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Abstract: We propose a compound control framework to improve the path tracking accuracy of a four-
wheel independent steering and driving (4WISD) vehicle in complex environments. The framework
consists of a deep reinforcement learning (DRL)-based auxiliary controller and a dual-layer controller.
Samples in the 4WISD vehicle control framework have the issues of skewness and sparsity, which
makes it difficult for the DRL to converge. We propose a group intelligent experience replay (GER)
mechanism that non-dominantly sorts the samples in the experience buffer, which facilitates within-
group and between-group collaboration to achieve a balance between exploration and exploitation.
To address the generalization problem in the complex nonlinear dynamics of 4WISD vehicles, we
propose an actor-critic architecture based on the method of two-stream information bottleneck (TIB).
The TIB method is used to remove redundant information and extract high-dimensional features from
the samples, thereby reducing generalization errors. To alleviate the overfitting of DRL to known
data caused by IB, the reverse information bottleneck (RIB) alters the optimization objective of IB,
preserving the discriminative features that are highly correlated with actions and improving the
generalization ability of DRL. The proposed method significantly improves the convergence and
generalization capabilities of DRL, while effectively enhancing the path tracking accuracy of 4WISD
vehicles in high-speed, large-curvature, and complex environments.

Keywords: 4WISD vehicles; path tracking; deep reinforcement learning; experience replay;
information bottleneck; actor-critic architecture; policy quality

1. Introduction

Four-wheel independent steering and driving (4WISD) vehicles have gained consider-
able research attention owing to their highly flexible path tracking control capabilities [1–5].
This control independence enhances the vehicle’s adaptability and robustness in com-
plex environments, enabling it to effectively respond to variable road conditions and
disturbances [6–8]. However, the complex nonlinear characteristics inherent to 4WISD
vehicles present significant challenges in designing path tracking controllers that exhibit
fast response, high tracking accuracy, and strong disturbance rejection [9].

In recent years, various control algorithms have been proposed to address these
challenges in the path tracking control of 4WISD vehicles. One widely used approach is
motion decoupling, which separates lateral and longitudinal motions through independent
control loops to track different targets [10–12]. This method simplifies the design of the
control system, allowing for more precise and efficient control in each motion direction.
Another key strategy is the hierarchical control structure, where the upper-layer controller
computes the generalized forces for the vehicle, and the lower-layer controller optimally
distributes these forces to each tire [13–16]. This hierarchical structure effectively manages
the complex vehicle dynamics, improving both the robustness and response speed of the
control system.
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In terms of control algorithms, sliding mode control (SMC) has been widely applied
due to its robustness against system uncertainties and external disturbances [17,18]. This
introduces a sliding surface along which the system states move, to achieve effective con-
trol of nonlinear systems. Model predictive control (MPC) has also gained significant
attention [19,20] for its ability to handle multivariable coupling and constraint conditions
by predicting future system behaviors to optimize current control inputs. Proportional-
integral-derivative (PID) control and its improved versions remain vital in engineering
practice due to their simplicity and effectiveness [21,22]. However, these traditional path
tracking control methods have limitations in fully addressing the complex challenges posed
by 4WISD vehicles. Traditional model-based control methods pose challenges in managing
unknown and highly dynamic external disturbances. These methods rely on a predefined
vehicle dynamics model, which may fail to converge under drastic or unexpected environ-
mental changes. As a result, these methods lack real-time adaptability to nonlinear and
unpredictable conditions in 4WISD vehicles. In addition, the computational demands can
become prohibitive when adjusting to such complex scenarios. Numerical errors tend to
accumulate and propagate with each recursive step, which might not only decrease the
computational accuracy of the system but also lead to divergence in control algorithms. In
path tracking control, as the iteration number increases, the errors are gradually magnified,
reducing control precision, especially when the unknown external disturbances strengthen
the error accumulation effect. The randomness and unpredictability of external distur-
bances force the system to adjust control signals, further amplifying numerical errors and
reducing the system’s stability. Ultimately, the continuous accumulation of these errors
could destabilize the system, significantly reducing path tracking accuracy and increasing
the operational risk in dynamic environments.

Model-free methods for vehicle control have been applied to address the above-
mentioned challenges [23–27]. Deep reinforcement learning (DRL) combines the advan-
tages of reinforcement learning and deep learning, demonstrating great capability in
real-time control [28,29]. Within the DRL framework, agents are modeled using deep
neural networks and continuously interact with the environment and control system. Each
action is rewarded based on feedback from the environment, and the training objective
is to maximize the cumulative reward over time. Through interaction with continuous
state-action spaces [30], DRL can adapt to the decision-making requirements of 4WISD
vehicles under different external disturbances. While DRL provides flexibility and adapt-
ability by interacting with continuous state-action spaces, it faces substantial challenges in
control stability, convergence speed, and generalization to varying environments. These
challenges stem from the tendency of DRL agents to overfit to the specific conditions on
which they are trained, limiting their ability to generalize to diverse scenarios. Further-
more, DRL’s dependence on large datasets for training can result in instability during the
learning process. This issue is especially pronounced for 4WISD vehicles in dynamic or
high-dimensional environments.

Based on the literature review, we propose a compound control framework for path
tracking of 4WISD vehicles that uses an improved DRL approach. The main novelties
of this study are as follows. Firstly, we propose a compound control framework that
enhances DRL’s adaptability and generalization by integrating a model-free DRL auxiliary
controller with a model-based dual-layer controller. This compound approach capitalizes
on the DRL’s strengths in managing complex, high-dimensional environments, while the
model-based controller ensures stability and improves decision-making in dynamic or
unforeseen scenarios. As a result, the system is capable of generalizing across diverse
operational conditions, maintaining accurate path tracking even under highly uncertain
external disturbances. Secondly, we propose a group intelligent experience replay (GER)
mechanism that treats the experience buffer as an intelligent entity. The experience buffer
is categorized into three groups based on the prioritization of samples: discover, joiner,
and risker. Coordination within and between groups is performed using training progress
and non-dominated sorting, enabling adaptive balancing of exploration and exploitation.
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This categorization enables the DRL agent to efficiently explore new strategies in unknown
environments, while refining its learned policies in known situations. This leads to faster
convergence, enabling the system to manage diverse operational scenarios with higher
accuracy and stability. Thirdly, an actor-critic architecture based on the two-stream infor-
mation bottleneck (TIB) is proposed. An information bottleneck approach is introduced
into the critic network to minimize the mutual information between high-dimensional
features and the target Q-value, thereby improving the critic’s feature extraction ability
and reducing generalization error. Meanwhile, a reverse information bottleneck approach
is applied to the actor network to maximize the mutual information between features
and actions. This approach balances learning the most compact state representation and
preserving highly discriminative state-action correlations, and ensures that the DRL agent
can generalize its learned policies to a wide range of unknown scenarios, improving its
ability to adapt to diverse high-dimensional environments.

The remainder of this paper is structured as follows. The research background and
related work are introduced in Section 2. The problem formulation is presented in Section 3.
The implementation of the improved DRL-based compound control framework is elabo-
rated in Section 4. The simulation results are compared in Section 5. The conclusions are
summarized in Section 6.

2. Background and Related Work
2.1. DRL-Based Vehicle Control

Liu et al. compared the decision-making strategies for autonomous driving on a
highway using different deep reinforcement learning algorithms, focusing on their imple-
mentation methods, performance metrics, and impact on driving efficiency and safety [31].
In terms of longitudinal control, Lin et al. found that DRL performs better as errors based
on model predictive control increase [32]. Chen et al. integrated the methods of deep
reinforcement learning and model predictive control for adaptive cruise control (ACC) of
tracked vehicles, which enhanced the performance and efficiency of the ACC system [33].
Selvaraj et al. developed a DRL framework that accounts for passengers’ safety and comfort
and road usage efficiency [34]. For lateral control, Li et al. broke the vision-based lateral
control system into a perception module and a control module, with the latter being trained
with a reinforcement learning controller to improve performance on different tracks [35].
Peng et al. combined a DRL strategy with graph attention networks for autonomous driving
planning [36]. In complex urban traffic scenarios, Li et al. used a DRL-based eco-driving
strategy to optimize economy and travel efficiency. The authors also integrated safety
measures and addressed additional challenges arising from real-time traffic elements, such
as varying road conditions [37]. Sallab et al. proposed a DRL framework for autonomous
driving to handle complex interactions with other vehicles and roadworks [38].

The complex dynamics in 4WISD vehicles make it difficult for existing DRL methods
to achieve stable and efficient control. Current approaches often face challenges such as
instability and poor convergence, due to the vehicle’s high-dimensional state and action
spaces. Therefore, developing more robust and effective DRL-based compound control
frameworks is essential to enhance the path tracking performance of 4WISD vehicles.

2.2. Experience Replay Mechanism in DRL

Recent advancements in experience replay mechanisms for deep reinforcement learn-
ing have concentrated on several key areas. For experience selection and sampling strategy
optimization, various methods have been proposed to enhance learning efficiency using
intelligent selection mechanisms. Wei et al. and Li et al. presented quantum-inspired expe-
rience replay (QER) to balance the importance and diversity [39,40]. Zhu et al. developed
prioritized experience replay (PER) to adjust sampling probabilities based on temporal
difference (TD) errors [41]. Na et al. proposed emphasized experience replay (EER) to
prioritize experiences that significantly impact algorithm performance [42]. Ye et al. in-
troduced classified experience replay (CER) to adjust sampling ratios for different types
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of experiences by classifying them into successful and failed attempts. This enhancement
improved the training process, enabling the DRL model to learn more effectively from both
positive and negative outcomes [43]. Regarding experience timeliness and freshness, Ma
et al. incorporated freshness discount factors to increase the sampling probability of recent
experiences [44]. Wang et al. employed annealed biased prioritized experience replay
to account for experience timeliness [45]. To improve experience storage and memory
management, researchers have focused on the effective utilization of limited experience
storage space. Osei et al. proposed an enhanced sequential memory management (ESMM)
to optimize replay memory usage by improving experience retention strategies [46]. Liu
et al. developed two-dimensional replay buffers to enhance storage structures [47].

The non-stationary environments of these vehicles hinder the efficient utilization of
training samples by existing methods. Insufficient adaptability to changing conditions
and inefficiency in handling high-dimensional state-action spaces typically result in poor
learning performance. It is necessary to develop more adaptive and robust experience
replay strategies to optimize sample efficiency and enhance control performance in these
complex systems.

2.3. Representation Learning in DRL

Recent advancements in information processing and representation learning are briefly
introduced. For information compression and extraction, Xiang et al. employed variational
information bottleneck techniques to infer fundamental tasks and learn essential skills [48].
Zou et al. developed the InfoGoal method, utilizing information bottleneck to learn
compact goal representations, thereby improving policy optimality and generalization
in goal-conditioned reinforcement learning [49]. Schwarzer et al. introduced the Self-
Predictive Representations (SPR) approach. And the future state prediction and data
augmentation were used to markedly increase sample efficiency [50]. Zhang et al. applied
dual similarity metrics to learn robust latent representations that encode only task-relevant
information, which demonstrated efficacy across various visual tasks [51]. In the domain
of contrastive learning and self-supervision, Laskin et al. developed the CURL methods
to extract high-level features from raw pixels, enhancing performance across multiple
benchmarks [52]. Stooke et al. proposed the Augmented Temporal Contrast (ATC) task to
decouple representation learning and policy learning, surpassing end-to-end reinforcement
learning performance in most environments [53]. Regarding structured representations,
Wei et al. introduced graph representation learning as an effective method for DRL agents
to learn network entity relationships, enhancing path selection performance in network
routing problems [54]. Qian et al. developed the DR-GRL framework, and combined
disentangled representation learning with goal-conditioned visual reinforcement learning
to improve sample efficiency and policy generalization [55]. For model-free reinforcement
learning with high-dimensional image inputs, Yarats et al. proposed techniques to enhance
training stability, demonstrating robustness to observational noise in control tasks [56].

Existing approaches often have difficulties in effectively capturing the complex dy-
namics or incur high computational costs, limiting their practical applicability. Developing
more efficient state representation learning and improved sample information processing
methods is crucial for achieving high DRL performance in controlling 4WISD vehicles.

3. Problem Formulation and Analysis
3.1. 4WISD Vehicle Dynamics Model

The 4WISD vehicle dynamics model comprises a vehicle body dynamics model and a
tire model, as shown in Figure 1. The inertial reference frame and the vehicle body frame
are represented as OXYZ and OvXvYvZv, respectively. Assume that the path tracking
occurs on even road. The yaw, pitch, and roll motions of the vehicle body are mainly
controlled by the longitudinal and lateral forces at each tire. For ease of notation, the four
tires are indexed as i = fl, fr, rl, rr, which represent the front-left, front-right, rear-left, and
rear-right tires, respectively, as represented in Figure 1a. In the tire coordinate system, the



Technologies 2024, 12, 218 5 of 28

longitudinal force, lateral force, vertical force, and steering angle of each tire are denoted
by Fli,FLi,FNi, and δi, respectively. The dynamics of the vehicle body, which are analyzed in
the vehicle coordinate OvXvYvZv, can be written as

M(v̇x − vyγ) =
fl, fr, rl, rr

∑
i

(Fli cos δi − FLi sin δi)

M(v̇y + vxγ) =
fl, fr, rl, rr

∑
i

(Fli sin δi + FLi cos δi)

Iγγ̇ =
fl, fr, rl, rr

∑
i

[Lbi(Fli cos δi − FLi sin δi) + lbi(Fli sin δi + FLi cos δi)]

(1)

where M and Iγ represent the vehicle mass and the moment of inertia; (Lbi, lbi) denote
the location of each tire in the coordinate OvXvYvZv, with the center tied to the center of
gravity of the vehicle; and v̇x, v̇y, and γ̇ represent the vehicle’s longitudinal acceleration,
lateral acceleration, and yaw angle acceleration, respectively.

(a) (b)
Figure 1. 4WISD vehicle dynamics model [57]. (a) Vehicle body dynamics model. (b) Tire lateral
dynamics model (left) and tire longitudinal dynamics model (right).

The vehicle accelerations in the vehicle body coordinate system are calculated through
the forces exerted by the tires. In the design of a path tracking controller, the longitudinal
and lateral forces at each tire are determined by controlling the steering angles and wheel
torques, as presented in the tire dynamics model in Figure 1b.

In the tire coordinate system, we utilize the Magic Formula tire model to accurately
capture the complex nonlinear characteristics of forces under varying slip ratios and slip
angles. These nonlinear characteristics arise from the relationships between the longitudinal
and lateral tire forces and their slip ratios and slip angles, which are influenced by factors
such as tire deformation, rubber hysteresis effects, and variations in the contact patch.

The Magic Formula model employs a set of empirical equations to effectively describe
these nonlinear relationships, thereby enhancing the performance of the vehicle control
system and aiding in the optimization of the vehicle’s handling and stability. The Magic
Formula model allows for adjustments according to different tire types and operating
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conditions, providing strong adaptability. The Magic Formula is well suited for real-time
control systems in complex dynamic environments and can be expressed as [58]

y = Dsin(Carctan{Hx− E[Hx− arctan(Hx)]}) (2)

where y represents either the longitudinal force Fli or the lateral force FLi, and x represents
either the longitudinal slip ratio λi or the slip angle αi, respectively. The empirical equation
is based on the following curve-fitting coefficients: the peak factor D, the stiffness factor H,
the shape factor C, and the curvature factor E.

The longitudinal slip ratio λi is calculated as

λi =

{
(Rwωi − uwi)/(Rwωi) Rwωi ≥ uwi

(Rwωi − uwi)/uwi Rwωi < uwi
(3)

where Rw and ωi represent the dynamic tire radius and the angular velocity, and uwi repre-
sents the actual speed at the center of the ith tire. Note that Rwωi ≥ uwi and Rwωi < uwi
indicate the forward acceleration and braking of the tire, respectively. The tire speed uwi
can be calculated as

uw, fl = (vx − Lblγ)cos(δi) + (vy + lb f γ)sin(δi)

uw, fr = (vx + Lbrγ)cos(δi) + (vy + lb f γ)sin(δi)

uw, rl = (vx − Lblγ)cos(δi) + (vy − lbrγ)sin(δi)

uw, rr = (vx + Lbrγ)cos(δi) + (vy − lbrγ)sin(δi)

(4)

The longitudinal and lateral dynamics models of the tire can be written as{
Ti = (Fli − FNi fw)Rw + ωi Iw

δi = arctan((vy ±ωilbi)/(vx ±ωiLbi))− αi
(5)

where Ti denotes the drive torque, fw denotes the rolling friction coefficient, Iw denotes the
moment of inertia of each tire, and FNi denotes the tire’s vertical force.

Based on the above analysis, we have established a complex vehicle dynamics model
with seven degrees of freedom, which has a maximum of eight controllable inputs (i.e.,
four drive torques and four steering angles). By properly allocating the input parameters,
we aim to effectively control the vehicle state to yield high path tracking performance.

The control input matrix of the vehicle dynamics model is given by

U =
[
Tfl Tfr Trl Trr δfl δfr δrl δrr

]
(6)

where the matrix U represents the torque and steering angle of the front left, front right,
rear left, and rear right wheels, respectively. The vehicle state matrix is defined as X:

X =
[
vx vy γ

]
(7)

where vx, vy, and γ denote the vehicle’s longitudinal velocity, lateral velocity, and yaw
velocity. To facilitate the design of DRL-based auxiliary controllers, the dynamic equations
of the 4WISD vehicle can be rewritten into an affine nonlinear matrix form:{

Ẋ = Ân + Bu

u = CU
(8)

where U represents the control output matrix of the dual-layer controller;

Ân =
[
v̇nx v̇ny γ̇n

]
(9)
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denotes the acceleration disturbance matrix of the vehicle body; C indicates the mapping
matrix from the control quantities of the upper-layer controller to the control quantities of
the lower-layer controller; and B indicates the inversion of vehicle mass matrix.

Since the vehicle’s motion behavior is primarily determined by the interaction forces
between the tires and the road surface, as the vehicle is a multi-body system where each
tire may experience different external disturbances, it is critical to consider disturbances at
the individual tire level to accurately capture the vehicle’s dynamics. To realistically reflect
the impact of external disturbances, we introduce a control-end force disturbance matrix:

F̂n =
[
F̂l,fl F̂l,fr F̂l,rl F̂l,rr F̂L,fl F̂L,fr F̂L,rl F̂L,rr

]
(10)

which corresponds to the perturbed lateral and longitudinal forces acting on each tire.
Note that F̂l,i and F̂L,i represent the longitudinal disturbance force and the lateral distur-
bance force acting on each tire, respectively. The external disturbances in Equation (10)
can propagate through the tire dynamics model to the vehicle body dynamics model,
resulting in the acceleration disturbance matrix Ân. This method allows for a direct and
accurate representation of how external disturbances affect the vehicle’s dynamics and
supports the development of more robust controllers to enhance system resilience against
external uncertainties.

3.2. Transition Model for DRL

The state variable s of the 4WISD vehicle includes measurable states o and unmea-
surable disturbances d. We employ DRL as an auxiliary controller rather than for direct
end-to-end vehicle control, and assume that the disturbance d is known, thus utilizing the
Markov decision process p(ṡ|s = o, a) to facilitate the training of the DRL [47]. In terms
of the auxiliary controller in path tracking control of 4WISD vehicles, the optimization
problem can be formulated as follows:

a∗ = arg min
N

∑
i=1
∥X∗ − fH(Xi, fl([Xi, fa(si, ai) + fuc(ei, uci)], Ui))∥2

s.t. alb ≤ ai ≤ aub

ulb ≤ ui ≤ uub

Ulb ≤ Ui ≤ Uub

slb ≤ si ≤ sub

elb ≤ ei = ∥X∗ − fH(Xi, fl([Xi, fa(si, ai) + fuc(ei, uci)], Ui))∥2 ≤ eub

(11)

where fH denotes the dynamic function of the 4WISD vehicle; fa denotes the auxiliary
controller; fuc denotes the upper-layer controller; fl denotes the lower-layer controller;
X∗ =

[
vxref vyref γref

]
represents the reference path states of the longitudinal velocity,

lateral velocity, and yaw velocity obtained from the lateral displacement Y and yaw angle
ϕ through differential operation, respectively; and a represents the DRL action. Since the
DRL auxiliary controller is expected to achieve real-time control of the vehicle based on the
vehicle’s current state, we define the state of the DRL as

s =
[
vx vy γ e uc Ân

]
(12)

where e =
[
evx eY eϕ

]
denotes the errors in longitudinal velocity, lateral displacement,

and heading angle between the current and ideal vehicle states. The output action a of the
DRL auxiliary controller has the same form as the control variable U of the vehicle system:

a =
[
Fax Fay Maϕ

]
(13)
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The reward function is designed as

r =

{
−
(

KreeT + K f ȧȧT
)
∥e∥ < eub and slb ≤ si ≤ sub

−Kb otherwise
(14)

where Kr is the positive gain parameter for the path tracking error, K f is the positive gain
parameter for the stability of continuous control, eub denotes the threshold for tracking
error, Kb is the penalty term, and ȧ represents the rate of change of time in the auxiliary
control variable.

4. Compound Control Framework Based on Improved DRL

The twin-delayed deep deterministic policy gradient algorithm (TD3) employs two
independent Q-networks and adopts the smaller Q-value for policy updates, thereby
suppressing overestimation. Moreover, TD3’s deterministic policy gradient is suitable for
continuous action space problems [59]. This algorithm provides enhanced stability for path
tracking control of 4WISD vehicles. In what follows, the improved control framework is
integrated with TD3.

4.1. Compound Control Framework

To address the issue of lateral and longitudinal coupling in path tracking control of
4WISD vehicles, we employ a dual-layer control framework in the model-based controller,
which consists of an upper-layer controller based on nonlinear model predictive control
(NMPC) and a lower-layer controller based on sequential quadratic programming (SQP).

The current state error e of the vehicle is calculated using the reference path informa-
tion and the current vehicle state. In the upper-layer controller, the NMPC algorithm is
applied with the cost function defined as follows:

J(tk) = min

[
N

∑
n=1
∥e(tk+n|tk)∥2

Q(k)
+

N

∑
n=1
∥∆uc(tk+n|tk)∥2

R(k)
+ ρϵ2

]
s.t. Fx,lb ≤ Fx ≤ Fx,ub

Fy,lb ≤ Fy ≤ Fy,ub

Mϕ,lb ≤ Mϕ ≤ Mϕ,ub

(15)

where Q(k) and R(k) represent the state weighting matrix and the control increment weight-
ing matrix, ϵ denotes the relaxation factor to avoid the absence of feasible solutions,
e(tk+n|tk) represents the error state at time tk, and uc(tk+n|tk) represents the generalized
control quantities at the time tk+n. Note that the generalized control quantities uc are
determined to calculate the vehicle state at the future moment:

uc =
[
Fcx Fcy Mcϕ

]
(16)

where Fcx, Fcy, and Mcϕ represent the generalized longitudinal force, lateral force, and yaw
moment of the vehicle body, respectively.

Then, we allocate the generalized force uc from the upper-layer controller into the
lateral and longitudinal forces for each tire. A lower-layer controller based on SQP is used
to achieve the optimal distribution of the generalized force uc. The cost function in the SQP
algorithm is defined as
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f = min

w1

fl,fr,rl,rr

∑
i

F2
li + F2

Li
µ2F2

Ni
+ w2

(
max

(
F2

li + F2
Li

µ2F2
Ni

)
−min

(
F2

li + F2
Li

µ2F2
Ni

))2


s.t. Fl,lb ≤ Fli ≤ Fl,ub, FL,lb ≤ FLi ≤ FL,ub

0 ≤
F2

li + F2
Li

µ2F2
Ni
≤ 1

Fx =
fl,fr,rl,rr

∑
i

(Fli cos δi − FLi sin δi)

Fy =
fl,fr,rl,rr

∑
i

(Fli sin δi + FLi cos δi)

Mϕ =
fl, fr, rl, rr

∑
i

[Lbi(Fli cos δi − FLi sin δi) + lbi(Fli sin δi + FLi cos δi)]

(17)

where w1 and w2 represent the weighting coefficients for tire balancing. Using the tire
dynamics model, the lateral and longitudinal forces on each tire can be transformed into the
drive torques and steering angles, resulting in the control variable U at the next moment.
Then, the control variable is transmitted to the vehicle body dynamics model to achieve
closed-loop path tracking control of 4WISD vehicles.

Even though the aforementioned dual-layer controller can be used to decouple the
longitudinal and lateral motion, the control capability for a 4WISD vehicle subjected to
external disturbances is still limited. The DRL-based controller, which is a data-driven
algorithm, possesses super adaptability for the improvement of control performance. As
depicted in Figure 2, a compound control framework is proposed, which mainly consists
of a model-based dual-layer control loop and a model-free DRL-based auxiliary control
loop. The current vehicle state is input into the upper-layer controller to obtain the required
generalized forces for the next time step. Simultaneously, a well-trained DRL policy
network produces an extra control term a based on the vehicle state information s for
compensation. As such, a new upper layer control variable u is obtained as

u = uc + a =
[
Fcx + Fax Fcy + Fay Mcϕ + Maϕ

]
(18)

By integrating the DRL-based auxiliary controller with the upper-layer controller, the
lower-layer controller transforms the generalized force vector u into an end control variable
U. The control stability proof of the proposed compound control framework is given in
Appendix A.

4.2. Group Intelligent Experience Replay

The experience replay mechanism in DRL stores transition samples obtained from the
agent’s interactions with the environment in a replay buffer and randomly extracts small
batches of samples to update the parameters of the value network or policy network. This
process can break the temporal correlation between samples to facilitate the convergence of
the agent.

To improve the stability and convergence of the DRL training process and avoid
becoming trapped into local optima, the principles of group intelligence optimization are
incorporated into the experience replay mechanism. Data in the experience buffer are
regarded as an intelligent group [60], and the samples in the experience buffer are divided
into three distinct functional groups based on the TD error and advantage function value.
Non-dominated sorting and training progress are then introduced for within-group and
between-group collaboration to optimize data replay and storage [61]. The discover group
provides a better direction for the convergence of the DRL training process by prioritizing
the learning of novel state-action pairs. The joiner group focuses on replaying a higher
proportion of excellent samples around the discover group, reinforcing and optimizing
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known high-value policies. The risker group filters out low-quality samples to avoid
learning from high-risk samples that may cause overfitting.

Figure 2. Schematic of the proposed compound control framework.

During the training process, a new transition sample (st, at, rt, st+1) is obtained from
the interaction between the agent and the environment, from which the TD error τi and
advantage function value Ai are calculated as

τi = ri + γQϕ′(si+1, µθ′(si+1))−Qϕ(si, ai) (19)

Ai = Qϕ(si, ai)−Vϕ(si) (20)

where Qϕ and µθ′ represent the target critic network and actor network, respectively, and
Vϕ represents the state value function. Subsequently, the initial priority Pi of the ith sample
is calculated as

Pi = |τi|+ λ|Ai| (21)

The sample (st, at, rt, st+1) and the associated parameters Pi, τi, and Ai are stored
in the experience replay buffer Ω. When the replay criteria are met, the samples in the
experience replay buffer are divided into three groups based on priority Pi. As shown
in Figure 3, the sample ratio coefficients for each group are denoted as Sα0, Sβ0, and Sγ0,
respectively, and they must satisfy the following conditions for Sα0, Sβ0, Sγ0 ∈ [0, 1], and
Sα0 + Sβ0 + Sγ0 = 1:

(1) Group Ddiscover: Samples with priorities in the top Sα0 percentile.
(2) Group Djoiner: Samples with priorities in the top Sα0 + Sβ0 percentile but not in the

top Sα0 percentile.
(3) Group Drisker: Samples with priorities in the bottom Sγ0 percentile.
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Figure 3. Schematic of the proposed group intelligent experience replay.

To effectively and accurately assess the sample quality without excessive time con-
sumption, we select the top two mini-batch samples from each group Dk based on priority
Pi. These samples are used for non-dominated sorting to obtain the Pareto frontier Fk for
each group, which enables within-group collaboration:

Fk =
{

si ∈ Dk | ∀sj ∈ Dk, τj < τi and Aj < Ai
}

(22)

where k = discover, joiner, or risker.
After that, we use the Pareto frontier Fk to ensure that the following updated priorities

are ranked higher than those from other samples:

P̄i = Pi + minPk, i ∈ Fk (23)

The sampling proportions for the three groups are dynamically adjusted for between-
group collaboration according to the current training step t and the total number of training
steps T. To prevent probability overflow, the priorities in each group are normalized as

Nα = exp
(
avgdiscover

)/
∑

i
exp(avgi)

Nβ = exp
(

avgjoiner

)/
∑

i
exp(avgi)

Nγ = exp
(
avgrisker

)/
∑

i
exp(avgi)

(24)

where avgi represents the average priority of samples within group i ∈ (discover, joiner, risker),
and Nα, Nβ, and Nγ represent the normalization factors. Then, the updated priorities are
defined as 

Sαt = Sα0(1− t/T)Nα

Sβt = (Sβ0(1− t/T) + Sα0(t/T))Nβ

Sγt = (1− Sα0 − Sβ0)Nγ0

(25)

where Sαt, Sβt, and Sγt denote the updated sampling proportions for three groups, respec-
tively. Samples are drawn from Ddiscover, Djoiner, and Drisker according to the values of Sαt,
Sβt, and Sγt to obtain replay samples. In the initial stage of training, Sβt is large, which
allows for the exploration of new and valuable state-action pairs. As training progresses,
Sβt gradually decreases while Sαt increases, which progressively transfers valuable samples
discovered during exploration to Djoiner for sufficient utilization. However, Sγt remains



Technologies 2024, 12, 218 12 of 28

small to ensure that a low proportion of low-priority samples participates in training, which
enhances the model’s generalization capability.

To correct for biases introduced by priority sampling, it is necessary to apply im-
portance sampling correction to the loss function during training. For each sample
(si, ai, ri, si+1) in a mini-batch sample, the importance weight oi is computed as follows:

oi = (Pi/D)−ζ (26)

where D represents the sum of priorities of all samples, and ζ controls the intensity of
the correction. Applying the importance weight oi to the loss function yields a weighted
loss function:

Lw =
1
E

E

∑
i

oiLi (27)

where Li represents the mean squared error loss function for the ith sample, and E represents
the number of the mini-batch sample.

At the end of each training step, it is essential to update the sample priorities and
substitute these updated priorities into the experience replay buffer. The proposed group in-
telligence experience replay mechanism adjusts sample priorities, balances exploration and
exploitation, and enhances sample utilization efficiency. The proposed method provides
greater sample utilization efficiency compared to traditional random experience replay.
By employing intelligent sample classification and priority adjustment, GER adaptively
prioritizes the most valuable samples for policy improvement, significantly enhancing the
performance of reinforcement learning models in complex environments. This allows GER
to better accelerate convergence and improve system robustness, particularly when dealing
with sparse rewards or high-dimensional environments.

4.3. Actor-Critic Architecture Based on TIB

The integration of information bottleneck (IB) techniques into reinforcement learning
establishes a self-supervised learning and an adaptive compression mechanism. By maxi-
mizing the mutual information achieved by arbitrary policies within short time windows,
this approach generates a dense and immediate learning signal and addresses the sparse
reward problem inherent in traditional reinforcement learning. The derivation of a lower
bound on mutual information facilitates the adaptive adjustment of Lagrange multipliers,
enabling maximal information compression while retaining sufficient task-relevant informa-
tion. This methodology can provide an informative learning signal, and ultimately generate
a compact and effective objective representation. Consequently, it significantly enhances
the generalization capability and learning efficiency of goal-conditioned reinforcement
learning [49]. This work provides theoretical guidance for integrating information theory
into deep reinforcement learning.

In the standard actor-critic architecture, the critic network estimates the state-action
value function, while the actor network generates policies. Building upon this framework,
we employ the two-stream information bottleneck (TIB) [62] to enhance the algorithm’s
generalization capability and policy quality, as shown in Figure 4. In the critic network, we
integrate an IB module prior to Q-value estimation, which extracts a D dimensional com-
pact representation zt from high-dimensional features hc

t . The representation zt minimizes
mutual information with high-dimensional features while preserving essential information
for Q-value estimation. For the actor network, we integrate a reverse information bottleneck
(RIB) module before the policy generation module, which extracts a K-dimensional expres-
sive representation ut from high-dimensional features ha

t . The representation ut maximizes
mutual information with actions and retains discriminative state-action correlations. The
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extracted latent representations zt and ut are subsequently utilized in the critic and actor
networks, respectively, to formulate the state-action value function and policy as follows:

Qϕ(st, at) = f (lc)ϕ (zt(hc
t (st, at))) (28)

πθ(st) = g(la)θ (ut(ha
t (st))) (29)

where lc and la represent the number of network layers after the IB module and RIB module,
respectively. The IB modules and RIB modules are simultaneously optimized in a single
training session.

Figure 4. Diagram of the proposed actor-critic architecture based on TIB.

In the critic network, we introduce an IB module to enhance the network’s generaliza-
tion and sample efficiency. By compressing redundant information from high-dimensional
features and preserving essential information for Q-value estimation, the IB module enables
the network to learn state-action value functions more effectively. We aim to reduce the
complexity of high-dimensional inputs, extract the most relevant features, and improve
the accuracy of Q-value estimates to enhance the model’s adaptability across complex
environments. Based on these design objectives, we formulate the training loss function for
the critic network as

L(ϕ) = E(st ,at)∼E

[
(Q(st, at)− yt)

2
]
+ ξKL(p(zt|st, at), r(zt)) (30)

where ϕ represents the parameters of the critic network, yt is the target value for the
TD, ξ is the balancing coefficients, p(zt|st, at) is the conditional distribution defined
by the IB module, and r(zt) is the prior distribution of zt. Note that the expectation
E(st ,at)∼E

[
(Q(st, at)− yt)2] measures the TD error, ensuring accurate Q-value estimation,

and the expectation KL(p(zt|st, at), r(zt)) implements the IB by minimizing the Kullback–
Leibler (KL) divergence between the conditional distribution of zt and prior distribution
of r(zt), and constraining the information flow from high-dimensional features to achieve
feature compression and selection. After applying the aforementioned design, the critic net-
work maintains accurate Q-value estimation while improving its generalization capability
in complex and dynamic environments.

In the actor network, we introduce an RIB module to enhance the quality and expres-
siveness of the policy. Using the RIB module, we aim to maximize the mutual information
between state representations and actions, preserve critical information necessary for policy
generation, enhance the discriminative power of state representations to better differentiate
the value of various actions, and improve the policy’s exploratory capabilities to generate
more diverse and effective actions. Based on these design objectives, we formulate the
training loss function for the actor network as

J(θ) = Est∼E
[
ιtQ(st, at)

]
+ κKL(p(ut|st), r(ut)) (31)

where θ refers to the parameters of the actor network, ι ∈ (0, 1] is the discount factor, κ is the
balancing coefficients, p(ut|st) is the conditional distribution defined by the RIB module,
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and r(ut) is the prior distribution. In Equation (31), the expectation Est∼E
[
ιtQ(st, at)

]
is

the standard policy gradient term, aiming to maximize the expected cumulative reward
to ensure the generated policy yields high returns. The expectation KL(p(ut|st), r(ut))
implements the RIB by maximizing the KL divergence between the conditional distri-
bution of ut and prior distribution of r(ut), thereby increasing the mutual information
between the state representation ut and actions, preserving more policy-relevant informa-
tion. Through this design, the actor network is capable of generating more precise and
effective policies while maintaining sufficient exploratory capabilities to adapt to complex
decision-making environments.

For the IB module in the critic network, the KL divergence can be formulated as

KL(p(zt|st, at), r(zt)) = Ezt [log(p(zt|st, at))− log(r(zt))] (32)

where p(zt|st, at) represents the posterior distribution of zt conditioned on the given st
and at.

For the RIB module in the actor network, the KL divergence can be formulated as

KL(p(ut|st), r(ut)) = Eut [log(p(ut|st))− log(r(ut))] (33)

where p(ut|st) represents the posterior distribution of st conditioned on the given ut, and
r(ut) denotes the prior distribution of ut. The standard normal distributions for r(zt) and
r(ut) are used to simplify computation and ensure model stability.

We update the network parameters based on the loss function defined above, the
general rules for updating the critic and actor networks are presented as follows:

∇ϕL(ϕ) = E(st ,at)∼E
[
(Q(st, at)− yt)∇ϕQ(st, at)

]
+ ξ∇ϕKL(p(zt|st, at), r(zt)) (34)

∇θ J(θ) = Est∼E[∇aQ(st, at)∇θπθ(s)] + κ∇θKL(p(ut|st), r(ut)) (35)

The IB module in the critic network and RIB module in the actor network are

∇ψKL(p(zt|st, at), r(zt)) = ∇ψEzt [log(p(zt|st, at))− log(r(zt))] (36)

∇ωKL(p(ut|st), r(ut)) = ∇ωEut [log(p(ut|st))− log(r(ut))] (37)

where∇ϕ, ∇θ , ∇ψ, and ∇ω represent the gradients with respect to the critic network, actor
network, IB module, and RIB module, respectively.

To enhance the robustness and efficiency of our improved actor-critic architecture, we
integrate the TD3 algorithm to mitigate overestimation bias, improve stability, and enhance
exploration in complex reinforcement learning environments. We employ dual critic
networks Qϕ1 and Qϕ2 with parameters ϕ1 and ϕ2, respectively, to combat overestimation
bias. The loss functions for these networks are defined in Equation (30), the target Q-value
can be formulated as

yt = rt + min(Q′ϕ1
(st+1, at+1), Q′ϕ2

(st+1, at+1)) (38)

where Q′ϕ1
and Q′ϕ2

represent target networks, and at+1 is generated by the target policy
network with added noise:

at+1 = π′θ(st+1) + Nt (39)

where π′θ denotes the target actor network and Nt is clipped Gaussian noise.
We implement delayed policy updates to optimize the actor network every ddelay

iterations for stabilization. The objective function for the actor network is Equation (31).
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To ensure stability, we employ soft updates for target network parameters:

ϕ′j ← σϕj + (1− σ)ϕ′j, j = 1, 2 (40)

ψ′j ← σψj + (1− σ)ψ′j, j = 1, 2 (41)

θ′ ← σθ + (1− σ)θ′ (42)

ω′ ← σω + (1− σ)ω′ (43)

where σ is the soft update coefficient.
The proposed method can outperform other self-supervised and contrastive learning

methods in enhancing generalization capability; while traditional methods aim to improve
generalization by increasing sample diversity. They often introduce redundant information,
leading to greater model complexity. In contrast, TIB can simplify feature representations
by retaining only task-relevant information, which simultaneously improves generalization
performance and reduces generalization errors. This enables the model to perform more
stably and robustly in complex, dynamic environments. Finally, the complete framework of
the improved GT-TD3 will interact with the path tracking self-disturbance rejection control
of the 4WISD vehicle. The diagram and the pseudocode are presented in Figure 5 and
Algorithm 1, respectively.

Figure 5. Diagram of the proposed path tracking control framework for 4WISD vehicles based on
improved DRL.

The framework mainly consists of three components: the 4WISD vehicle path tracking
control environment, the actor-critic network, and the experience replay buffer. The 4WISD
vehicle path tracking control environment is composed of a dual-layer controller and a
dynamics model of the 4WISD vehicle, which is designed to interact with the DRL to
generate training data. The DRL actor consists of an on-line actor neural network and a
target actor neural network, designed to generate appropriate actions for the 4WISD vehicle.
The DRL critic includes two online critic neural networks and two target critic networks
based on TIB, aiming to guide the actor network updates. The extended experience replay
buffer, designed based on GER, is intended to store historical data for training the critic
and actor.
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Algorithm 1 Proposed GT-TD3

1: Initialize critic networks Qϕ1 , Qϕ2 and actor network πθ with random parameters
ϕ1, ϕ2, θ;

2: Initialize target networks Q
′
ϕ1

, Q
′
ϕ2

, π
′
θ with parameters ϕ

′
1 ← ϕ1, ϕ

′
2 ← ϕ2, θ

′ ← θ;
3: Initialize experience replay buffer Ω and sampling proportion coefficients for three

groups Sα0 , Sβ0 , Sγ0;
4: for episode = 1 to M do
5: Initialize a random process RN for action exploration;
6: Receive initial observation state s1;
7: for t = 1 to E do
8: Select action at = πθ(st) + Nt according to the current policy and exploration

noise;
9: Execute action at in the environment;

10: Observe reward rt, new state st+1;
11: Calculate TD error τt , advantage function At , priority Pt of sample;
12: Store transition sample (st, at, rt, st+1, Pt, τt, At) in experience replay buffer;
13: Divide the samples in the experience replay buffer into three groups based on

priority Pt;
14: Non-dominated sorting within groups based on τt and At:

Fk =
{

si ∈ Sk | ∀sj ∈ Sk, τj < τi and Aj < Ai
}

15: Update sampling proportion coefficients for three groups Sαt , Sβt , Sγt:
Sαt = Sα0(1− t/T)Nα

Sβt = (Sβ0(1− t/T) + Sα0(t/T))Nβ

Sγt = (1− Sα0 − Sβ0)Nγ

16: Update critic network by policy gradient:

L(ϕ) = E(st ,at)∼E

[
(Q(st, at)− yt)

2
]
+ ξKL(p(zt|st, at), r(zt))

17: if t mod ddelay == 0 then
18: Update actor network by maximizing the loss:

∇θ J(θ) = Est∼E[∇aQ(st, at)∇θπθ(s)] + κ∇θKL(p(ut|st), r(ut))

19: Update target networks:

ϕ′j ← σϕj + (1− σ)ϕ′j, j = 1, 2

ψ′j ← σψj + (1− σ)ψ′j, j = 1, 2

θ′ ← σθ + (1− σ)θ′

ω′ ← σω + (1− σ)ω′

20: end if
21: end for
22: end for

5. Numerical Simulations

To validate the effectiveness of the proposed enhanced DRL algorithm and the DRL-
based path tracking controller for 4WISD vehicles, we conducted extensive simulation
experiments. These experiments were performed on a hardware platform equipped with
an Intel Core i9-13900K processor and an NVIDIA GeForce RTX 4080 graphics card.



Technologies 2024, 12, 218 17 of 28

5.1. Convergence and Generalization Analyses

The simulation parameters for different DRL algorithms are presented in Table 1. The
discount factor determines the extent of the future rewards relative to the immediate future.
The soft update coefficient governs the convergence rate of the target network toward the
current network. The exploration noise reflects the changes in exploratory behaviors, which
is determined by the clipping noise. The policy network refresh frequency determines the
update rate of the associated parameters. To make the proposed algorithms comparable,
the hyperparameters are consistently set for all compared algorithms.

Table 1. Simulation parameters used in different DRL algorithms.

DRL Algorithm AER-TD3 PER-TD3 GER-TD3

Hidden layer dimension 256 256 256
Batch size 256 256 256

Discount factor 0.99 0.99 0.99
Soft update coefficient 0.05 0.05 0.05

Policy noise 0.2 0.2 0.2
Noise clipping range 256 256 256

Policy update frequency 2 2 2
Priority exponent × 0.6 0.6

Group proportion coefficients × × 0.2, 0.7, 0.1
Learning rate 1 × 10−4 1 × 10−4 1 × 10−4

We establish a high-speed path tracking task for a 4WISD vehicle in the double-shift
line condition. Random parameters are used to simulate the various conditions of vehicle
velocities, curvatures, and external disturbances, such that the DRL training environment
encompasses a wide range of path tracking scenarios, as specified in Table 2. And the
simulation parameters for a C-class vehicle are listed in Table 3.

Table 2. Simulation parameters used in the DRL training environment.

DRL Training Environment Parameters Unit

Shift line longitudinal position [40,180] m
Shift line transition length [25,75] m

Longitudinal velocity [15,20] m/s
Longitudinal velocity variation range [0,20] m/s

Smooth disturbance amplitude [−100,100] N
Sudden disturbance amplitude [−100,100] N
Smooth disturbance duration [5,10] s

Table 3. System parameters of the vehicle.

Vehicle Parameter Parameters Unit

Vehicle mass 1477 kg
Vehicle yaw inertia 1536.7 kg ·m2

Track width 1.675 m
Distance from CG to front axle 1.015 m
Distance from CG to rear axle 1.895 m

Wheel radius 0.325 m
Wheel mass 22 kg

Wheel moment of inertia 0.8 kg ·m2

In the established training environment, experiments on each path tracking control
task are repeated 10 times to demonstrate the efficacy of the DRL algorithms. During
training, the agent is evaluated every 10,000 time steps, with one evaluation report sent
every 100 evaluations. In the following figures, the solid lines represent the average results
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over 10 trials, while the shaded regions indicate the variance of predictions around that
mean across 10 experiments.

To show the effect of the methods proposed in Sections 4.2 and 4.3 on DRL perfor-
mance, we conducted two convergence experiments. In the first experiment, reward curves
obtained from three different experience replay mechanisms are compared in Figure 6, i.e.,
average experience replay (AER), prioritized experience replay (PER), and the proposed
group intelligent experience replay (GER), with the remaining parameters unchanged. The
reward curve of AER tends to converge in the early stages of iterations, but remains with a
small reward value at the final stage, showing an inefficiency of convergence. Due to the
unevenly distributed samples in the training environment, the low probability of occur-
rence leads to sample sparsity. These factors make it difficult for AER to effectively replay
high-quality samples. The PER can prioritize samples based on the TD error, assigning
higher sampling probabilities, which allows for the utilization of information-rich samples
to yield more frequent updates for the network, thereby mitigating the impact of uneven
and sparse distribution of samples. However, the PER-TD3 algorithm is trapped in local
optima in the later training stages, resulting in almost constant reward curve variation. In
comparison with simulation results from AER and PER, the reward curve from GER con-
verges more stably, due to higher sample utilization efficiency and better balance between
exploration and exploitation. The comparison results from the different DRL algorithms
are presented in Table 4. The proposed GER improves convergence performance by 59%
compared to AER and by 25% compared to PER.

Figure 6. Comparisons of the average return obtained from AER-TD3, PER-TD3, and the proposed
GER-TD3.

In the second experiment, we maintained a fixed experience replay buffer across deep
deterministic policy gradient (DDPG), TD3, and the proposed TIB-TD3 to evaluate con-
vergence. As shown in Figure 7, the TD3 demonstrates stronger convergence capabilities
compared to DDPG, due to the application of double Q-networks, delayed policy updates,
and target policy smoothing, which improve learning stability and performance in continu-
ous control. The reward curve of proposed TIB-TD3 shows minimal decline in the early
stages of training. So the TIB-TD3 converges more quickly and maintains a stable trend in
the reward curve in the subsequent training process. This improvement can be attributed
to the removal of irrelevant information with IB, enabling the agent to learn higher-quality
information. Additionally, the agent enhances the quality and expressiveness of its policy
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through the persistent application of the RIB, which is capable of preventing overfitting
and reducing the influence of lacking unknown information.

Figure 7. Comparisons of the average return obtained from DDPG, TD3, and the proposed TIB-TD3.

Table 4. Maximum average return obtained from different TD3-based DRL algorithms.

DRL Algorithm AER-TD3 [63] PER-TD3 [41] GER-TD3

Maximum average return −933.3041 −509.6428 −378.1214

The additive external disturbances, which consist of persistent and abrupt distur-
bances acting on each tire along the lateral and longitudinal directions, were varied from
−100 N to 100 N to evaluate the generalization efficiency of different DRL algorithms.
The percentage improvement represents the performance improvement of the DRL-based
compound controller compared to the dual-layer controller in the path tracking control. As
illustrated in Figure 8, the proposed TIB-TD3 exhibits enhanced optimization performance
compared with DDPG and TD3, with the results presented in Table 5. The experimen-
tal results demonstrate that TIB improves the generalization efficiency and convergence
performance of the original TD3 algorithm by 60% and 26%, respectively, by filtering
irrelevant information and preserving critical information necessary for action generation.
This improvement facilitates the application of DRL models for the path tracking control of
a 4WISD vehicle with high uncertain disturbances and unmodeled dynamics.

Table 5. Summary of the simulation results obtained from different DRL algorithms.

DRL Algorithm DDPG [64] TD3 [59] TIB-TD3

Maximum average
return −1136.5222 −509.6428 −202.4948

Mean optimization 34.3016 49.3389 66.4575
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Figure 8. Comparisons of the generalization efficiency obtained from DDPG, TD3, and the proposed
GER-TD3.

5.2. Performance Analysis of an Improved DRL-Based Path Tracking Controller for
4WISD Vehicles

To validate the performance of the proposed GT-TD3-based compound control frame-
work (GTC) for path tracking control of 4WISD vehicles subjected to complex external
disturbances, we compared it with the NMPC-SQP dual-layer controller (MLC) [16] and
the TD3-based [59] compound control framework (TDC). In both the GTC and TDC, the
DRL auxiliary controller is established in the training environment using the parameters
specified in Section 5.1. The trained model is combined with the MLC method described in
Section 3.2 to form the compound control framework.

The control performance of the aforementioned control methods is compared using the
mean absolute error (MAE) and the maximum error metric (MAX), where MAE represents
the average deviation from the desired path in this experiment, and MAX indicates the
highest deviation observed at any point in the experiment, as shown in Figure 9. MAE
reflects the overall steady-state control performance of the system, while the MAX indicates
the transient performance. We can observe that the dual-layer controller has limited path
tracking control capabilities for 4WISD vehicles subjected to complex external disturbances.
The TDC can improve the path tracking performance due to the application of the TD3-
based model-free auxiliary controller. The proposed GTC can adapt to abrupt changes in
complex nonlinear vehicle dynamics with external disturbances, which improve the path
tracking performance further. The proposed GTC reduces MAE error and MAX error by
68% and 63%, respectively, compared to MLC. The proposed GTC reduces MAE error and
MAX error by 28% and 9%, respectively, compared to TDC.

To demonstrate the control performance of the three control methods, four groups
of parameters for the double-shifted path and longitudinal velocity were established to
simulate the vehicle’s driving environment under high-speed and large-curvature condi-
tions. Figure 10 presents a comparison of the actual lateral displacement, yaw angle, and
longitudinal velocity of the controlled vehicle using the three control methods. Correspond-
ingly, the control errors with respect to the ideal states for the three control methods are
presented in Figure 11. From Figures 10 and 11, we can observe that when the tracking path
is relatively stable, each control method can track the vehicle motion with high accuracy.
However, when the tracking target undergoes significant changes, the dual-layer controller
faces difficulties in mitigating external disturbances, resulting in substantial deviations
in the vehicle state. In comparison, the TD3-based compound control framework can
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further address the impact of external disturbances on path tracking control. The proposed
GT-TD3 exhibits the highest capabilities of controlling the external disturbances and the
complex tracking targets, keeping the tracking errors within a sufficiently low range. This
is because the proposed auxiliary controller based on GT-TD3 is capable of conducting
dynamic compensation for the control variables from the upper-layer controller, as shown
in Figure 12. Through allocating the compensated upper-layer control variables to the tire
dynamics model, we finally obtain eight end-effector control variables, that is, the steering
angle and torque of each tire, as shown in Figure 13.

Figure 9. Comparisons of the MAE error and the MAX error using the MLC, TDC, and GTC.

Figure 10. Comparisons of the path tracking performance from the MLC, TDC, and GTC.
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Figure 11. Comparisons of the path tracking errors from the MLC, TDC, and GTC.

Figure 12. Function values of the auxiliary control variables obtained from GT-TD3.

Figure 13. Function values of the 4WISD vehicle end-effector control variables.

The computation time of each controller is also an important factor for evaluating
control performance. Figure 14 presents the computation time of the dual-layer controller,
the compound control framework based on TD3, and the proposed compound control
framework based on GT-TD3. The proposed GT-TD3 makes an improvement upon the
original TD3 within the network architecture, rather than adding an independent structure.
Therefore, this modification does not significantly increase the computation time of the
controller. The experimental results demonstrate that the proposed compound control
framework based on GT-TD3 achieves better control performance compared to conventional
control methods, with little sacrifice of computation time.
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Figure 14. Comparisons of the computation time from the MLC, TDC, and GTC.

6. Conclusions

In this study, we investigate the path tracking control problem of 4WISD vehicles
under complex external disturbances, which are characterized by high-dimensional nonlin-
earity, complex coupling, and high uncertainty. A path tracking control method based on
deep reinforcement learning (DRL) is proposed. Firstly, a compound control framework
consisting of an NMPC-SQP dual-layer controller and a DRL-based auxiliary controller is
introduced to ensure stable and efficient path tracking control performance under complex
external disturbances. A novel group intelligence collaborative experience replay (GER)
mechanism is proposed to improve the sample efficiency and convergence of the DRL.
Furthermore, an actor-critic architecture based on a two-stream information bottleneck
(TIB) is presented to enhance DRL’s ability in extracting high-dimensional nonlinear fea-
tures and improving its generalization capability. Numerical simulations with extensive
parameter settings are performed to validate the effectiveness of the proposed method.
The experimental results demonstrate that the proposed GER improves convergence per-
formance by 59% compared to AER and by 25% compared to PER. The proposed TIB can
enhance the generalization efficiency and convergence performance of the original TD3
algorithm by 60% and 26%, respectively. Based on the proposed DRL algorithm, a well-
trained DRL-based controller can essentially reduce the tracking error by 63%. Application
of the proposed DRL can effectively address the issue of path tracking control of 4WISD
vehicles under complex external disturbances. The proposed DRL-based compound control
framework can significantly improve the stability and accuracy in path tracking control of
4WISD vehicles.

The compound control framework can be implemented in real-world environments
to validate its robustness against uncertain disturbances and varying road conditions.
Improvements can be made by incorporating advanced neural network designs or com-
pound reinforcement learning strategies to reduce the complexity of the control framework
and further improve its performance in complex 4WISD systems. Additionally, the scal-
ability of the framework across different vehicle types and configurations can be further
explored. Developing adaptive strategies that automatically adjust parameters in response
to environmental changes is also recommended.
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Appendix A. Stability Analysis of the Compound Control Framework

This section presents mathematical derivations and proofs to analyze the stability of the
proposed composite control framework. The asymptotic stability conditions of the closed-
loop system are derived, and the convergence of the states is estimated. These findings
provide theoretical guidance for the design and parameter tuning of actual control systems.

The proposed compound control framework differs from the original dual-layer con-
troller in two key aspects: the integration of a DRL auxiliary controller and the incorporation
of external disturbances. Both modifications primarily impact the upper-layer controller,
which is responsible for path tracking accuracy. Due to the last three force constraints in
Equation (17), the impact of the lower-layer controller on the stability of the improved
compound control framework is considered negligible. According to Equation (8), the
proposed state-space equations for path following control can be transformed into

Ė = Ẋ∗ − Ẋ = Ẋ∗ − [Ân + B( fa(s, a) + fuc(e, uc))] (A1)

where E ∈ Rn×1 represents the error state vector between the reference state and the
system state, X∗ ∈ Rn×1 is the reference state vector, X ∈ Rn×1 is the system state vector,
Ân ∈ Rn×1 is the bounded external disturbance vector, B ∈ Rn×n is the inversion of
vehicle mass matrix, fa(s, a) ∈ Rn×1 is the output of the DRL auxiliary controller, and
fuc(e, uc) ∈ Rn×1 is the output of the upper-layer controller, respectively.

For the convenience of stability analysis, we make the following assumptions:

Assumption A1. There exist positive constants γ1, γ2, and γ such that the reference state Ẋ∗ and
the disturbance vector Ân satisfy

∥Ẋ∗∥ ≤ γ1, ∥Ân∥ ≤ γ2, γ1 + γ2 = γ (A2)

Assumption A2. There exists a positive constant L such that the output of the DRL auxiliary
controller fa(s, a) satisfy

∥ fa(s, a)∥ ≤ L∥Ân∥, ∀Ân ∈ Rn×1 (A3)

Assumption A3. There exists a positive constant Q such that the output of the upper-layer
controller fuc(e, uc) satisfy

∥ fuc(e, uc)∥ ≤ Q∥E∥, ∀E ∈ Rn×1 (A4)

These conditions for boundedness are typically met in practical systems and can
be computed by estimating the disturbances, constraining the output of the DRL policy
network, and imposing constraints on the NMPC solution.

Theorem A1. Suppose Assumptions A1–A3 hold, then the closed-loop system described by Equa-
tion (A1) is globally asymptotically stable.

Proof. We choose the following form for the Lyapunov function:

V(E) =
1
2

ETE (A5)
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The Lyapunov function V(E) satisfies the following conditions:

V(0) = 0, V(E) > 0 for E ̸= 0, lim
∥E∥→∞

V(E) = ∞ (A6)

Taking the derivative of the Lyapunov function V(E) with respect to time, we obtain

V̇(E) =
1
2

ETĖ +
1
2

ĖTE

= ETĖ

= ET[Ẋ∗ − [Ân + B( fa(s, a) + fuc(e, uc))]
]

= ET(Ẋ∗ − Ân)− ETB( fa(s, a) + fuc(e, uc))

(A7)

From Assumption A1, we have

ET(Ẋ∗ − Ân) ≤ ∥E∥(∥Ẋ∗∥+ ∥Ân∥) ≤ γ∥E∥ (A8)

From Assumptions A2 and A3, we have

∥ fa(s, a) + fuc(e, uc)∥ ≤ ∥ fa(s, a)∥+ ∥ fuc(e, uc)∥ ≤ Lγ2 + Q∥E∥ (A9)

Since B is a diagonal matrix that corresponds to the inverse of vehicle’s mass and
inertia parameters, it follows that B is positive definite. Let the minimum eigenvalue of B
be λmin(B) > 0, then

−ETB( fa(s, a) + fuc(e, uc)) ≤ −λmin(B)∥E∥(Lγ2 + Q∥E∥) (A10)

Substituting Equations (A8) and (A10) into Equation (A7) leads to

V̇(E) = ET(Ẋ∗ − Ân)− ETB( fa(s, a) + fuc(e, uc))

≤ γ∥E∥ − λmin(B)∥E∥(Lγ2 + Q∥E∥)
≤ [γ− λmin(B)Lγ2]∥E∥ − λmin(B)Q∥E∥2

≤ −α1∥E∥ − α2∥E∥2

(A11)

where α1 = −[γ− λmin(B)Lγ2], α2 = λmin(B)Q > 0. According to Assumptions A1 and A2,
there exists a constant L > γ/[λmin(B)γ2], such that α1 > 0.

According to Lyapunov stability theory, if there exists a continuously differentiable
scalar function V(E) satisfying the condition in Equation (A6), and V̇(E) is negative definite,
that is, there exists positive constants α1 and α2 such that V̇(E) ≤ −α∥E∥2 for all E ̸= 0,
then the equilibrium point of the system is globally asymptotically stable.
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