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Abstract: Systems for graph processing are a key enabler for insights from large-scale graphs that
are critical to many new advanced technologies such as Artificial Intelligence, Internet of Things,
and blockchain. In this study, we benchmark another two widely utilized graph processing systems,
Apache Spark GraphX and Apache Fink, concerning the key performance criterion by means of
response time, scalability, and computational complexity. We demonstrate our results which show
the capability of each system for real-world graph applications, and hence, providing a quantitative
understanding to select the system for our purpose. GraphX’s strength was in processing batch
in-memory workloads typical of blockchain and machine learning model optimization, while Flink
excelled in processing stream data, which is timely and important to the IoT world. These per-
formance characteristics emphasize how the capabilities of graph processing systems can match
the requirements for the performance of different emerging technology applications. Our findings
ultimately inform practitioners about system efficiencies and limitations, but also the recent advances
in hardware accelerators and algorithmic improvements aimed at shaping the new graph processing
frontier in diverse technology domains.

Keywords: graph processing systems; Apache Spark GraphX; Apache Flink; performance benchmarking;
decision making; emerging technologies; AI; IoT; blockchain; big data

1. Introduction

Originally, big data arose from different entities like social media, IoT devices, and
digital transactions which require strong tools to analyze massive and complicated data.
Among the Transactional Data Systems (TDSs), graph processing systems, in particular,
can be pointed out as important means for analyzing big graph datasets that occur in
relationships and structures in the data. These systems are now commonly applied in social
network analysis platforms, recommendation systems, biological projects, and logistics.

However, the rapid development of novel technologies such as Artificial Intelligence
(AI), the Internet of Things (IoT), and Blockchain has created new needs and challenges
for graph processing systems. These technologies produce massive and intricate data over
time, and the required systems should be elastic and capable of providing a rapid output.
Here, the performance matters most in the decision-customizing stages caused by data
processing, which determines the effectiveness of the decision made, as in AI for predicting
outcomes promptly, IoT network for distributing resources in real-time, or Blockchain for
verifying transactions.

Due to the vast number of graph processing systems present in the current computing
environment, it is, however, not easy to determine the most suitable system to use for
a given use case scenario. Impact plays a major role in changes in performance based
on several factors such as response time, system capacity, and resource consumption,
depending on a specific system. Lastly, performance comparison can be a very tiring
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and tiresome process that requires some guidelines and parameters that could make the
comparison true and fair.

This study focuses on comparing two popular distributed graph processing frame-
works: Apache Spark GraphX and Apache Flink. Both systems are popular, since they
handle big graph data in distributed ways at different stages; however, they have different
structures and operation modes. Apache Spark GraphX is a graph computational sys-
tem developed on the Spark platform that transparently defines complex computation of
graphs, one of the most complex data systems with excellent in-memory data handling
optimization. In contrast, Apache Flink is preferred for real-time stream processing, which
can be the major reason for choosing it for IoT applications.

The performance comparison of this study focuses on Apache Spark GraphX and
Apache Flink based on a set of graph processing queries that include the shortest path,
degree centrality, triangle count, and number of weakly connected components. To make
this comparison fair, we compare these systems based on the same datasets, workload,
and hardware environments to establish areas where one can overpower the other. The
intended outcome is to facilitate an understanding of how the best between the systems
can be arrived at to fit different real-world applications.

Besides the comparison between the performance of the two groups of algorithms,
this paper also examines the applicability of the findings to decision-making in emerging
technology settings. For instance, the use of artificial intelligence in systems demands
quick data processing of small-world network models, or on the other hand, analyzes
the graph-based in the IoT technology, which is vital in device interaction and resource
control. In BM-SRC, graph processing is used in the transaction verification process and in
consensus algorithms, where efficiency has direct implications for safety and capacity.

To make sure we make our evaluation as complete as possible, we will employ a
system capable of running predefined queries on each of the systems under test, timing
how long each of those tasks takes, and then calculating various performance measures.
We will also generate figures of each of the above metrics for each of the systems for
comparison at a glance from the figures. These opportunities prove that our methodology
is fair because all of the systems under test are trained, tested, and evaluated on the same
dataset, receive identical processing workloads, and are tested on the same hardware
platform. The findings will be checked on various parameters to confirm their credibility.
Ultimately, this study evaluates the performance of Apache Spark GraphX and Apache
Flink but also presents a focus on the implication of graph processing performance in
decision-making in the context of emerging technologies. The insights will help researchers
and practitioners identify the right graph-processing system for their context in accordance
with their applications and technological settings.

The remainder of this study is arranged as follows. In Section 2, we discuss the
background and related work by analyzing existing graph processing system and their
relationship to new technologies. Section 3 presents the experiments’ design, focusing on
the system configuration, data acquisition, and execution of the graph processing systems.
Section 5 provides a comparison between Apache Spark GraphX and Apache Flink based on
execution time and memory usage. Finally, the results are discussed in Section 6 providing
information on decision-making concerning the comparison of the two systems. Finally,
the conclusions and directions for future work are presented in Section 7.

1.1. Aim of the Study

The main objective of this research is, therefore, to measure and compare the effec-
tiveness of two of the most widely used graph processing frameworks, namely Apache
Spark GraphX and Apache Flink, for big data environments. More generally, this research
aims to compare these frameworks by using graph-based algorithms including degree
centrality, shortest path, and triangle counting on different large-scale datasets. The paper
also discusses the impact of graph processing efficiency on business decisions in novel
areas of advancements like AI, IoT, and blockchain. Consequently, the results provide
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an understanding of the benefits and drawbacks of these systems regarding their ability
to scale, the time needed to execute the algorithm, and the number of resources used
to achieve this and help the stakeholders to choose the most suitable framework for the
particular case.

1.2. Limitations

This work has conducted an extensive comparison between Apache Spark GraphX
and Apache Flink. Firstly, the evaluation is restricted to a small set of graph algorithms
that mostly cover fundamental workloads, such as degree centrality, shortest path, and
triangle counting. The advanced algorithms, or those specific to an application, like
machine learning algorithms, dynamic graph algorithms, etc., are not included in this
section. Secondly, the experiments are carried out in setup configuration to the actual
system environment and real variation in the arrival of hardware, network architecture
as well as in Workload. Lastly, the research is limited to snapshot analysis and does not
consider the effectiveness of these systems on real-time evolving graphs, which is becoming
a popular field of study in real-time data processing.

1.3. Research Gap

The current study points out that there are limited studies performed on the bench-
marking of distributed graph processing systems to different kinds of applications, specifi-
cally in real-time and batch-style processes. For example, Guo et al. highlighted the need
for a more mature analysis of graph processing platforms’ performance through a lack of
comprehensive benchmarking suites and a limited understanding of the impacts of dataset
and algorithm diversity on performance [1]. Dayarathna et al. [2] also demonstrated that
benchmarking graph stream processing and graph-based machine learning suffers from
gaps, and more robust benchmarks that can handle high workload scenarios are needed. In
addition, Uta et al. mentioned elasticity-related challenges in graph processing that are still
underexplored in the benchmarking studies [3].

Present day, Apache Spark GraphX and Apache Flink are normally utilized in big
data processing; however, there is not enough genuine comparison of their continual
performance for changing datasets and under differing loads. The scalability and efficiency
of Spark GraphX in handling large-scale graph data are well-known in applications at
Tencent [4] and bioinformatics [5]. In addition, it is used for semantic web data processing
and financial fraud detection proving its versatility in big data environments [6,7].

On the other hand, Apache Flink is popular for running in real-time data applica-
tions, due to its ability to serve as a batching as well as a streaming processing engine [8].
Performance on stream processing is praised, and it has been used in several contempo-
rary research and industrial applications [9,10]. Processing big data with Flink is further
improved by its multi-query optimization and dynamic data partitioning strategies.

Additionally, there is a deficiency in the existing literature attempting to explain how
AI/IoT and other developing technologies could benefit from improvements in graph
processing systems. Notably, future studies should address the improved optimization
algorithms for such systems; future research should focus on current optimization tech-
niques as well as usage of the current GNNs and another contemporary algorithm in order
to boost the Graph Process capability in a practical environment.

2. Background and Related Work
2.1. Evolution of Graph Processing Systems

The graph processing systems landscape subsequently evolved from single-node
architectures to sophisticated distributed frameworks that can handle massive and dynamic
graph data. Gonzales et al. introduce the development of GraphX, which uses a distributed
data flow system for performance comparable to specialized graph systems [11]. As
suggested by Zhuo et al., SympleGraph is a distributed framework that extends graph
processing to achieve precise loop-carried dependencies, illustrating the trend of using
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increasingly elaborate distributed architectures [12]. Heidari et al. presented a taxonomy
of scalable graph processing frameworks to facilitate the passing from single nodes to
distributed systems for efficient processing of large-scale graph data [13]. The progression
to this solution has been fueled by the growing complexity and scale of graph datasets
used in diverse domains which require fast and scalable processing solutions. In this
subsection, we present key studies that discuss important achievements and innovations in
the development of graph processing systems.

The integration of Graph Neural Networks with traditional graph processing systems
is a pivotal development in this field. Vatter et al. discussed the maturing of GNNs and their
symbiosis with the ways of learning that deep models have come to practice. This survey
points out the necessity of scalable GNN training solutions to handle large-scale graphs, in
particular bridging the gap between conventional graph analytics and advanced machine
learning techniques [14]. On the other hand, with the advent of quantum computing,
there appeared new paradigms in processing graphs. The study conducted by Henry et al.
introduced a quantum approach toward machine learning on graphs by using quantum
processing units to compute graphs directly. The enhanced computational opportunities for
machine learning on graphs that this method enables can potentially provide exponential
speed up of some graph algorithms [15].

The model proposed by Daverio et al. addresses the dynamic nature of real-world
graph data. Capturing temporal dependencies is important for optimizing the processing
of evolving graphs and it is one important application in, for example, social network
analysis and communication networks, where graph structures evolve [16].

Graph processing systems have also seen wide-ranging hardware innovations in their
evolution. Tesseract is a processing-in-memory accelerator described in this study [17],
which improves the performance and energy efficiency of graph processing tasks on a
large scale. Tesseract can overcome the memory bandwidth bottleneck that limits the
performance of many graph algorithms by bringing computation closer to memory, as in
Tesseract Accelerator [17].

Bhattacharya et al. utilized software engineering to understand the software evolution
by graph topology analysis. The modeling of software components and their interactions
as graphs is useful in this study offering some software development and maintenance
processes insights [18].

Moreover, graph processing is unique within cloud computing environments, and
presents both opportunities and challenges. The research conducted by Malicevic et al.
evaluated graph processing systems such as X-Stream in cloud settings from the perspective
of challenges and solutions. The network bandwidth was identified as being a performance
bottleneck, and solutions were addressed that attempt to optimize graph processing within
cloud infrastructures to facilitate more efficient graph processing of large-scale graphs in
distributed environments [19].

To combat structural changes in massive graphs, dynamic graph processing systems
have emerged. Vaquero et al. proposed a Dynamic Graph Processing System that repar-
titions huge graphs to adapt to evolving graph structures. By improving computational
performance at the cost of data replication, this approach is computationally efficient
and can be used for real-time applications where the graph topology itself is changing
quite often [20]. GNNs are still evolving to leverage current trends of integrating GNNs
with traditional graph processing systems improving the line between deep learning and
graph analytics.

Overall, this represents a step change in graph processing moving from single-node
systems to distributed frameworks and specialized hardware accelerators. These advances
permit the analysis of large, complex, and dynamic graphs which are important for modern
applications, e.g., machine learning, software engineering, and cloud computing. Research
and development in this area will be necessary for the supporting needs of big data analytics
and graph-based data to achieve their full potential.
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Emerging Technologies and Graph Processing

Graph processing systems for large-scale data analysis are increasingly relied upon
by technologies like the IoT, AI, and others. The data produced by these technologies
are vast amounts of interconnected data, and graph processing systems are well suited
to process and analyze these data [21]. For example, AI in smart cities can use graph
processing to process data from several sources (sensors, cameras, and social media) to
ensure that decision-making and operational effectiveness are improved [22]. Like IoT
systems, graph processing is also used within IoT systems to process incoming data from
numerous connected devices to perform real-time monitoring, predictive maintenance,
and resource optimization [23]. Since graph processing is efficient in the deployment and
analysis of transaction networks, blockchain—with its decentralized structure—can benefit
significantly from it in both ways [24].

Moreover, these graph processing systems are used where organizations draw upon
performance metrics of the graph processing systems, like the query execution time or
the scalability measurement, to make strategic decisions in these applications [25]. The
metrics show how efficient and robust graph processing platforms are under study and
can be chosen and tuned based on organizational needs [26]. Performance data can show
if a certain system is good for real-time analysis on IoT applications or if it is suitable for
higher throughput on a blockchain network. Knowing these performance characteristics
helps organizations match their technological capabilities to business objectives, driving
better operations and decision-making throughout the AI, IoT, and Blockchain ecosystems.

2.2. Decision-Making Framework

In our analysis, we concentrate on a decision-making framework specific to the
unique demands of graph processing in big data environments, which includes three
primary factors:

1. Performance Metrics in System Selection: For applications of real-time analytics and
batch processing, the choice of graph processing systems is critical to key metrics such
as execution time, scalability, and resource efficiency. All the examples above can be
extended as low latency and resource-efficient systems are generally indicated for IoT,
but batch processing for example which is needed in retrospective data analysis can
leverage memory capabilities.

2. Domain-Specific Requirements: The functional requirements vary significantly based
on the domain (AI-driven applications, IoT networks, decentralized systems in
blockchain) in which the solutions will be used or deployed. We use our frame-
work to select by matching System capabilities (such as real-time processing with
Flink and in-memory batch processing with GraphX) to these different requirements.

3. Scalability and Adaptability in Emerging Technologies: With all these rapid AI, IoT,
and blockchain advancements, systems are required to offer dynamic data capabilities
and seamlessly integrate with new hardware accelerators. One of these factors is that
the systems that can be adopted depending on the changing workloads can scale or
change without degradation to performance.

This decision-making framework aspires to narrow the scope to deliverable selection
criteria for big data applications that can help in decision making by selecting performance,
domain fit, and adaptability as the core aspects.

Graph Processing Systems in Decision Making

In real-time data processing, anomaly detection, and resource allocation in AI sys-
tems and IoT devices, decision-makers need to evaluate different performance metrics in
frameworks like Apache Spark GraphX and Apache Flink.

Depending on use cases, the choice of framework can drastically affect how quickly
and effectively applications can make use of it.
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• Apache Spark GraphX is well known for very fast in-memory processing, so you can
think of the high-speed data handling and fault tolerance for use cases where you
need to access data quickly and do iterative processing [11].

• In contrast, Apache Flink shines in stream processing with low latency and high
throughput and is a perfect option for real-time data stream processing in IoT environ-
ments [27].

Key Performance Metrics:

1. Execution Time: The data processing speed that a framework gets is the basis of this
metric. Consider Apache Spark, which is known to be much faster than Flink when
there is enough memory to execute iterative tasks [28,29], or Flink specifically for low
latency scenarios which are good for real-time applications.

2. Scalability: The framework scalability stands for its capability to keep running with
growing volumes of data without a performance drop. While Apache Flink is often
preferred as it may scale well in stream processing environments [29,30], Spark might
do better for batch processing tasks.

3. Resource Utilization: The evaluation of how well we are utilizing today’s compu-
tational resources. Spark can also take advantage of the capabilities of the graphics
processing unit (GPU) using its GraphX API, which will speed up graph analytics
workloads [31]. Compared to Flink, its architecture enables a dynamic allocation of
the resource during stream processing. Furthermore, continuous data streams in IoT
prefer Flink, as it has efficient resource management [32].

4. Fault Tolerance: Frameworks offer support for fault tolerance but do it differently. This
is particularly critical if the processing happens in a real-time scenario, as with Flink,
which uses a checkpointing mechanism for recovering from failures seamlessly [33].

2.3. Technological Advancements in Graph Processing Systems

Over the past few years, tremendous progress has been made in graph processing
systems as the need to efficiently manage and analyze large-scale graph data has grown.
Such advancements are unprecedented and pivotal in many other areas of business, in
particular smart cities, industrial automation, and information technology, where complex
data relationships are inherent.

An interesting aspect of development is the integration of graph processing in smart
city infrastructures. Analyzing traffic has been explored in the context of transportation
management using Apache GraphX for real-time usage. By following this approach, system
throughput and processing time have improved substantially, enabling more responsive
and efficient urban traffic solutions [34].

GPU-enabled graph processing systems have also advanced high-performance com-
puting. Systems like Medusa and Totem have been subject to an empirical evaluation that
has revealed insights into their performance and scalability. Graph computations in these
systems take advantage of their parallel processing capabilities offered by GPUs to reduce
the time taken for large-scale graph analytics [26].

With Knowledge Graphs and Semantic Web technologies, the fusion of the industrial
domain goes forward into Industry 4.0. Researchers have improved asset monitoring and
process optimization by proposing an enriched ontological model. This integration makes
way for smarter industrial operations by allowing for a deeper semantic understanding of
exchanged industrial data as the integration enables better data interconnectivity [35].

GraphScope Flex exemplifies the advancements in modularity and flexibility of the
graph computing stacks. This LEGO-style architecture promotes the modularity of design,
paving the web for a customizable and efficient graph computing solution. Additional
performance improvements are also gained by allowing components to be assembled
depending on specific computational needs [36].

As graph processing systems, they have also helped improve cybersecurity measures.
Improved control over prediction and classification tasks is achieved through the appli-
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cation of graph signal processing algorithms for anomaly detection in IT infrastructures.
Additionally, it improves the pace of identifying and addressing security threats [37].

To improve version switching speed and memory efficiency, systems such as Version
Traveler have been designed to address the challenges of multi-version graph data. Given
the need for rapid access to multiple versions of graph data while minimizing memory
overhead [38], this innovation is key to such applications.

Graph partitioning remains an important problem in terms of balancing the load and
minimizing communication overhead for real-time applications. To improve performance
in distributed graph processing environments, application-aware adaptive partitioning
strategies have been proposed that dynamically vary the partitions based on the character-
istics of the application [39].

In the context of hardware architecture, the development of HNGraph is finely tuned
for improving the performance of Non-Uniform Memory Access (NUMA) systems. HN-
Graph optimizes memory access strategies for hybrid memory-based NUMA systems to
support parallel graph processing more by utilizing the underlying hardware, resulting in
improved computational efficiency [40].

Collectively, these graph processing system improvements are imperative to contend
with the rising volume and complexity of graph data. For an increasingly data-driven
world, they provide innovative scalability, efficiency, and adaptability solutions that are
critical to the development of data analytics and artificial intelligence applications.

2.4. Related Work on Apache Spark GraphX and Apache Flink

Two leading frameworks in big data analytics and graph processing are Apache Spark
GraphX and Apache Flink. There has been a lot of work to compare their performance,
seamless degree of scalability, usability, and application in different domains. In this
subsection, we review key studies that contribute to our understanding of the strengths
and limitations of both of these frameworks.

Marcu et al. analyzed the performance of Spark and Flink and evaluate their perfor-
mance concerning the architectural differences and varying configurations of parameters.
In general, neither Spark nor Flink framework outperforms the other over all the catego-
rizations of data types and workloads, indicating that compared to the other option, Spark
or Flink is highly data-type- and workload-specific [41].

These frameworks have been tried and tested in the healthcare industry, an industry
filled with sensitive data at its disposal. Nazari et al. compared Apache Hadoop, Apache
Spark, and Apache Flink in terms of healthcare data analysis. They are strong on processing
speed and fault tolerance which are both necessary for handling large-scale healthcare
datasets, the research says. It shows that though both frameworks are suitable, the preferred
one depends on the distinct demands of the healthcare applications [8].

Data scientists choose a big data framework primarily for usability. Akil et al. reviewed
user preferences and also uncover no considerable contrast between Spark and Flink for
immense information preparation as far as read and compose times. This implies that the
decision-making process may be influenced by other factors apart from the evaluation of
the usability within the particular tool, for example, how the community supports a tool or
how it is integrated into the existing suite of tools [42].

For machine learning problems performance and scalability are critical. Garcial-Gil et
al. showed that Spark’s MLlib usually achieves better performance and lower runtimes
than Apache Flink. In this respect the advantage that Spark offers it is better suited to
batch processing machine learning workloads that require efficiency, as has been proven
previously [29].

Real-time data analytics demands stream processing capabilities. Karakaya et al.
compared Flink, Spark, and Storm and conclude that under equal constraints, Flink outruns
the other two in stream processing scenarios. While the study does show that Spark can be
optimized for higher throughput, Spark may be optimized so that its performance can be
dramatically improved.
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In [43], Chen et al. explored the impact of abstraction layers on performance. Perfor-
mance penalties imposed when Apache Beam is used as an abstraction layer over Spark
and Flink are considered in this research. This study reveals significant performance degra-
dation and shows there are trade-offs between ease of development and system efficiency.

Blamey et al. compared Spark Streaming with HarmonicIO in A Performance and
Architecture Comparison. To provide insights into their performance under different
message sizes and CPU loads, this study helps better understand how Spark Streaming
copes with varying operational conditions [44].

Boden et al. compared the scalability of Spark and Flink for machine learning algo-
rithms. The shortcomings of these two frameworks in handling high-dimensional data
are a point of research showing that neither one is optimized for machine learning tasks
with many features. This indicates therein is a potential need for further optimization and
ultimately for the existence of application-specific tools in such scenarios [45].

Ultimately, we have attempted to compare and contrast Apache Spark GraphX and
Apache Flink, and the conclusions regarding the comparative analyses of Apache Spark
GraphX and Apache Flink are summarized below. In many cases, this choice is between
the two depending on the application’s specific needs (workload type, performance re-
quirements, or specific domain considerations). Practitioners need to make informed
decisions and big data processing systems are constantly improved in ongoing research
and performance benchmarking.

2.5. Anomaly Detection and Financial Transaction Pattern Analysis in the Accounting Sector

Accounting is becoming more and more reliant on sophisticated anomaly detection
and financial transaction pattern recognition to enhance fraud detection, compliance, and
operational efficiency. In the accounting and finance field, Bhowte et al. provided a
systematic literature review about the machine learning techniques for detecting efficiently
fraudulent activities and for fraud detection applications [46]. In addition, Thilagavathi et
al. utilized Graph Neural Networks combined with anomaly detection to increase fraud
detection in financial transactions and prove its significant improvement compared to
traditional methods [47].

With the exponential growth of digital transactions, the importance of Artificial In-
telligence (AI) and Machine Learning (ML) in securing financial transactions is critical.
The first, and probably most apparent, is that one of the major methods of fraud detection
uses AI-based systems that track financial transactions as they occur, and determine what
is unusual. According to an extensive review of the literature from 2010 to 2023, these
systems have greatly improved and are very successful in catching fraudulent activity at
the beginning of a transaction. These AI systems use real-time anomaly detection, which
makes electronic payments much more secure because they are constantly learning from
transaction data and adapting to new fraud patterns. Consequently, this approach has
become a cornerstone for corporations and financial institutions aiming to strengthen their
fraud prevention strategies [48].

Machine learning has also been very helpful in analyzing large financial data streams
and is good at recognizing repetitive transactional patterns in the fluid world of today’s
financial systems [49–51]. Different research emphasizes the power of ML algorithms to
handle and identify patterns in large, streaming data. This ability is vital to accounting
firms because decisions must be made at the moment and they are only as good as their
interpretation of the pattern of financial transactions. Furthermore, not only that, but strides
in ML technology have allowed for the development of adaptive systems which cater to
the specific needs of unstable data streams, providing for much more accurate transaction
tracking and regulatory checking [52].

Furthermore, there is also network analysis, which is used to look at patterns of
financial transactions, such as in a paper on the financial networks of Austria. This paper
investigates how the topology of the network changes at different levels of observation time
and shows a low correlation between the degree of nodes and the volume of transactions,
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implying that more subtle metrics are needed to fully grasp the dynamics of transactions.
Using eigenvalue analysis, they can better understand the dependencies of the network
and the trading patterns of the major financial players [53].

Artificial Neural Networks (ANNs), especially the back-propagation (BP) model,
have been applied to the study of blockchain financial transactions. One paper is about
transaction propagation, weight changes, learning mechanisms, and its application to fraud
detection in the blockchain. Its applications, like this neural network, are so priceless in
tracking decentralized transactions that other means are worthless [54].

In addition, when dealing with high-frequency financial data, one can use the combi-
nation of the theory of marked point processes and extreme value analysis to get accurate
measures of tail dependencies in the financial transaction data [55]. This method can model
the correlation between transaction times and extreme return behaviors, and therefore, give
much more precise risk estimates. For this purpose, econometric tools are also essential
due to their specificity toward transaction data challenges, including timing and volume,
uniquely faced in transaction data rather than in other data types [56]. These different
techniques are highlighted in a broader survey of econometric methods, which completes a
survey of econometric methods relevant to the analysis of financial transactions [57].

Similar to the studies mentioned above, some studies use social network analysis and
transaction flow analysis, complying with Financial Action Task Force (FATF) guidelines as
a technique to fight money laundering [58]. These systems will effectively serve as systems
for monitoring compliance and detecting financial crimes by mapping the transaction flows
and detecting suspicious patterns. In addition, models such as the weighted one-class sup-
port vector machine (WOC-SVM) have also been effective in finding atypical transactions,
making it useful for financial institutions to stay in regulatory regime compliance [59].

In an innovative study, researchers have applied the Multiple Benford Law Model and
K-Means Cluster to improve the accuracy of fraud detection. Using clustering techniques
with statistical rigor, this method reached a 93.33% detection rate and provides a very
effective auditing tool for auditors and financial analysts trying to uncover fraud [60].

Finally, all these various approaches simultaneously underline the work’s complex
and diverse nature concerning anomaly detection and pattern recognition in the account-
ing field. This evolution of currency indicates that the approaches to detection and pro-
tection of financial transactions should follow this pattern and pave the way for better,
smarter systems.

Financial transaction analysis is becoming an increasingly important area for anomaly
detection as it pertains to real-time insight, fraud prevention, and strict regulatory compli-
ance. Institutions use graph processing systems like Apache Spark GraphX and Apache
Flink to pinpoint complex transaction patterns and preventively tackle possible risks. More
specifically, metrics such as degree centrality, shortest path analysis, and triangle counting
provide the granular analysis of transactional behaviors, accounting for accounts, flows, or
cycles that may portend irregular activities. The capacity to discern anomalies with fine
specificity falls completely in line with the study’s goal of assisting with decision making
in high-stakes arenas.

These metrics can then be incorporated into a decision process framework to aid
organizations in selecting the best system for a required task. For instance, degree centrality
reports accounts with ultra-active transaction volumes for high-risk entity detection in real
time. Shortest path analysis provides the means for focusing on direct and indirect fund
flow between accounts necessary to find the quick fund transfers that typify fraud. A key
component of detecting coordinated behaviors such as money laundering cycles is triangle
counting which determines cyclic transactions.

In combination with the decision-making framework, this study allows the analytical
metrics to be integrated enabling clear criteria of system selection based on performance,
resource efficiency, and scalability. The strengths of each system, i.e., the technical capability
of GraphX for batch processing and Flink for real-time analysis, are assessed not only in
terms of their technical capability but also in terms of their implementation in safeguarding
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financial integrity. Thus, the results are useful for actioning as actionable insights for
financial institutions in optimizing system choice in terms of the strategic objectives of
anomaly detection and regulatory compliance.

3. Methodology

The methodology for this experiment, as illustrated in Figure 1. In particular, Figure 1
follows a structured approach to compare the performance of two highly used graph
processing systems: Apache Spark GraphX and Apache Flink. Data acquisition and pre-
processing undertake cleaning and structuring of raw data and help prepare the data for
analysis. Once the system is set up and configured, we execute core graph processing
algorithms, like Degree Centrality, Shortest Path Calculation, Triangle Counting, and
Weakly Connected Components. Execution of these algorithms is performed using Apache
Spark GraphX and Apache Flink. Execution time, memory usage, and scalability are then
collected and analyzed with dissimilar performance metrics. An analysis of the results of
this analysis offers key insights to direct decision making and select the most appropriate
system for given graph processing tasks.

Data Pre-processing

Graph Processing Algorithms

Performance Metrics

Start Experiment

1. Data Acquisition and Pre-processing

Data Cleaning

2. System Setup and Configuration

3. Graph Processing Algorithm Execution

Apache Spark GraphX Apache FlinkDegree Centrality

4. Metrics Collection and Analysis

Execution Time

5. Decision-Making Insights

End Experiment

Data Structuring

Shortest Path Calculation

Triangle Counting

Weakly Connected Components Memory Usage

Scalability

Figure 1. Flowchart of the experimental methodology.
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The methodology used in the case study, as seen in Figure 2, is of a similar structured
approach. Here, transactions and accounts are modeled as nodes and edges in a financial
network to find patterns in transactions and accounts that seem suspect and which could
constitute anomalies. Using Key graph processing algorithms such as Degree Centrality,
Shortest Path Analysis, and Triangle Counting, we define abnormal transaction behaviors.
Apache Spark GraphX and Apache Flink demonstrate their suitability for decision making
in the financial sector in this case study.

Graph Setup

Anomaly Detection Algorithms

Analysis and Validation

Start Case Study

1. Graph Setup and Configuration

Map Accounts (Nodes)

2. Graph Processing for Anomaly Detection

Degree Centrality

3. Anomaly Detection and Result Analysis

Identify Suspicious Patterns

4. Insights for Decision-Making

End Case Study

Map Transactions (Edges)

Shortest Path Analysis

Triangle Counting

Visualize Anomalies

Validate Detected Patterns

Figure 2. Flowchart of the case study in accounting.
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3.1. System Setup

The design for this experiment involved a benchmarking of Apache Spark GraphX
and Apache Flink in terms of standardized graph processing tasks on a powerful hardware
infrastructure best suited to large data analysis. The environmental setup contains the
system characteristics, cluster layout, as well as the software installed, so all the results can
be compared on equal grounds.

Hardware Configuration

The experiments were conducted on a single powerful machine with the following
specifications, as shown in Table 1. This layout results in the availability of the required
computational capabilities to meet the processing requirements of big graph datasets and
facilitates performance calibration.

Table 1. System specifications for experimental evaluation.

Component Specification

CPU AMD 5950X
RAM 64GB DDR4

Storage 2TB NVMe
GPU 3090Ti (24GB VRAM)

Operating System Ubuntu 18.04 LTS
Network Interface 1GBPS

Software Framework Apache Spark with FATE

More than 32 cores in the AMD 5950X processor, enough RAM, and a lightning-fast
NVMe drive make it easy to quickly load and process data. Moreover, the NVIDIA 3090Ti
GPU has multi-threaded support for parallel processing, which simultaneously improves
graph processing tasks that take advantage of GPUs.

3.2. Cluster Configuration

The experiments employed a one-node environment that implements the master and
one working node for Apache Spark and Apache Flink using their parallel processing mod-
ules. Although there was a plan to use a cluster of several nodes, using a powerful single
machine offers a clean environment where resource usage can be measured independently
of network overhead.

3.2.1. Apache Spark Configuration

Apache Spark was configured as follows:

• Spark Master: Run on the local machine on the default port 7077, which is set up for
this set.

• Executor Cores: Further set to utilize 16 cores which are in tandem with the high
number of cores of the CPU.

• Memory Allocation: For proactive processing of graph-related tasks, 8 GB of memory
was allocated to each of the executors.

• Driver Memory: Configured at 4 GB to meet the needs for the handling of jobs and
communications.

3.2.2. Apache Flink Configuration

Apache Flink was also configured on the same machine with the following settings:

• JobManager: For job monitoring, was operated at port 8081 on its local machine.
• TaskManager Slots: That had been configured to make use of eight task slots and take

the APU’s parallel processing capabilities full advantage.
• Memory Allocation: The TaskManager was given 16GB to use to handle the workload.
• Parallelism: Match to stack, set to 16, core count which maximizes resource utilization.
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4. Software Installation and Setup

The setup involved installing the necessary software components to ensure a stable
and consistent environment:

• Java Development Kit (JDK): Apache Spark and Flink are compatible with Java
versions 8, 11, and 17. Java 11 is recommended for compatibility with the latest
versions of both frameworks.

• Apache Spark: Version 3.5.3 was used, which includes the Spark GraphX library
for graph processing and provides improved performance and features for SQL and
streaming functionalities.

• Apache Flink: Version 1.17.1 was configured with the Flink Gelly API, which contains
essential functions for graph processing.

• Scala and SBT: For compatibility with Spark 3.5.3, Scala 2.13, and SBT 1.8.2 were
installed to compile and run Spark jobs efficiently.

• Maven: Version 3.8.6 was used for compiling and managing dependencies for Flink
jobs, ensuring compatibility with the latest Apache Flink version.

4.1. Experimental Procedure

We designed the experiments to compare Apache Spark GraphX and Apache Flink on
degree centrality, shortest path, and triangle counting. Performance metrics (execution time,
memory usage, scalability) for each experiment were obtained by running each experiment
multiple times. To avoid further fluctuations in the results, the runs were averaged and
repeated a few times.

To evaluate the systems, both the Google Web Graph dataset and the Anti-Money
Laundering Simulator (AMLSim) dataset were used for the dataset evaluation under
different scenarios. We recorded the dataset characteristics and performance metrics for
each graph processing task and compared the two systems under realistic conditions.

A systematic approach to system setup and configuration guarantees that each test
case can represent Apache Spark GraphX and Apache Flink capabilities faithfully, for
informative insight into their suitability to support large-scale graph processing in emerging
technology applications.

4.2. Dataset

The selection of the dataset is a significant factor in evaluating performance in graph
processing systems. A really good dataset would be something that is of realistic propor-
tions to real-world situations and is large and complex enough to give the systems that are
being tested a run for their money in terms of their scalability and efficiency. In this section,
we describe the datasets selected for our comparison, emphasizing their characteristics,
representativeness, and alignment with the study’s objectives.

4.3. Google Web Graph Dataset

The Google web graph dataset is a very popular graph to work with graph processing
research [61]. The World Wide Web is the example that this graph is modeling, where the
web pages are the nodes and the hyperlinks are the directed edges. As a representative of
real web data, it contains 875,713 nodes and 5,105,039 edges, and therefore, it is a good test
for the graph processing system’s scalability and computational efficiency on real web data.

This dataset was originally released by Google in the Google Programming Contest
and later used in several research studies because of its availability and representative-
ness [61]. We use the Google web graph dataset in this experiment to test the functions of
Apache Spark GraphX and Apache Flink in reference to their capacities in processing large
graph structures.

These are data from the Stanford Network Analysis Platform, which has a trove of
large datasets available for graph processing research. Large and well-connected, it is a
good test of the ability of each system to deal with a large, complex network. Measures of
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statistics such as degree distribution, size of the largest weakly connected component, and
triangle count give insight into how the systems handle large, structured web data.

We explore several datasets to evaluate and select the Google web graph dataset due
to its compatibility with our computational resources and research goals. The size of the
dataset is large enough to support real conclusions about how Apache Spark GraphX
and Apache Flink compare in execution time, scaling, and the processing power that is
available for solving graph structures found on the web. Such a large corpus fits well to the
performance analysis over a predefined web-like load as well as produces a strong basis of
comparison for the system’s ability.

4.4. AMLSim (Anti-Money Laundering Simulator) Dataset

In order to run applications on the Google web graph dataset, we introduce the
AMLSim dataset (Anti-Money Laundering Simulator) for anti-money laundering analysis
and exploration of the applicability of graph processing systems on financial problems,
namely on finding patterns and abnormalities [62]. The transaction networks in this
dataset are modeled as directed edges connecting nodes—bank accounts—representing
bank accounts and transactions. With each transaction attributed to the amount, timestamp,
and account type, it is a perfect simulation of money laundering in the real world.

This study selected the AMLSim dataset because it is most relevant to anomaly de-
tection tasks and can represent complex transactional relationships within financial net-
works [62]. This makes it possible to use graph processing algorithms like degree centrality,
shortest paths, and triangle counting, which are needed to look for suspicious behavior
in a set of financial transactions. To aid AML and other compliance-related applications,
we analyze these patterns so we can assess how well each system performs as a processor,
detector, and analyzer of fraudulent behaviors.

The study also demonstrates how graph processing systems can support decision-
making in emergent technologies, and the AMLSim dataset aligns with this broader objec-
tive. Somehow financial fraud detection needs efficient and scalable data processing. Thus,
rather than a meaningful list of what other open-source projects can or cannot offer in this
regard, the dataset represents a valid test of how Apache Spark GraphX and Apache Flink
handle tasks related to financial services. Transaction volume, account connectivity, and
transaction cycles are the graph metrics that financial institutions use to assess risk and
comply with regulatory requirements. Since we can evaluate system performance using
the AMLSim dataset, it also underscores practical applications of graph processing in the
financial sector.

Dataset Importance for Graph Processing Systems

The additional insights by Google web graph and AMLSim datasets help us better
understand the capabilities of graph processing systems under different contexts. The
Google web graph dataset considers large-scale structured web graph that exists in the
world of processing efficiency and scalability for content-oriented applications. On the
other hand, the AMLSim dataset focuses on real-time processing and anomaly detection
in financial transactions in which graph processing systems can aid in decision-making in
sectors that have strong regulatory compliance and fraud detection laws.

Utilizing these datasets, we can offer a complete evaluation of Apache SparkGraphX
and Apache Flink in generic web and specialized financial domains. This dual approach
fortifies the value chains for graph processing systems, as they are used for diverse apps
from web data mining to anti-money laundering detection, fully fit to the study objective
of revealing my implications for decision-making in emerging technology environments.

Our study aligns with our objectives of evaluating graph processing systems on
different applications by selecting the Google Web Graph and AMLSim datasets. A large-
scale, structured web network known as the Google Web Graph dataset has been modeled
and used to test the scalability and computational efficiency of Apache Spark GraphX and
Apache Flink in managing content-oriented web data structures. Widespread use and the
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general nature of the representativeness in benchmarking large graph systems reinforce the
relevance of this dataset for general scalability evaluations.

Conversely, to evaluate graph processing systems for anomaly detection, in particular
for anti-money laundering problems in the financial sector, the AMLSim dataset was
chosen. In this dataset, real-world financial networks were modeled as directed graphs of
transactional relationships (directed edges between nodes) for which we can benchmark
systems’ sensitivity to be able to detect suspicious patterns of fraudulent activities.

Data Preprocessing Steps:

1. Data Cleaning: Any null or irrelevant entries were removed to maintain data integrity.
2. Data Structuring: Raw data were transformed into graph structures, with nodes

representing entities (e.g., web pages or bank accounts) and edges representing rela-
tionships (e.g., hyperlinks or transactions).

3. Normalization: Transaction amounts in the AMLSim dataset were normalized for
consistency across anomaly detection tasks.

4. Attribute Encoding: Attributes like timestamps and transaction amounts were en-
coded to optimize processing and facilitate the detection of anomalies.

4.5. Case Study: Application in Accounting
4.5.1. Objective

In the accounting sector, anomaly detection and financial transaction pattern analysis
are key to fraud detection and ensuring compliance. This case study utilizes Apache
Spark GraphX and Apache Flink and it is all about analyzing a transaction network with
performance metrics for anomaly detection and financial pattern analysis. We model
accounts and transactions as nodes and edges in a graph and determine the fitness of these
systems for real-time and batch-oriented financial analysis.

4.5.2. Graph Representation of Financial Data

Let G = (V, E) denote a transaction network, where V is the set of vertices (represent-
ing accounts) and E ⊆ V ×V is the set of directed edges (representing transactions between
accounts). Each edge (i, j) ∈ E has an associated transaction amount wij, representing the
monetary value of the transaction from account i to account j.

Three graph-based metrics are calculated to assess transaction patterns and iden-
tify anomalies:

1. Degree Centrality: This measures the number of transactions associated with an
account, which can help identify unusually active accounts. For a vertex vs. ∈ V, the
in-degree din(v) and out-degree dout(v) are defined as:

din(v) = ∑
u∈V

δ((u, v) ∈ E), dout(v) = ∑
u∈V

δ((v, u) ∈ E)

where δ(x) = 1 if x is true, and 0 otherwise. High in-degree or out-degree values
could suggest accounts heavily involved in transactions, which may warrant further
investigation.

2. Shortest Path (Transaction Flow): The shortest path in terms of transaction cost
between two accounts s and t is computed to reveal transaction patterns and potential
fraud. For path P(s, t):

P(s, t) = min
all paths p∈P(s,t)

∑
(i,j)∈p

wij

where P(s, t) is the set of all possible paths from s to t. Short paths between accounts
may suggest direct financial relationships or circular fund flows indicative of fraud.
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3. Triangle Count: Triangles in the graph indicate cycles, where three accounts are
involved in mutual transactions. Such patterns can be common in fraudulent activities,
such as money laundering. For vertex vs., the triangle count is calculated as:

T(v) =
1
2 ∑

u,w∈V
δ((v, u) ∈ E) · δ((u, w) ∈ E) · δ((w, v) ∈ E)

This count represents the number of three-account cycles that vs. is part of, helping
detect potentially suspicious financial loops.

4.5.3. Anomaly Detection Using Graph Metrics

To identify anomalies, we analyze degree centrality, transaction flows, and triangle
counts. We define the standardized in-degree and out-degree metrics as follows:

zin(v) =
din(v)− µin

σin
, zout(v) =

dout(v)− µout

σout

where µin and σin are the mean and standard deviation of in-degree across all vertices and
µout and σout are the mean and standard deviation of out-degree. High |zin(v)| or |zout(v)|
values can flag accounts with unusually high transaction activity.

For transaction flow analysis, paths with P(s, t) below a threshold τ may indicate
quick fund transfers and are flagged as potentially suspicious. High triangle counts for an
account suggest involvement in circular transaction patterns that may indicate coordinated
financial activities.

4.5.4. Graph Visualization and Entity Relationships

In this case study, we utilize the AMLSim (Anti-Money Laundering Simulator)
dataset [62,63], which includes a network of financial transactions designed to model
and analyze money laundering behaviors. Each node in the graph represents a finan-
cial entity (e.g., an account), and each directed edge represents a transaction from one
account to another. The goal is to identify suspicious activity by analyzing the structure
and connectivity of this network.

In Figure 3, a sample graph from the AMLSim dataset [63] is being demonstrated,
illustrating the relationships between accounts (nodes) and transactions (edges). Nodes
represent individual accounts, while edges denote directed transactions

Figure 3. Graph visualization from AMLSim dataset, representing account relationships and transac-
tions, with highlighted patterns indicative of potential fraud.
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In the graph, let:

• V represents the set of nodes or accounts, where each vs. ∈ V is associated with
attributes such as account type and balance.

• E ⊆ V × V represent directed edges, where (i, j) ∈ E indicates a transaction from
account i to account j.

• wij denote the transaction amount from i to j, representing the weight of the edge.

This graph structure allows us to explore the connectivity and flow of funds through
various graph-based metrics, which are essential for detecting potential anomalies or
suspicious patterns.

4.5.5. Application of Graph Metrics for Anomaly Detection

Using graph processing, we apply three core metrics—degree centrality, shortest paths,
and triangle count—to the transaction network, as follows.

1. Degree Centrality

Degree centrality helps identify accounts with an unusually high volume of transac-
tions, potentially indicating hubs of suspicious activity. For a node vs. ∈ V:

din(v) = ∑
u∈V

δ((u, v) ∈ E), dout(v) = ∑
u∈V

δ((v, u) ∈ E)

where din(v) and dout(v) measure the incoming and outgoing transactions for vs., respec-
tively. Accounts with high din(v) or dout(v) are flagged for further inspection, as they may
indicate concentration or dispersal points in the transaction network.

2. Shortest Paths for Transaction Flow Analysis

Shortest path analysis is used to detect direct or indirect relationships between ac-
counts, which may suggest coordinated financial activities. The shortest path P(s, t) be-
tween two accounts s and t is defined as:

P(s, t) = arg min
p∈P(s,t)

∑
(i,j)∈p

wij

where P(s, t) is the set of all paths from s to t and wij represents the transaction amount on
each path. Accounts connected by low-cost paths may be indicative of a coordinated net-
work aimed at transferring funds discreetly, a common trait in money laundering schemes.

3. Triangle Count for Detecting Fraud Rings

The presence of triangles (three-account loops) in the graph can suggest circular fund
flows, which are characteristic of fraud rings or money-laundering cycles. For a node vs.,
the triangle count T(v) is calculated as:

T(v) =
1
2 ∑

u,w∈V
δ((v, u) ∈ E) · δ((u, w) ∈ E) · δ((w, v) ∈ E)

Triangles in the graph indicate closed loops among accounts, often utilized in cyclical
money laundering. High triangle counts suggest potential participation in these types of
financial fraud.

4.5.6. Graph Processing Tasks and Performance Metrics

To evaluate Apache Spark GraphX and Apache Flink, we apply the following tasks to
the AMLSim dataset:

• Degree Centrality: Identify key accounts with high transaction volumes.
• Shortest Path Analysis: Trace fund flows and evaluates the shortest routes for transac-

tions between accounts.
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• Triangle Counting: Detect circular transaction flows that could indicate coordinated
activities.

For each task, we measure:

1. Execution Time Texec: Average time taken to complete each task, providing insight
into the system’s efficiency.

2. Memory Usage Mmem: Memory consumption during task execution, relevant for
system scalability and resource management.

3. Scalability: Observing how performance metrics change with increasing node |V| and
edge |E| counts, indicating each system’s capability to handle larger datasets.

5. Results
5.1. Performance Evaluation

In this section, we evaluate the performance of the two libraries—GraphX and Flink—
by comparing their execution times on various graph algorithms. The analysis is based on
execution times captured during experiments on our dataset using a distributed computing
environment. The results from these executions are stored and analyzed using Jupyter
Notebook. The experiments were performed on PyCharm IDE, under a cluster setup.

5.2. Degree Centrality Distribution

One of the key analyses performed on the graph dataset is the distribution of Degree
Centrality values. The Degree Centrality of a vertex in a graph is the number of edges
connected to it. In our analysis, we generated a log-log plot to visualize the distribution of
degree values across the vertices.

The resulting distribution plot is shown in Figure 4. The distribution exhibits a power-
law characteristic, where the majority of vertices have a low degree of centrality, while
a few vertices have a very high degree of centrality. This pattern is consistent with the
characteristics of real-world graphs, where most nodes are sparsely connected, and a few
nodes act as hubs with many connections.
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Figure 4. Degree Centrality distribution log-log plot.
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The figure illustrates how the degree centrality values are distributed, validating the
expected behavior of large-scale networks.

5.3. Shortest Paths

The calculation of the maximum and the average shortest path distance was executed,
using a pandas dataframe to filter the infinite values out. The maximum shortest path
distance was found to be 16 and the average shortest path distance 11.2628.

Also, the Shortest Paths Distribution Plot was produced, as shown in Figure 5. The
distribution of the shortest path distances is a Poisson distribution around the average
shortest path distance. However, no other statistics are available for the shortest paths to
validate against.
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Figure 5. Shortest Paths Distribution Plot.

5.4. Triangle Count

The total number of triangles in our graph was found to be 13,391,903. This is the same
number of triangles as the one listed on the Triangle count value on the dataset statistics.

5.5. Weakly Connected Components

For the Weakly Connected Components, we first found the index of the largest WCC,
which turned out to be equal to 0 and then we calculated the number of nodes in the largest
WCC. That was found to be equal to 855,802, which matches the value Nodes in largest
WCC on the dataset statistics.

5.6. Execution Runtimes Analysis

In this section, we present the methodology used to record and analyze the execution
times of various graph queries on our dataset, using both GraphX and Flink libraries. The
analysis covers real, user, and system CPU times, comparing both libraries in terms of
performance across several metrics.
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5.7. Timing Procedure

To ensure consistent timing across both libraries, we employed the time command, a
Unix-based tool that measures the real, user, and sys CPU time of a program. The real
time represents the total execution time from start to finish, while the user time measures
the time spent executing the program itself, and the sys time captures the time spent on
system calls. These measurements were taken in a controlled environment using the same
datasets for both libraries.

While other options like Listeners for Spark or Metric Reporters (e.g., Prometheus)
for Flink were considered, they were found to introduce inconsistency between libraries
due to differences in how they measure execution stages. The time command was chosen
for its reliability in capturing the overall execution time consistently across both systems.

For our analysis, we focus on the real time and the combined user + sys times. The
metrics we examine include the average, minimum, and maximum query execution times
for each library.

5.8. Execution Times

The execution times for each query are visualized in the following figures, where each
plot presents four lines: one for GraphX real time, one for GraphX user + sys time, and
the same for Flink. All times are reported in seconds.

The plot for Degree Centrality (Figure 6) shows that GraphX exhibits higher overall
execution times compared to Flink, especially in terms of real time. This result highlights
the potential performance advantage of Flink in handling degree centrality computations.

Similarly, Figure 7 presents the execution times for the Shortest Paths query. Flink
outperforms GraphX, particularly in the real time metric. This demonstrates the efficiency
of Flink in executing path-finding algorithms over large graphs.
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Figure 6. Degree Centrality times.
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Figure 7. Shortest Paths times.

Next, Figure 8 illustrates the execution times for the Triangle Count query. The times
show a significant reduction in Flink’s real and user + sys times, suggesting that Flink is
more optimized for triangle counting operations.

Lastly, the plot for Weakly Connected Components (Figure 9) displays the execution
times for this query. While GraphX shows competitive times, Flink once again performs
faster in terms of real time, further solidifying its performance advantage for this query.
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Figure 8. Triangle Count times.
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Figure 9. Weakly Connected Components times.

Figures 6–9 show comparative performance for various graph processing queries
(Degree Centrality, Shortest Path, Triangle Count, Weakly Connected Component) with
Graph X and Flink. These figures show that in particular for real-time processing metrics,
Flink is consistently faster in terms of execution time than GraphX. The reason for this
performance advantage is most probably the fact that Flink is an event-driven pipeline,
designed to do low-response latency operations which makes it suitable for real-time
applications like IoT. Wherever the above conditions hold, however, GraphX continues
to be competitive, particularly when scaling down to smaller graphs, owing to its in-
memory capabilities.

In particular, the real-time metric is quite telling, as Flink is running significantly faster
across the board (up to 50%) faster on execution times for Shortest Paths and Triangle
Count queries. Real-time evaluations indicate GraphX is slower, but it has been proven
to perform well in user + sys cumulative time so it is suited to stable, batch-intensive
workloads. Different machine and graph patterns indicate, that these results demonstrate
that Flink has processing advantage in dynamic environments GraphX has strength in
batch processing tasks, and that we can learn to select systems under different requirements
of application.

5.9. Metrics

In this section, we present the average, minimum, and maximum query execution
times for both GraphX and Flink. These metrics were computed for both the real time and
the combined user + sys times. The results are summarized in Table 2.

Table 2. Query execution times for GraphX and Flink (real and user + sys).

Query
Real Time (Seconds) User + Sys Time (Seconds)

Avg (GraphX) Min (GraphX) Max (GraphX) Avg (Flink) Min (Flink) Max (Flink)

Degree Centrality
33.268 30.548 37.368 22.124 19.780 26.292
26.020 23.870 30.065 8.750 6.890 10.040

Shortest Paths
77.280 72.396 82.540 42.125 39.182 45.055
36.050 33.000 42.200 10.050 9.290 10.695
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Table 2. Cont.

Query
Real Time (Seconds) User + Sys Time (Seconds)

Avg (GraphX) Min (GraphX) Max (GraphX) Avg (Flink) Min (Flink) Max (Flink)

Triangle Count
73.410 63.500 83.100 17.512 16.048 18.520
25.200 20.580 27.020 4.820 4.210 5.320

Weakly Connected Co.
50.360 49.002 52.815 32.145 30.456 34.078
53.220 47.340 64.501 8.180 6.530 9.163

5.10. Statistical Comparison of Execution Times

We conducted statistical tests on average, minimum, and maximum query execution
times for each graph processing task (Degree Centrality, Shortest Path, Triangle Counting,
and Weakly Connected Components) to validate the observed differences between the
execution times of queries in Apache Spark GraphX and Apache Flink. These differences
were evaluated with a t-test to determine its statistical significance.

The results in Table 3 demonstrate statistically significant differences in execution
times, with Flink generally outperforming GraphX, especially for real-time stream process-
ing tasks like Shortest Path and Triangle Counting (p < 0.05). In particular, these findings
confirm that Flink’s architecture offers a performance measurement in certain types of
queries, especially when real-time processing is required.

Table 3. Statistical comparison of execution times for GraphX and Flink.

Query Type p-Value (Real Time) p-Value (User + Sys Time) Significance Level

Degree Centrality <0.05 <0.05 Significant
Shortest Path <0.01 <0.01 Highly Significant
Triangle Count <0.05 <0.05 Significant
Weakly Connected Components <0.05 <0.05 Significant

Our quantitative results are complemented by this statistical analysis, which confirms
that Flink is superior in the context of processing real-time queries with low latency, of
interest for applications where the data have to be processed quickly.

5.11. Performance Evaluation: Case Study in Accounting

We evaluate the performance of Apache Spark GraphX and Apache Flink using metrics
such as execution time Texec and memory usage Mmem. The average execution time for each
metric across multiple runs is given by:

Texec =
1
N

N

∑
i=1

T(i)
exec

where N is the number of executions. Similarly, average memory usage is:

Mmem =
1
N

N

∑
i=1

M(i)
mem

We also assess scalability by observing how these metrics change with increasing
dataset size |V| and |E|.

The results of the performance evaluation, comparing execution time and memory
usage for GraphX and Flink, are shown in Figure 10. The data reveal several interesting
trends across different queries.
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Figure 10. Performance metrics for financial transaction queries: Execution time and memory usage
comparison between GraphX and Flink.

The key observations are the following:

• Degree Centrality: Because in this query the system only sums the number of trans-
actions by account, the load should not be extremely high. Both GraphX and Flink
successfully execute this task, and the performance is illustrated in Figure 10. The
memory used in this query is also small because the structure of the graph is fairly
simple as seen above.

• Shortest Paths: Of all the queries, execution time experienced a sharp hike for the
Shortest Paths query. This is due to the fact that there are an enormous number of
transaction records contained in the dataset, and hence, the time taken to compute the
shortest transaction flow between all the accounts will be longer. That is why, when
there are millions of nodes and edges to browse, the algorithm has to consider many
possible paths, thus leading to the explosive growth of time required for the algorithm
to run and enlarging memory consumption. However, what is particularly noticeable,
is that GraphX occupies vastly more memory than Flink, which might be attributed to
the in-memory paradigm of the algorithm.

• Triangle Count: Like the Cumulative Transaction Amount query, the Triangle Count
query is relatively time-consuming since it includes identifying cyclic transaction
patterns among three accounts. This is important in the detection of some other
potential frauds, for instance, money-laundering rings. Figure 10 shows that on
average, GraphX runs slower than Flink but the difference between the two is much
shorter compared to the gap in the Shortest Paths query. Similar to that, the memory
usage of both systems is higher, while GraphX has higher values in this aspect.

Further observations include:

• Spikes in Execution Time: The peaks that appeared in the relative execution times,
especially in Shortest Paths, may be explained by the nature of the query. When
calculated in this way, since the task breaks down isolating the shortest sequences of
transactions between these networks into thousands of account pairs, the amount of
data processed becomes exponentially larger with the size of the network.

• Flows: Moreover, to find such flows one has to trace across vast segments of the graph,
which contributes to the time and effort of the algorithm’s running. In comparison
with Flink’s data flow management of these computations, GraphX is high in memory
consumption during the task due to in-memory operations.
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These metrics are used to understand the applicability of both systems for real-time
and batch processes in the financial domain. Flink has been reported to have a far lower
execution time, implying that it is beneficial for real-time anomaly detection, while on the
other hand, GraphX, as shown in Figure 10, may be suitable when used for batch process
or where more memory consumption is acceptable.

6. Discussion

Apache Spark GraphX and Apache Flink have been identified in the following per-
tinent decision-making implications related to their applications for practical financial
transaction analysis in accounting dataset scenarios.

The observed much smaller execution time of Flink for all the queries as well as
especially in the Shortest Paths and Triangle Count cases again show how well Flink per-
forms when processing large transaction networks in real-time. This places Flink as the
best option when it comes to real-time anomaly detection since faster identification of
fraud-related activities is paramount. The latter factor owes to its data-flow-based design
approach as it gives an edge in memory management, effectively handling large financial
datasets. Because of the real-time detection of fraud and quick decision-making, this sys-
tem offers a platform that is both fast and resource-friendly to ensure that organizations
with operational needs can benefit significantly. On the other hand, GraphX summarizes
higher memory usage and prolonged execution times; however, it has the prospect of
performing well with record-based processes. The in-memory processing of GraphX is
useful for accounting firms that focus on retrospectively detailed analysis for use in compli-
ance declaration or advanced fraud investigation. It can be inferred that GraphX requires
substantially robust infrastructure since it consumes resource enhancement for tasks like
Shortest Paths. Nevertheless, for organizations, that possess sufficient computing resources
and for which real-time computational results are not crucial, GraphX can still serve as a
more comprehensive and, therefore, more resource-absorbing solution.

Our findings are consistent with the findings by Garcial-Gil et al. that Spark is efficient
in machine learning batch processing tasks [29]. Finally, our results indicate that GraphX
is equally well suited for processing batch-oriented graphs, in terms of both efficiency in
terms of memory usage and stability to bulk data processing. On the other hand, Karakaya
et al. used Flink to demonstrate that the technology provides significant performance gains
in terms of real-time stream processing [27], which we observed in reduced latency and
faster run times of tasks that perform real-time stream processing.

Furthermore, this study further extends Blamey et al. study [44], which investigates
Spark load exploration into Spark’s handling of high CPU loads. We demonstrate that,
under high memory conditions, GraphX provides processing stability for graph tasks.
Nevertheless, for highly updated and low latency feedback applications, our results sup-
port Flink as being effective, as has been described with similar applications to dynamic
IoT environments.

7. Conclusions and Future Work

In this paper, we provide a detailed performance benchmark of Apache Spark GraphX
and Apache Flink applied to both generic and financial graph datasets. In our analysis in-
volving several equivalent graph processing algorithms, such as degree centrality, shortest
paths, and triangle counting, we find that Flink is, on average, more efficient than GraphX
when it comes to real-time transaction flows and data anomalies. Flink is well-suited for ap-
plications that require low latency, such as real-time fraud detection in financial transactions.
On the other hand, GraphX’s higher memory consumption and longer execution times
are a better strategy when batch processing tasks that demand in-memory computation
must be performed, such as retrospective analysis for compliance and regulatory reporting.
Results of this study offer useful information to the decision-makers in the financial and
technological sectors, on how to choose the best graph processing framework for their
requirements. Both systems were also evaluated against their scalability in terms of large
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datasets where Flink exhibited better memory management and GraphX still needs more
robust infrastructure in order to make full use of its in-memory features.

Concerning future work, there are several possible things to do for the further develop-
ment of the results demonstrated in the framework of the present work. First, other higher
levels of optimization for Apache Spark GraphX can be investigated to cut its memory
utilization and improve it in real-time applications. Second, the relative integration of other
datasets, particularly from the fields of healthcare and social networks, would provide more
extensible performance results. Furthermore, comparing the systems with and without
integrated hardware accelerators for graphs, including GPUs, may be explored to analyze
their effect on graph processing. Lastly, new generations of graph processing algorithms
that will use distributed frameworks such as Graph Neural Networks (GNNs) can offer
new opportunities for both systems in new applications, like AI-driven decisions and IoT
network analysis.

In order to expand the scope of this study, future work could leverage cutting-edge
approaches like privacy-preserving federated learning frameworks, such as FLIBD [64], to
ensure secure big data processing in IoT networks whenever real-time insights in fields
like healthcare, finance, etc. are vital to data privacy. Lastly, deploying TinyML algorithms
intended for low-power, large-scale IoT system deployment also supports decentralized
processing in smart cities, autonomous vehicles, and environmental monitoring, facilitating
system resiliency and reducing latency [65]. For Big Data environments such as industrial
automation, and AI-driven decision-making [66], the incorporation of AutoML methods
with Bayesian optimization would further improve upon adaptive model tuning processes
in the constrained space of dynamic and resource-expensive big data systems. Finally,
extending the benchmarking to TinyML frameworks for ultra-low power applications could
enable energy-efficient processing on edge devices that push further IoT deployments
in resource-constrained scenarios like remote sensing and predictive maintenance [67].
These additions will help to keep the study relevant while also broadening the evaluation
framework to cover a variety of different applications in these emerging technologies that
are as scalable as they are efficient and secure.

Future work may further augment this benchmarking framework towards efficient range
mode query (RMQ) algorithms [68], as studied in the current work on high-performance
data retrieval. By integrating RMQ methods, we would have targeted data retrieval
that minimizes query response times in distributed systems like Apache Spark GraphX
and Apache Flink, especially for data applications that need the fastest data analysis in
the form of interval-based, e.g., real-time financial auditing and trend analysis in the
social media. This study could evaluate the computational tradeoffs between decision-
making applications between emerging technologies such as IoT and AI-driven analytics by
benchmarking RMQ’s effect on the scalability and efficiency of big data systems’ dynamical
high-frequency data environments. In addition, leveraging RMQ for low latency data access
has the potential to improve the performance of both batch and stream processing scenarios,
while providing more nuanced performance insight in a broader range of datasets and
operational needs.
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