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Abstract: Greenhouses have taken on a fundamental role in agriculture. The Internet of Things
(IoT) is a key concept used in greenhouse-based precision agriculture (PA) to enhance vegetable
quality and quantity while improving resource efficiency. Integrating wireless sensor networks
(WSNs) into greenhouses to monitor environmental parameters represents a critical first step in
developing a complete IoT solution. For further optimization of the results, including actuator nodes
to control the microclimate is necessary. The greenhouse must also be remotely monitored and
controlled via an internet-based platform. This paper proposes an IoT-based architecture as a decision
support system for farmers. A web platform has been developed to acquire data from custom-
developed wireless sensor nodes and send commands to custom-developed wireless actuator nodes
in a greenhouse environment. The wireless sensor and actuator nodes (WSANs) utilize LoRaWAN,
one of the most prominent Low-Power Wide-Area Network (LPWAN) technologies, known for its
long data transmission range. A real-time end-to-end deployment of a remotely managed WSAN
was conducted. The power consumption of the wireless sensor nodes and the recharge efficiency of
installed solar panels were analyzed under worst-case scenarios with continuously active nodes and
minimal intervals between data transmissions. Datasets were acquired from multiple sensor nodes
over a month, demonstrating the system’s functionality and feasibility.

Keywords: IoT; wireless sensor networks; wireless actuator nodes; LoRaWAN; precision agriculture;
greenhouse; automation

1. Introduction

Agriculture has been one of the primary domains targeted by sensing technology since
its inception. The reliable and continuous observation of environmental and plant-related
data is essential to producing results that can positively impact crop quality. The IoT,
big data, cloud computing, and advanced analytics, as key elements of the Industry 4.0
paradigm (with Agriculture 4.0 as a subset), empower precision agriculture (PA) to lever-
age the collection, processing, and analysis of data. These technologies are integrated
into management systems, enabling informed decision making for optimized farming
outcomes [1,2]. The decision support systems (DSSs) concept applied in agriculture (Agri-
DSSs) have advanced with the integration of sensor networks and artificial intelligence (AI)
technologies, enabling process automation [3]. These systems compile intricate agricultural
data to achieve a unified objective: enhancing the quantity and quality of agricultural pro-
duction. To deliver optimal solutions, specific components of Agri-DSSs must be tailored
to environmental characteristics.

Since the 1990s, the demand for Agri-DSSs has significantly increased globally for
various reasons [4]. Until recently, DSSs’ focus was mainly on data analysis in that it
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was a next-process step after the initial data acquisition step. The output was missing
real-time changing capabilities and was not instantly applied to enhance farm operations.
The automatic control of environmental parameters was lacking due to the disproportion-
ate development of electronic, communication, and information processing components.
However, designing the right IoT architecture for a farm requires the careful consideration
of factors such as sensing elements, communication protocols, the farm’s data processing
capacity, and time performance. A systematic architecture design approach is needed to
meet the specific functional and quality requirements of a farm [5,6].

In 1994, PA was defined as a management strategy that uses information technology
to improve agricultural quality and production [7]. As part of the transition to a new level
of PA, and as an effective management approach for increasing agricultural yield via the
more efficient utilization of resources, DSSs help farmers make well-informed decisions
about their crops. With recent advancements, IoT-based architectures are increasingly being
used in decision support systems for farmers. These architectures typically include several
common elements, such as a WSN for data collection, IoT devices (smart sensors, actuators,
and controllers), and user interfaces (such as mobile apps or web portals with information
and recommendations). For more accurate results and timely responses, information can
be processed with decision support algorithms and models [8].

With limited resources, small farmers are more prone to being affected by the ever-
changing environmental conditions that severely impact agriculture. The challenges and
opportunities offered to small-scale farmers by the latest technological advancements
are reviewed in [9]. The need for affordable technological solutions to support them
in enhancing productivity and sustainability now represents a primary direction of the
research into monitoring and controlling solutions for greenhouses [10].

Greenhouses represent the ideal environment for modeling and testing PA solutions.
Greenhouse technologies have been transformed from niche systems for specialty crops
into the cornerstone of intensive agriculture. On the technology side, the expansion is
driven by the need to meet rising consumer demands for consistently high-quality products
available year-round. The impact of environmental factors and field management practices
on the quality of harvested products is often underestimated, and decision support systems
are in high demand once their importance is acknowledged. Sensing, monitoring, and
controlling commonly imply a network of various sensors and actuators in devices that
influence environmental parameters for improved output. The best candidates for those
tasks are WSNs and the extended concept of Wireless Sensor and Actuator Networks
(WSANs), which have the characteristics of low energy consumption, a low cost, and
deployment versatility.

2. Related Work

In the 2000s, the principles of wireless technology applied to monitoring and control—
networks of wireless sensors and actuators—were extensively described by works such
as [11–18]. The characteristics of wireless communication positioned it to be a technology
well suited for application in greenhouse environmental management.

Wireless technologies are already used as a common infrastructure for communication
patterns in diverse scenarios [19]. A WSN solution for PA in an orchard is presented
in Ref. [20]. The characteristics that WSNs must fulfill to be applicable in agriculture
were also analyzed. The applications of WSNs in open-space agriculture are for both
process monitoring and control. Influencing the growing environment is, in this case, more
difficult due to the significant number of parameters in this context. In Ref. [21], typical
applications of the IoT for agriculture were analyzed, with the problems encountered
both from the implementation and development perspectives finally being highlighted.
Examples of the hardware, sensors, and platforms used for the IoT in agriculture are
described in Ref. [22]. The paper presents a broad view of WSNs in agriculture, focusing
on the potential of IoT technologies, and emphasizing their increasing adoption and value
for farmers. Additionally, the paper highlights the importance of standardizing IoT core
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technologies to ensure seamless operation across various platforms and operating systems.
In Ref. [23], the authors provide a comprehensive review of emerging technologies for IoT-
based smart agriculture, including wireless technologies, unmanned aerial vehicles, open-
source IoT platforms, Software Defined Networking and Network Function Virtualization
technologies, cloud/fog computing, and middleware platforms, while Ref. [24] presents a
specific example of an in-field data acquisition sensor prototype.

To ensure the best possible plant evolution in greenhouses, solutions for parameter
monitoring such as temperature, humidity, light intensity, soil moisture, and composition
were designed using traditional methods before wireless technology was available. Initially,
greenhouse operators relied on manual monitoring methods, which involved physically
checking environmental parameters and using analog instruments like thermometers and
soil moisture probes [25,26]. With the advancement of automation, analog control systems
employing mechanical or pneumatic devices were introduced to regulate environmental
conditions. In early greenhouses, automation featured wired sensor networks for real-time
monitoring and control, transmitting data to a central control unit. During this period,
greenhouse operators frequently used data logging techniques to track environmental data
over time. This process involved using either simple handheld loggers or more advanced
systems connected to computers, which collected and stored sensor measurements at
regular intervals for later analysis. While these traditional methods required more manual
effort and were less efficient than modern wireless monitoring systems, they laid the
groundwork for greenhouse management practices and were essential for optimizing plant
growth prior to the wireless technology era [27].

When addressing smaller-sized surfaces, greenhouse farming can be seen as a compre-
hensive system strategy for optimizing the production of agricultural crops in a controlled
environment. In this context, greenhouses are often considered an ideal environment for
pioneering the implementation of new agricultural technologies. Ref. [28] provides an
in-depth review of wireless sensor networks for greenhouses, starting from the layout of
crops, technologies used for sensor communication (such as ZigBee, GPRS, LoRa, Wi-Fi,
and Bluetooth), and transmission techniques. Ref. [29] reviews the greenhouse environment
from design to monitoring and control. Ref. [30] proposed a mobile and dynamic monitor-
ing system based on autonomous quadruped vehicles connected with wireless sensors for a
flower-cultivation greenhouse. The mobility of the system’s elements facilitates monitoring
capabilities without any control features being implemented.

The authors in Ref. [31] presented a real-time end-to-end deployment of a LoRaWAN-
based sensor network in a greenhouse. They found that temperature and humidity had a
larger impact on the sensor readings inside the greenhouse than initially expected. Their
paper demonstrates the feasibility of leveraging LoRaWAN technology for PA applications
in greenhouse environments, highlighting the importance of proper sensor enclosure design
to obtain reliable data.

In Ref. [32], a low-power wireless sensor network was designed using commercial
components and free or open-source software libraries, based on LoRaWAN protocol, with
a focus on low-cost IoT applications for greenhouse monitoring. The whole system was
implemented to demonstrate the feasibility of building a modular system with low-cost
off-the-shelf components, including sensors, but with no actuation functions.

Another application of low-power communication technology for intelligent agricul-
tural greenhouses is described in Ref. [33], where a wireless network detection and control
system uses NB-IoT technology to facilitate remote monitoring and control of greenhouse
conditions. In Ref. [34], the authors built a WSN employing low-cost, low-power sensor
nodes that use solar power to operate independently. The sensor nodes were designed for
low energy consumption, enabling them to be powered by small solar units. Additionally,
a greenhouse controller was developed to interface with the WSN and provide IoT con-
nectivity. The authors from Ref. [35] presented four types of sensing nodes: two powered
by batteries and two more complex nodes that relied on renewable technology, designed
for scenarios where monitoring is necessary during the daytime. Several power options
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were analyzed considering that the communication protocol used, namely Wi-Fi, has a high
energy-demanding rate. Many IoT-based greenhouse solutions primarily involve the moni-
toring aspect [36–40]. Solutions also include a control part that usually uses low-cost and
low-reliability relays [41,42], and it has only been implemented in experimental scenarios,
with no plans for development into a commercial product.

This paper presents an IoT-based Agri-DSS utilizing a wireless sensor network de-
signed to monitor and control environmental parameters in a greenhouse. This is used for
an end-to-end application that includes various types of devices for a remote monitoring
and controlling solution, providing flexibility in terms of the number of devices, types of
sensors, communication protocols, and number of users. For testing, the environmental
parameters of interest for greenhouse management, such as air temperature and humidity,
air pressure, light intensity, UVA, UVB, CO2, soil temperature, soil humidity at different
depths, and soil tension, are monitored. Additionally, soil moisture is regulated through
irrigation, and air temperature and humidity are controlled through airflow.

The system’s architectural design, along with a description and the testing of its
components, is provided. This is followed by an evaluation of the system’s performance
and the results obtained from its implementation in a greenhouse environment.

3. System Design and Implementation

The system developed and utilized in this paper is flexible, making it suitable for
different greenhouse scenarios. The hardware used in this system includes wireless sensor
nodes (WSns), wireless actuator nodes (WAns), and a gateway. In a general scenario
(see Figure 1), the data flow begins with the WSn. The acquired parameters are then
transmitted via a LoRa radio to a gateway, which sends the data over Wi-Fi to a web
platform over the internet. There, the data are processed, displayed, and stored. Based on
this, the user can send commands from the web platform through the gateway to the WAn.
The system uses the LoRaWAN network architecture with a star topology both for sensors
and actuator nodes, where the gateway exchanges messages between the nodes and the
central network server.
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Depending on the amount of area that needs to be monitored and on the systems
that need to be controlled, the number of sensor or actuator nodes is scalable as the
solution can be implemented from small-scale to large-scale greenhouses. Furthermore,
multiple greenhouses in a certain area can be monitored and controlled due to the data
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communication range. The WSn and WAn architectures were developed to be compatible
with the Arduino MKR developing boards family. For the presented scenario, the Arduino
MKR WAN 1310 developing board was used with LoRa communication, but a series of
other communication protocol options can be implemented, like Wi-Fi (Arduino MKR1000
WIFI), GSM (Arduino MKR GSM 1400), SigFox (Arduino MKR FOX 1200), or NarrowBand
(Arduino MKR NB 1500).

3.1. Wireless Sensor Node
3.1.1. WSn Design

Wireless sensor nodes are responsible for acquiring data from sensors, processing
them, and transmitting the information to the gateway. The proposed block diagram of
the node, shown in Figure 2, highlights the various types of sensors that could be utilized,
including analog sensors, I2C sensors, and one-wire sensors.
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A flexible node interface was developed to support a variety of attached sensors and
communication protocols. The central component of the node is the microcontroller-based
development board from the Arduino MKR family. The advantages of using this off-the-
shelf core include the low-power SAMD21 Cortex®-M0 + 32 bit ARM MCU, integration
with a variety of wireless communication protocols used for WSN, the integration of the
ATECC508 security chip, and support for power supply from Li-ion or Li-Po rechargeable
batteries and an integrated recharge circuit. Additional advantages include management
of the power consumption, personalized shield with environmental sensors, and a mi-
croSD card slot (Arduino MKR ENV Shield). For this experiment, the Arduino MKR
WAN 1310 equipped with the Murata CMWX1ZZABZ LoRa® module was selected to
utilize LoRaWAN communication.

3.1.2. WSn Development

Based on the parameters of interest tested in this paper, a set of sensors compatible
with the WSn block diagram was selected. Table 1 presents the acquired parameters and
the sensors used. The Arduino MKR ENV Shield was attached to the Arduino MKR
WAN 1310 board. Each parameter was represented using two bytes, resulting in a total of
28 bytes, considering the battery voltage in addition to the 13 acquired parameters.
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Table 1. The wireless sensor node’s acquired parameters and sensors.

No Parameter Sensor Type Connector

1 Light Intensity VISHAY TEMT6000 Analog

Arduino MKR ENV shield;
two-row, 14-position header

2 Air Pressure ST LPS22HB

SPI3 Node Temperature
ST HTS221

4 Node Humidity

5 UVA
VISHAY VEML6075 I2C

6 UVB

7 Air Temperature
Sensirion SHT31 I2C 4-terminal wire-to-board connector

8 Air Humidity

9 Soil Temperature DS18B20 One wire 3-terminal wire-to-board connector

10 CO2 Sensirion SCD41 I2C two-row, 4-position header

11 Soil Tension Watermark Sensor

Analog

2-terminal wire-to-board connector

12 Soil Humidity depth1
Capacitive Sensor 3-terminal wire-to-board connector

13 Soil Humidity depth2

For sensor connection and signal conditioning, an electrical schematic of the interface
was designed and is shown in Figure 3.
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The signal conditioning interface was designed as a two-layer PCB with dimensions
of 85 × 66.5 mm. Figure 4 shows the top layer of the PBC (a), the PCB bottom layer (b),
and the 3D model of the interface (c). The interface was equipped with a two-row, 14-pin
header connector for the Arduino MKR developing board; eight wire-to-board terminal
blocks for sensors; a two-row, four-position header connector for the CO2 sensor; one-wire
to-board terminal block for USART communication; and three wire-to-board terminal
blocks for power supply (one for the rechargeable battery, one for the Arduino developing
board, and one for the solar panel). To improve power efficiency, each sensor can be
connected to the 3.3 V power supply directly or through a digital switch by using a jumper.
The battery voltage level is acquired through an analog pin, passed previously through a
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½ voltage divider. An additional 2.5 V power supply was included for two sensors with
these requirements. The interface is compatible with analog sensors, I2C sensors, and
one-wire sensors.
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Figure 5 shows the manufactured signal conditioning interface with all the connected
devices. Two Li-ion 18650 rechargeable batteries of 5000 mAh were used for power supply,
and an 11 × 13.5 cm photovoltaic panel of 2 W was used for battery charging.
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A custom covered case was developed using a 3D printer to protect the circuits
(see Figure 6). The cover is provided with fixing pads for the interface, a custom pad for
the SHT31 sensor, a special designed opening for the CO2 sensor, a slit for the light, and
UVA and UVB sensors.

Figure 7 shows the final version of the wireless sensor node.
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The WSn had a basic data processing software routine. After the initial setup for
the microcontroller, transceiver, and individual sensors, the node acquired data from the
sensors, processed them, stored them on the microSD card, and sent them to the gateway.
Finally, the sensor’s power was shut down, and the transceiver and the microcontroller
entered sleep mode. The sleep time could be adjusted considering the application, but due
to the LoRaWAN protocol, at least 2 min must past between two consecutive transmissions.
When waking up, the WSn continued acquiring a new set of data.

3.1.3. WSn Laboratory Tests

The WSn was tested and evaluated in the laboratory to assess its functionality and via-
bility time. Current consumption was measured to implement suitable power management
solutions. The drain current from the rechargeable batteries was monitored during both
data processing and the node’s deep sleep mode.

Figure 8 depicts the waveform of the current consumption during o loop acquisition,
with node data acquisition, transmission, and the deep sleep mode. During data acquisition,
higher power consumption was recorded when collecting data from the CO2 sensor. Data
acquisition takes approximately 6 s, while the data transmission time varies depending on
the parameters set for the LoRa protocol. The goal was to ensure reliable data reception at
the gateway while considering range and power consumption.

Current consumption tests were conducted by changing LoRa parameters, includ-
ing the Spread Factor (7–12), Power Level (0–20), Coding Rate (5–8), and Bandwidth
(500–7.8 kHz). Figure 9 presents the results obtained by keeping three out of four parame-
ters constant to ensure data transmission at the greatest distance while varying the fourth
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parameter. When the Power Level was changing, the average current consumption was
measured. For the other parameters, focus was placed on tracking the data transmission
time, with the average current consumption remaining constant.
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Figure 9. Tests conducted for different values of LoRa parameters: (a) medium current consumption
regarding Power Level; (b) transmission time regarding Spread Factor; (c) transmission time regarding
Coding Rate; (d) transmission time regarding Bandwidth.

To evaluate the node’s battery life, the charge (i.e., current consumption in time mAh)
was automatically measured using an oscilloscope with capabilities of integrating the
current waveform during the studied event. Figure 10 shows the current consumption
in transmission (red graph), when all parameters are set to transmit data at the longest
distance. Thus, the 28 bytes are transmitted in 35.80 s with an average consumption of
152.5 mA.

In this case, the current consumption was the highest, and the duration of data
transmission was very long. If it were to transmit data continuously, for a total battery
capacity of 10 Ah (2 × 5000 mAh), the battery life would be up to 2 h.
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For the application described in this paper, data acquisition is suited for longer time
intervals (at least 10 min), when the node enters into a deep sleep state, consuming an
average current of about 3 mA (see Figure 11). In this case, a lifespan of over 100 days can
be achieved, not including battery charging from photovoltaic panels.
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Figure 11. Node’s current consumption in deep sleep mode.

The acquisition, storage, and transmission of data were also verified. Figure 12 depicts
the raw data acquired and stored in a file on the node’s memory card.
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3.2. Wireless Actuator Node
3.2.1. WAn Design

The wireless actuator nodes control the activation and deactiviation of the control
equipment for the microclimatic factors in a greenhouse based on commands received from
users through the web platform via the gateway. Figure 13 presents the proposed block
diagram for the wireless actuator node.
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Figure 13. Wireless actuator node block diagram.

Common equipment in a greenhouse is powered by 24 Vac (e.g., solenoid valves for
irrigation) and 230 Vac (e.g., fans and motors to control air temperature and humidity, CO2,
and light intensity). The WAn was developed by considering eight channels to control
24 Vac, max. 0.5 A devices and two channels to control 230 Vac, max. 4 A devices. Based
on the greenhouse scenario, multiple nodes can be implemented. The Arduino MKR
WAN 1310 was also used for the WAn with a 5 Vdc power supply.

3.2.2. WAn Development

The electrical schematic of the WAn is presented in Figure 14.
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The designed WAn signal conditioning interface has a two-layer PCB with dimensions
of 217 × 131 mm. Figure 15 presents the PCB top layer (a) and the 3D model of the
interface (b).
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Size and power consumption were not requirements for the WAn since these nodes
are installed in fixed points in the greenhouse and are permanently connected to the power
supply and main grid. The CPC1966Y IXYS Solid State Relay (SSR) is used for the 24 Vac
channels, while the PF240D25 SSR is used for the 230 Vac channels. We chose SSRs because
they have more advantages compared to mechanical relays despite the high cost. Due to
the humid environment in the greenhouse, the absence of moving parts and contacts in
SSRs extends the lifetime of the node. Also, the voltage zero-crossing turn-on capability
of SSR reduces the generated switching noise of AC loads by minimizing the generation
of transients.

For each SSR, a 47 nF and 100 Ω RC snubber was added to assure protection for
inductive loads. Metal Oxide Varistors (MOVs) suppress high-voltage transients and offer
protection against cable disconnection while under an inductive load. A 1 A fuse was
introduced for the 24 Vac channels, and a 5 A fuse was added for the 230 Vac channels for
protection. Indicator LEDs were installed for each channel. The final assembled PCB is
presented in Figure 16.

A residual current circuit breaker with overcurrent protection (RCBO) ensures protec-
tion of the main supply and safeguards users against residual fault currents in the humid
environment. A classical transformer was used for the 24 Vac power supply, and an AC-DC
converter was used for the 5 Vcc power supply. All of these were encapsulated in a nearby
IP65 electrical panel box. The setup for the WAn is presented in Figure 17.

The WAn was programmed to send an uplink packet to the gateway every 2 min, the
minimum LoRaWAN communication interval. If a command from the web platform is
received by the gateway, it is sent to the WAn. The WAn then extracts the information and
sets each channel accordingly for a certain period. The data packet includes four bytes: the
first byte is for the 24 Vac channels’ activation (1 bit for each channel), the second byte is
for the 230 Vac channels’ activations (2 bits used for the two channels), and the last two
bytes are for the activation time. A bit set to 0 means the channel is turned off, and a bit
set to 1 means the channel is turned on. The node is always in the listening state with no
sleep periods.
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Figure 17. The wireless actuator node (a) and the power supply’s transformers (b).

3.2.3. WAn Laboratory Tests

The WAn was tested in the laboratory regarding the functionality of the 24 Vac and
230 Vac outputs using a TA042 100:1 differential voltage probe and a TA167 current probe.
For the 24 Vac channels, a 12 Ω/2.2 mH RL load (see Figure 18a) and a 45 Ω resistive load
(see Figure 18b) were tested. The tests confirmed the correct operation of the SSRs for both
loads triggered by the signal received from the microcontroller; there were no generated
switching noises or high-voltage transients observed.

A 40 W incandescent light bulb was used as a test load for the 230 Vac channels. For
higher power loads, SSRs can be used to drive a high-current contactor. Figure 19 plots
the current (green) and voltage (blue) waveforms triggered by the digital command (pink)
from the microcontroller. The large initial value of the current is due to the light bulb.
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base band processor for LoRa, emulating 49 LoRa demodulators with 10 parallel demod-
ulation paths, supporting eight uplink channels and one down-link channel. The 
RAK2245 board was also equipped with a GPS module. 
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3.3. LoRaWAN Gateway
3.3.1. Gateway Design

The gateway is responsible for collecting data from wireless sensor nodes and transmit-
ting them to the web platform. Additionally, it receives commands from the web platform
to operate the microclimate control equipment within the greenhouse and transmits them to
the wireless actuator nodes. The data transmission range of the LoRaWAN communication
protocol allows the gateway to be located at significant distances, ranging from hundreds
of meters to even kilometers from the greenhouse. The proposed block diagram of the
gateway is presented in Figure 20.
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3.3.2. Gateway Development

The gateway was based on the Raspberry Pi 3 B+ developing board with the LoRaWAN
concentrator RAK2245 Pi Hat Edition. This transceiver used the Semtech SX1301 base band
processor for LoRa, emulating 49 LoRa demodulators with 10 parallel demodulation paths,
supporting eight uplink channels and one down-link channel. The RAK2245 board was
also equipped with a GPS module.



Technologies 2024, 12, 230 15 of 25

The gateway was embedded in a case equipped with a fan to maintain the optimal
temperature for its operation. Figure 21 shows the assembled gateway with the box cover
removed. A double 5 V power supply with USB Type A connectors was used for powering
the Raspberry board and the fan.

The gateway had to be configured and registered on the ChirpStack platform to work
with LoRaWAN (see Figure 22). To connect to the internet, the Wi-Fi interface for Raspberry
Pi 3 B+ had to be configured. Additionally, on the ChirpStark platform, server address for
data storage and the web platform was configured.
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3.3.3. Gateway Laboratory Tests

To test the gateway and its connection with the WSn and WAn, three Arduino MKR
WAN 1310 boards were integrated in the system, on the ChirpStark platform, using their
Extended Unique Identifiers (EUIs): two as WSns and one as a WAn (see Figure 23). Data
communication with these nodes was verified. Figure 23 also shows the test for the frames
transmitted and the frames received by the gateway.
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3.4. Web Platform

The role of the web platform was to acquire data from the WSn through the gateway;
process, store, and display it to the user; and transmit user commands to the WAn, also
via the gateway. This web platform was developed using PHP language and the Laravel
framework integrated with a MySQL/MariaDB relational database. The application was
developed using the MVC (Model–View–Controller) principle, which allows for the separa-
tion of the application logic (Controller) from the data (Model) and from the user interface
(View). The platform allows users to create accounts and assign roles, such as user and
administrator. The administrator manages the sensor and the actuator nodes with the abil-
ity to add, edit, or delete nodes and associate them with application users. The associated
nodes can then be managed by users, who can remotely monitor and control greenhouse
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parameters. The database structure was designed to support these functionalities, ensuring
communication between the gateway and the web server.

Communication was carried out as a string of bytes (28 bytes), allowing the web
application to receive data from the registered nodes through an API interface. The API
stores the IP address of the node from which the information is received and updates it every
time it changes so that bidirectional communication is possible. The raw data extracted
from the byte string are processed so that the actual value of the measured parameter is
calculated and stored for each sensor attached to the node. The calculation formula and
parameter identification in the byte string are defined in the node configuration page. The
byte values are extracted from the byte string and substituted into the stored formula, with
the calculation being performed dynamically based on the received values. For example,
in Figure 24, byte 3 (B3) and byte 4 (B4) are used for the light intensity parameter. In this
way, new sensors can be added to a node, as well as the definition of action that will be
transmitted to the actuator nodes.
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4. System Test and Evaluation
4.1. Tested Scenario

To evaluate the functionality and effectiveness of the IoT-based decision support
system for greenhouse microclimate management, a structured experimental scheme was
implemented. The greenhouse was divided into three distinct zones, with each being
assigned one WSn and using a WAn for the entire greenhouse. The placement and operation
of these nodes were carefully designed to maintain optimal environmental conditions.
This configuration enabled real-time data collection on parameters such as air and soil
temperature, air humidity, and soil moisture. The data were transmitted via a LoRaWAN
gateway to a web platform, where it was processed and displayed, allowing users to
monitor conditions and activate irrigation or ventilation as needed. The experimental
scheme flowchart is presented in Figure 25.

To test the system in real conditions, a greenhouse from the National Institute of
Research—Development for Machines and Installations Designed for Agriculture and
Food Industry—INMA Bucharest was used. The gateway was installed in a building
approximately 100 m away, with one concrete wall between it and the WSn and WAn.
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At the top of Figure 26, the greenhouse and the location of the gateway installation
are shown using Google Maps. At the bottom, a screenshot from the Chipstark platform is
displayed with details for the gateway (the blue pin represents the gateway).
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Figure 26. Positioning of greenhouse and gateway details.

Although the solution is suited for much larger-scale greenhouses, for functional
testing, a scenario with three WSns and one WAn was considered for the chosen greenhouse.
An example of a WSn and the WAn installation are presented in Figure 27.

The greenhouse was divided into three areas to enable targeted monitoring and control,
as shown in Figure 28. Each area was monitored by a WSn, and an independent dripping
irrigation system, controlled by a vane connected to the Wan, was assigned to each area.
Additionally, a fan was connected to the WAn.
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4.2. Data Acquisition and Control

In the web platform, four Arduino MKR developing boards were assigned to the user:
three represent the core of the three WSns, and one is the core for the WAn (Figure 29).

The user had the possibility to select a node and to see the data acquired (selected dates
with blue in Figure 30), considering the interest parameters and period (see Figure 30).

For the commands, each channel could be modified through a dedicated page for the
WAn using on/off buttons. Figure 31 presents an example where channel 1 and channel 4
of the 24 Vac outputs and channel 1 of the 230 Vac were activated for mkrwan1310_4 WAn.
Additionally, a switch button was added for further developments of the system, where
plans include integrating an autonomous activation system based on the microclimatic
parameters acquired by the WSn.
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Figure 31. WAn channel activation from the web platform.

From the ChirpStark platform, the data packet sent from the WSn or the command
sent to Wan can be viewed. Figure 32 shows a screenshot of the data from a WSn. Each
parameter is coded on 2 bytes, and the web platform processes these data into values based
on characteristic equations. For example, in the shown case, the first two bytes represent
the voltage of the rechargeable battery. The value 0x025A represents the number 602 in
decimals and, with a ½ voltage divider for the voltage, a 10-bit ADC resolution, and a
3.3 V reference voltage, results in approximately 3.88 V for the supply. Figure 32 shows the
LoRa parameters, like the Bandwidth (125 kHz), Spread Factor (12), and Coding Rate (4/5).
Together with a maximum Power Level (20), they were selected to ensure the maximum
range was achieved for data communication.
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4.3. Results

To test the system in maximum data acquisition conditions, the minimum acquisition
interval of two and a half minutes was programmed for the WSn. Under normal conditions,
the environmental parameters from a greenhouse do not have very high dynamics, so the
acquisition interval can be increased. The user can display the parameters of interest and,
based on these, make decisions about which microclimate parameters need to be adjusted.

To demonstrate how the data were displayed on the web platform, a few parameters
were extracted. The first example can be seen in the web platform screenshot in Figure 33,
where the light intensity and soil temperature are shown. As daylight increases, the air
temperature rises quickly, while the soil temperature follows with a delay due to the soil’s
higher specific heat capacity and slower heat absorption. Similarly, at night, the air cools
faster, but the soil retains heat longer, causing a delay in cooling.
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Figure 34 provides another example of data acquisition, demonstrating the activation
of one channel of the WAn. The soil temperature and soil humidity at two depths are
displayed, with increased soil humidity values appearing after the activation of irrigation.
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Figure 34. Web platform screenshot with soil temperature and humidity at two depths.

Another test was performed to verify the viability of the node’s lifespan. The node
was programmed for the worst case scenario, with no sleep time and data acquisition at
the minimum interval. Additionally, the LoRa transceiver was set up with parameters
that ensured the longest range and maximum energy consumption: a Spread Factor of 12,
a Power Level of 20, a 4/5 Coding Rate, and a 125 kHz bandwidth. The battery voltage
acquisition for two nodes is displayed in Figure 35. The light intensity was also introduced
to highlight the correlation between daylight and the battery charging period. At the
beginning of the chart, a continuous drain of energy can be observed. For about a week, the
photovoltaic panel was disconnected to see WSn lifetime without charging. After the panel
was reconnected, daily recharges were observed. On the days with less sunlight, the power
drain was higher. Over a period of about a month, it can be seen that the photovoltaic
panel efficiently charges the batteries during the day, even though the WSn is located in the
greenhouse. The graph is exported directly from the web platform as an additional option
for the user.
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The data could also be exported in a .cvs file. Figure 36 shows the temperature values
acquired by the three WSns, plotted from an exported .csv file. Although the values of the
parameter are slightly different due to the different positions occupied in the greenhouse,
the evolution of the values follows the same path. Over 5 days, at a 2.5 min interval, more
than 2800 samples are acquired by a single WSn.
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5. Conclusions

In recent years, digitalization has become a key focus in agriculture, particularly in
the implementation of decision support systems, farm management, PA, and other related
functions. The goal is to increase production efficiency, reduce losses, improve profitability,
and promote sustainability. IoT plays an important role in decision-making processes,
especially in agriculture crop monitoring and controlling systems.

This paper presents a demonstrator model of an IoT system with a wireless sensor
network, designed for monitoring and controlling the microclimate within a greenhouse.
The system allows for the automation of processes such as irrigation, ventilation, tem-
perature and humidity control, and shading. The system is flexible and can be used to
monitor and control a wide range of parameters depending on the specific needs of the
greenhouse. Each sensor and/or actuator node can function independently, contributing
to the automation of processes in vegetable greenhouses. Furthermore, the monitoring
platform supports the integration of other types of sensor nodes that operate using the
LoRaWAN protocol, and the system can also be utilized as a data display service.

For each independent part of the system, multiple tests were performed. For the WSn,
tests focused on evaluating functionality and long-term viability. The node’s lifespan was
analyzed by measuring current consumption under different data transmission parameters.
The acquisition, storage, and transmission of data were also tested. For the WAn, function-
ality was tested with 24 Vac and 230 Vac outputs with different loads. The gateway was
tested for connectivity with both the WSn and WAn as well as the exchange of messages
between them. The web platform was tested for data acquisition, storage and display, and
command transmission. Finally, the entire system was tested in a real in-field scenario of
a greenhouse.

The generated impact is both economic and social. Economically, the system reduces
input costs, such as electricity, water for irrigation, and fertilizers, while increasing produc-
tivity by controlling the interest parameters in real time. Socially, the impact is represented
by the streamlining of vegetable crop maintenance operations in greenhouses by shifting
the role of the human operator from executing the functions to monitoring them.

Current and future work involves fully automating the greenhouse and enabling the
system to make its own decisions based on machine learning algorithms applied on the
acquired data. Additionally, the goal is to develop the system into a commercial solution
through technology transfer to an economic operator.
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