveness, improving both color fidelity and clarity to a substantial degree.

Medium-light conditions (500 lux): Under medium-light conditions, AI-enhanced
methods continued to demonstrate superior performance. AI-enhanced VR maintained a
high color accuracy score of 4.60, and AI-enhanced AR scored 4.30. By contrast, traditional
methods showed little improvement, remaining in the 3.5–3.6 range. CCC and STAR
performed moderately better than traditional techniques, but their scores of 3.90 and 4.00,
respectively, were still significantly lower than those of the AI-based approaches.

For image clarity, AI-enhanced methods led with scores of 4.60 (VR) and 4.50 (AR),
while traditional methods like HE and GC remained below 3.6. Although CCC and STAR
improved slightly over their low-light results, scoring around 3.80–3.90, they could not
match the AI-enhanced approaches. This demonstrates the robustness of AI-based methods
across lighting conditions.

High-light conditions (1000 lux): Even under high-light conditions, AI-enhanced
methods retained their edge. AI-enhanced VR achieved a color accuracy score of 4.50, while
AI-enhanced AR followed closely with 4.30. Traditional methods like HE and GC slightly
improved but still struggled, achieving scores of around 3.4–3.6. Meanwhile, CCC and
STAR, despite maintaining their relative advantage over traditional methods, scored only
3.80–4.00, unable to match the AI-enhanced systems.

For image clarity, AI-enhanced methods continued to excel, with AI-enhanced VR scor-
ing 4.50 and AI-enhanced AR 4.40. HE and GC remained below 3.5, and CCC/STAR also
performed below expectations, with scores around 3.60–3.80. These results demonstrate
that AI-enhanced methods maintain high performance even in optimal lighting conditions,
with minimal degradation across all metrics.
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Conclusions: Across all lighting conditions, the results clearly demonstrate the su-
perior performance of AI-enhanced methods, particularly in VR and AR applications.
In low-light conditions, where traditional and state-of-the-art color constancy methods
struggle, AI-based approaches show substantial improvements, achieving high ratings
in both color accuracy and image clarity. Even as lighting improves, AI-enhanced meth-
ods continue to dominate, with only minimal performance degradation in comparison to
traditional techniques.

The consistent performance of AI-enhanced methods under varying lighting condi-
tions highlights their robustness and adaptability. In contrast, traditional methods such
as HE and GC, as well as color constancy algorithms (CCC and STAR), show greater vari-
ability in performance, struggling particularly in challenging low-light environments. The
AI-based systems, by leveraging deep learning techniques, provide a significant enhance-
ment to both color reproduction and image clarity, leading to a noticeably improved visual
experience in immersive environments.

Figure 4. Mean color accuracy ratings under different lighting conditions.

Figure 5. Mean image clarity ratings under different lighting conditions.
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4.3. Objective Metrics: Fixation Duration and Saccade Patterns

In addition to subjective assessments, we measured objective metrics such as fix-
ation duration and saccade patterns to evaluate user engagement. Table 2 shows that
AI-enhanced images led to longer fixation durations, particularly in low-light conditions,
indicating higher engagement. Similarly, saccade amplitudes and frequencies were higher
for AI-enhanced images, as shown in Table 3, reflecting more detailed exploration of the
visual content.

These findings are further supported by the heatmaps in Figures 6 and 7, showing
that AI-enhanced images attracted more concentrated focus on high-contrast areas, while
non-enhanced images led to more dispersed viewing patterns.

Table 2. Mean fixation duration (s) across methods and lighting conditions.

Lighting Condition AI-Enhanced HE GC Non-Enhanced

Low Light (200 lux) 3.1 ± 0.5 2.7 ± 0.6 2.5 ± 0.6 2.4 ± 0.6
Medium Light (500 lux) 3.0 ± 0.5 2.6 ± 0.5 2.4 ± 0.5 2.4 ± 0.5
High Light (1000 lux) 2.9 ± 0.4 2.5 ± 0.5 2.2 ± 0.5 2.2 ± 0.5

Table 3. Average saccade patterns across methods.

Metric AI-Enhanced HE GC Non-Enhanced

Saccade amplitude (degrees) 3.0 ± 0.5 2.7 ± 0.5 2.5 ± 0.4 2.4 ± 0.4
Saccade frequency (per image) 13.8 ± 1.4 11.9 ± 1.3 12.5 ± 1.2 12.0 ± 1.2

Figure 6. Heatmap for AI-enhanced image, showing concentrated focus on high-contrast areas.
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Figure 7. Heatmap for non-enhanced image, showing more dispersed focus pattern.

4.4. Statistical and Computational Performance

A repeated measures ANOVA confirmed significant differences in color accuracy and
image clarity between methods, with AI-enhanced images significantly outperforming HE,
GC, and color constancy techniques (CCC, STAR). The effect sizes for color accuracy and
image clarity were large, particularly in low-light conditions.

The computational efficiency of the AI model was also assessed. As shown in Table 4,
the AI model processed images in an average of 25 ms, which is suitable for real-time
VR/AR applications. In comparison, CCC and STAR required 30 ms and 32 ms, respectively,
demonstrating the superior efficiency of our approach.

Table 4. Average processing time per image (ms).

Method Processing Time (ms)

Our AI Model 25 ± 2
Histogram Equalization 5 ± 1
Gamma Correction 6 ± 1
CCC 30 ± 4
STAR 32 ± 4

4.5. Conclusions

The experimental results confirm that our AI-driven chromatic adjustment system
significantly enhances image quality and user experience in immersive VR and AR en-
vironments. It consistently outperforms traditional image processing techniques and
state-of-the-art AI models, delivering superior color accuracy, image clarity, and overall
visual appeal. The system’s real-time processing capabilities make it highly suitable for
use in dynamic, immersive applications, where both user engagement and visual quality
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are critical. The combination of subjective evaluations and objective metrics validates the
effectiveness of the proposed system across varying lighting conditions.

5. Discussion and Implications

The experimental results demonstrate that our AI-driven chromatic adjustment system
significantly enhances image quality in immersive VR and AR environments. In this section,
we interpret these findings, compare them with related work, discuss practical implications,
and address limitations and future research directions. Additionally, the inclusion of
objective metrics such as eye-tracking data and comparisons with state-of-the-art models
strengthens the conclusions drawn from this work.

5.1. Interpretation of Findings

Our AI-based chromatic adjustment system consistently outperformed traditional
image processing techniques, including histogram equalization and gamma correction,
across all evaluated metrics. The superior performance of our model was particularly
evident in low-light conditions, where maintaining image clarity and color accuracy is
challenging. The comparison with state-of-the-art color constancy methods, CCC and
STAR, further underscored the robustness of our system, demonstrating better adaptation
to dynamic lighting environments.

For instance, in low-light environments (200 lux), the AI-enhanced images achieved
color accuracy ratings of 4.4 (VR) and 4.2 (AR), compared to 3.1 and 3.0 for non-enhanced
images. These results validate the model’s ability to mitigate chromatic distortions common
in low-light scenarios, which are often exacerbated by sensor noise and poor illumination.
The performance of our AI system in dynamic conditions highlights its potential for
immersive applications, where traditional methods fall short.

Increased user engagement was also evident from the eye-tracking data. The strong
correlation between subjective ratings and eye-tracking metrics (r > 0.68, p < 0.001)
confirmed that better image quality led to greater participant engagement. Participants
spent more time exploring AI-enhanced images compared to traditional methods, reflecting
the system’s effectiveness in creating more engaging visual content.

5.2. Comparison with Related Work and Practical Implications

Our findings build on earlier research focused on low-light enhancement and image
harmonization in AR but expand the scope to real-time VR/AR applications and include
user engagement metrics. Studies such as [23,24] did not integrate eye-tracking data
or emphasize real-time performance in dynamic environments, gaps that our research
addresses by offering comprehensive subjective and objective evaluations.

The ability of our AI system to maintain high image quality across diverse lighting
conditions has significant practical implications. It is particularly beneficial for industries
like gaming, virtual tourism, and remote collaboration, where user engagement and visual
fidelity are critical to the experience [25]. Our real-time chromatic adjustments ensure a
seamless and visually appealing experience, even in challenging lighting, making it highly
relevant for these sectors. Moreover, the enhanced image clarity and color accuracy could
reduce visual discomfort and eye strain, common issues in prolonged VR/AR usage [26],
thus enabling longer and more comfortable user sessions.

The integration of our AI model with existing VR/AR hardware, such as the Oculus
Quest 2 and Microsoft HoloLens 2, confirms its practical viability. With an average pro-
cessing time of 25 ms per image, the system is suitable for real-time applications without
introducing latency, an essential feature for immersive experiences.

5.3. Theoretical Contributions and Ethical Considerations

This study contributes to the growing body of research on AI in image processing for
immersive media. It demonstrates that AI-driven chromatic adjustments, particularly with
a modified U-Net architecture, outperform traditional and state-of-the-art color constancy



Technologies 2024, 12, 216 13 of 15

methods in VR/AR environments. The strong link established between objective eye-
tracking metrics and subjective image quality ratings adds to the theoretical understanding
of user engagement in immersive environments. The evidence that AI-driven systems can
enhance image quality under dynamic and low-light conditions further strengthens the
case for AI’s transformative role in VR/AR applications.

However, the integration of AI in immersive media raises ethical considerations, par-
ticularly concerning data privacy, potential algorithmic biases, and content manipulation.
Transparent system design, respect for user privacy, and ethical guidelines are crucial to
ensuring that AI-enhanced immersive media benefits all users equitably [27]. Additionally,
giving users control over enhancement levels can help maintain content authenticity and
prevent over-reliance on algorithmic adjustments.

5.4. Limitations and Future Directions

While our study demonstrates promising results, several limitations suggest avenues
for future research. The controlled laboratory setting, while useful for precise measurement,
does not fully capture the complexity of real-world lighting variations. Future work should
evaluate the system in diverse, real-world environments, including outdoor settings with
rapidly changing lighting conditions. A field study in more complex settings would provide
further insight into the robustness and adaptability of the AI system.

Model refinement is another area of interest. Some participants reported over-saturation
or unnatural image appearances in certain scenarios. Further improvements, such as the use
of perceptual loss functions or adversarial training with generative adversarial networks
(GANs), could help address these concerns. Future work could also explore user-adjustable
chromatic parameters to allow personalized image enhancement preferences.

Additionally, while our study focused on short-term user engagement, future research
should investigate the long-term effects of AI-enhanced image quality, such as visual fatigue,
adaptation, and learning curves. Longitudinal studies could provide deeper insights into
the sustained impact of AI-enhanced systems on user experience, particularly for fields like
education and training, where extended VR/AR usage is common.

Accessibility considerations also deserve attention. The impact of AI-enhanced sys-
tems on users with visual impairments should be explored to ensure that these technologies
are inclusive. Adaptive adjustments based on individual visual needs could help make
immersive experiences accessible to a wider range of users [28].

5.5. Conclusion and Recommendations for Practitioners

This research demonstrates the significant impact of AI-driven chromatic adjustments
on image quality in VR/AR environments. By addressing both technical challenges (such
as dynamic lighting) and user experience factors (such as immersion and visual comfort),
we have shown the potential of AI to transform immersive media. As developers continue
to build next-generation VR/AR applications, several recommendations emerge:

• Adopt AI-based solutions: AI-driven chromatic adjustments can enhance user engage-
ment and satisfaction in immersive environments.

• Optimize for real-time performance: Ensure that AI models are optimized for real-time
processing to maintain user immersion without latency issues.

• User-centered design: Engage users in the testing process to refine visual enhance-
ments and address issues such as over-saturation.

• Prioritize accessibility: Ensure that AI-enhanced systems consider the needs of users
with visual impairments, enabling more inclusive immersive experiences.

Overall, the findings highlight the transformative potential of AI in immersive VR/AR
environments. With further research and refinement, these technologies can offer high-
quality, inclusive, and engaging experiences for a wide range of applications.
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