
Citation: Mendez, T.; Parupudi, T.;

Kedlaya K, V.; Nayak, S.G.

Development of Power-Delay Product

Optimized ASIC-Based

Computational Unit for Medical

Image Compression. Technologies 2024,

12, 121. https://doi.org/10.3390/

technologies12080121

Academic Editors: Tamás Haidegger,

Gerard Ghibaudo and Francis

Balestra

Received: 19 May 2024

Revised: 22 July 2024

Accepted: 26 July 2024

Published: 29 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Development of Power-Delay Product Optimized ASIC-Based
Computational Unit for Medical Image Compression
Tanya Mendez 1,2 , Tejasvi Parupudi 3 , Vishnumurthy Kedlaya K 2 and Subramanya G. Nayak 2,*

1 Department of Robotics and Artificial Intelligence Engineering, NMAM Institute of Technology,
NITTE (Deemed to Be University), Nitte 574110, India; tanya.mendez@learner.manipal.edu or
mendez.tanya@gmail.com

2 Department of Electronics & Communication Engineering, Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal 576104, India; kv.kedlaya@manipal.edu

3 Department of Computer science and engineering, University of North Texas, Discovery Park, E245A,
Denton, TX 76227, USA; tejasvi.parupudi@unt.edu

* Correspondence: gs.nayak@manipal.edu

Abstract: The proliferation of battery-operated end-user electronic devices due to technological ad-
vancements, especially in medical image processing applications, demands low power consumption,
high-speed operation, and efficient coding. The design of these devices is centered on the Application-
Specific Integrated Circuits (ASIC), General Purpose Processors (GPP), and Field Programmable
Gate Array (FPGA) frameworks. The need for low-power functional blocks arises from the growing
demand for high-performance computational units that are part of high-speed processors operating
at high clock frequencies. The operational speed of the processor is determined by the computa-
tional unit, which is the workhorse of high-speed processors. A novel approach to integrating Very
Large-Scale Integration (VLSI) ASIC design and the concepts of low-power VLSI compatible with
medical image compression was embraced in this research. The focus of this study was the design,
development, and implementation of a Power Delay Product (PDP) optimized computational unit
targeted for medical image compression using ASIC design flow. This stimulates the research com-
munity’s quest to develop an ideal architecture, emphasizing on minimizing power consumption and
enhancing device performance for medical image processing applications. The study uses area, delay,
power, PDP, and Peak Signal-to-Noise Ratio (PSNR) as performance metrics. The research work takes
inspiration from this and aims to enhance the efficiency of the computational unit through minor
design modifications that significantly impact performance. This research proposes to explore the
trade-off of high-performance adder and multiplier designs to design an ASIC-based computational
unit using low-power techniques to enhance the efficiency in power and delay. The computational
unit utilized for the digital image compression process was synthesized and implemented using gpdk
45 nm standard libraries with the Genus tool of Cadence. A reduced PDP of 46.87% was observed
when the image compression was performed on a medical image, along with an improved PSNR of
5.89% for the reconstructed image.

Keywords: application-specific integrated circuits; low-power VLSI; error-tolerant adder; medical
image compression; peak-signal-to-noise-ratio; vedic arithmetic; Iterative carry save adder; power
delay product optimized multiplier

1. Introduction

The onset of Very Large-Scale Integration (VLSI) has led to the advent of chips de-
signed to perform a particular operation, resulting in the emergence of Application-Specific
Integrated Circuits (ASIC) designs. Mastering the ASIC design process in digital VLSI is the
cornerstone to successfully designing chips. The advent of sophisticated processing nodes
has ushered in a new era of increased transistor density and given rise to complex and
power-efficient ASICs. ASIC design engineers have consistently tried to break the barriers

Technologies 2024, 12, 121. https://doi.org/10.3390/technologies12080121 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies12080121
https://doi.org/10.3390/technologies12080121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-6545-0120
https://orcid.org/0000-0002-2820-0392
https://orcid.org/0000-0001-7720-4392
https://doi.org/10.3390/technologies12080121
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies12080121?type=check_update&version=1

Technologies 2024, 12, 121 2 of 25

in the ever-evolving realm of VLSI design by adopting emerging trends and exploiting
cutting-edge technological innovations.

The arithmetic computational unit is an indispensable part of processors suited to
image and signal processing applications. Several commercial processors have emerged as
a result of the broadening of Digital Image Processing (DIP) applications. These processors
have efficient computational units that boost overall performance, paving the way for faster
and low-power computing. Extensive recurrent mathematical computations are required
for these operations, resulting in increased delay and power consumption. High-speed
computational units with low power consumption are desired for high performance in
digital image and signal processing applications. The advent of emerging technologies
and device scaling demands computational units to be constructed with lower power
consumption, less propagation delays, and reduced dimensions.

The computational unit’s architectural design and efficiency are deciding factors
for the speed and power of the Central Processing Unit (CPU). This research explores
different adder and multiplier architecture designs by incorporating low-power techniques
and implements the computational unit design that is most suitable for DIP applications.
The proposed computational unit comprises an Error-Tolerant (ET) adder, a Power Delay
Product (PDP) optimized fixed-point multiplier, and a low-power logical unit. This research
presents the design, development, and implementation of a PDP optimized ASIC-based
computational unit for image processing applications.

Through the low-power concept of approximate computing, an ET adder is imple-
mented in this research, which significantly improves both performance and power at
the expense of accuracy. Multipliers form an indispensable part of almost all high-speed
processors and CPUs, as a result of which research on the low-power design of multipliers
makes a significant contribution to society. There is a rapid surge in the market demand
for compact and lightweight electronic devices. An apparent low power demand emerges
from such advanced forces of electronic circuits. Clock frequencies have been increasing for
higher performance. Faster circuits are required to work at high clock frequencies, which
increases the chip complexity, power consumption, and area. This has led to innovative
techniques of low-power VLSI. The frequency has been limited to 4.5 GHz due to power
limitations [1].

If the power consumption can be reduced with an acceptable increase in delay, then the
frequencies can be increased, which is the necessity of high-performance devices, especially
mobile phones. PDP optimized multipliers and arithmetic units are essential. The image
processing algorithms implemented in contemporary times with software techniques are
slower due to the limitations imposed by the processor’s speed. A dedicated computational
unit is necessary for image processing implementations to keep up with the speeds of
high-performance applications operating at high clock frequencies. Due to the limitations
imposed by General-Purpose Processors (GPP), implementing image processing algorithms
in real time is complex as it requires high computational power and throughput rate. ASICs
are suitable for stand-alone image processing applications due to their small size, lower
power consumption, and greater functionality when used for specific purposes. ASICs
can be customized to implement specific algorithms in a single small-sized, low-power
integrated circuit, unlike GPP [1].

The computational units designed for image and signal processing applications com-
prise adders, multipliers, and logical units to perform various computations. A broad
range of adder and multiplier architectures were proposed to meet the demands of high-
performance devices. Complex tasks were executed in software or micro-code with minimal
assistance from hardware during the early years of processor development. A review of
the different architectures of Arithmetic Logic Unit (ALU) that were designed in the past
to meet the demands of reduced power, area, enhanced efficiency, and high speeds is
discussed in this section.

Lachireddy et al. [2] focused on the design of an ALU using reversible logic to reduce
the power and Vedic multiplication to increase the speed. Two multiplier designs were

Technologies 2024, 12, 121 3 of 25

modeled, one using the Vedic multiplier and the other using the Booth multiplier. A drop
of 6.7% in dynamic power and a 2.2% reduction in area was observed in the design that
used the proposed Vedic algorithm.

Suchismita et al. [3] presented the design for a custom 4-bit ALU that consumed
less power and was fast. The power consumption was lower compared to the designs
implemented using conventional techniques. Since different modules were used for each
operation, the overall complexity was more in terms of area.

Madhukar et al. [4] proposed the design of a 16-bit ALU for high-speed and low-
power applications. A parallel prefix adder, the Brent Kung adder, was utilized to perform
the addition operation as it consumed less power. The multiplication operation was
performed using the Booth multiplier, involving fewer additions than the existing array
and Wallace multipliers. The restoring algorithm used for division consumed less power
than subtractive methods. The design exhibited reduced delay and power consumption at
a slightly increased area.

Suhas et al. [5] designed a hybrid 32-bit ALU using irreversible and reversible gates.
The modified Carry Save Adder (CSA) was implemented using reversible gates to reduce
the power further. The Urdhva Tiryagbhyam (UT) sutra of Vedic mathematics was used to
design the multiplier, and the addition of the partial products was performed using the
delay-modified CSA to further reduce the delay. Reversible logic gates were used to design
the subtractor. The design exhibited an overall reduction in power and delay but with an
increased area. Kamaraj et al. [6] designed an ALU that was fault-tolerant using KMD,
Toffoli, and Fredkin reversible gates, which were functionally realized in Quantum Cellular
Automata. A single module performed the arithmetic and logical operations. The design
utilizes more gates but with less quantum cost.

Rashmi et al. [7] implemented two 8-bit ALUs for low-power by incorporating the
techniques of clock gating and operand isolation at the Register Transfer Level (RTL)
level. Compared to conventional designs, the design with operand isolation showed that
it consumed more power and occupied more area with less delay. Similarly, the design
with clock gating consumed less power, but the area and delay were more than those of
conventional designs. Nagarjuna et al. [8] proposed a low-power 8-bit ALU with two 4 × 1
data selectors, a 2 × 4 decoder, a full adder, and a logic unit. The design seemed complex
in terms of area, as it involved decoders and data selectors.

Maan et al. [9] compared different clock gating techniques in 8-bit ALUs. The newly
proposed technique of achieving clock gating using a tristate buffer resulted in more power
and area savings as the idle parts were eliminated. The use of the tristate buffer showed
an improved performance. Moresh et al. [10] presented a 4-bit ALU utilizing the Gate
Diffusion Input (GDI) approach. GDI is a novel method to design low-power combinational
circuits that reduce power and area. In contrast to conventional designs, the proposed
concept was fast and efficient.

Priyanka et al. [11] suggested an 8-bit ALU with a Knowles adder for addition and
a Vedic multiplier constructed using the Ladner-Fisher approach. The multiplier used in
the design had better power, area, and delay efficiency than the Vedic multipliers used
in conventional designs. The design utilized the Knowles adder to reduce the routing
complexity and area. The efficiency of the adder and multiplier used can be further
improved.

Abdul et al. [12] designed two types of architectures of 32-bit ALUs using the Sklansky
and Ripple Carry Adder (RCA) adders. In addition, the power and area of the architecture
with RCA were compared to those of the architecture constructed without a demultiplexer.
This was achieved by employing a demultiplexer to cut off the power to the blocks that
were not in use. The results showed that the architecture designed with a demultiplexer
proved to be more power-efficient. A power-saving method for an 8-bit ALU utilizing
clock gating by incorporating a negative latch was presented by Gunjan et al. [13]. The
design was implemented at the RTL level on an FPGA, and the results of power consumed
were compared with a D Flip Flop-based clock gated design (243 mw at 100 MHz), which

Technologies 2024, 12, 121 4 of 25

showed a significant power reduction. The design that used the negative latch exhibited an
increased area and speed.

An 8-bit ALU was proposed by Akram et al. [14] utilizing a method to lower leakage
power. The power supply was decreased, and the ground potential was raised to compen-
sate for the delay overhead that lowered the leakage power. Bishwajeet et al. [15] proposed
an ALU of size 8 bits that utilized AND gate-based clock gating to reduce the dynamic
and clock power consumed. Power savings were achieved by powering off the inactive
modules using the clock gating approach. The analysis of power and area was conducted
at different clock frequencies, and it was found that even though there was a reduction in
clock and dynamic power, there was an overhead of increased area.

Sushma et al. [16] have presented a Vedic multiplier by proposing an area and speed-
efficient design for an ALU. Unlike conventional designs, the novel Multiplier Adder and
Subtractor (MAS) unit was implemented by aggregating the adder, subtractor, and multi-
plier, thereby reducing the area, and by modifying the UT formula for Vedic multiplication.
The MAS-based multiplier proved to be faster than the Booths algorithm but slower than
the UT multiplier. The MAS-based multiplier was found to occupy slightly more area than
the Urdhva method of multiplication and Booth’s algorithm.

To increase efficiency, M. Kamaraju et al. [17] presented the design of a 16-bit ALU
with lower power consumption that used the clock gating approach. The design was
divided into four functional blocks, each designed to perform four operations. Clock
gating was achieved using a decoder that generated the coded clock signals based on an
opcode to the desired functional block. Power dissipation can be reduced further by using
improved techniques for clock gating, and high-speed adders and multipliers can be used
to enhance the speed further. Substantial work has been conducted to design ALUs to
meet the expectations of high-speed processors. The overall power can be lowered by
minimizing the power of the adders and multipliers used in the ALUs.

Medical images like Magnetic resonance imaging (MRI), Computed Tomography (CT)
scans, and X-rays in the healthcare domain have an increased size owing to substantial high-
resolution information packed into a single image. The processing of these high-resolution
images for various applications requires the images to be compressed in size to reduce the
memory occupied by these images, especially for applications that demand high speed and
less area. Researchers have been consistently working on different algorithms to compress
the images. Most of the existing work focused on reducing the size of the images with
less emphasis on the computational complexity of the processor. The growing demand for
efficient transmission and storage of medical images at a reduced computational complexity
in the medical field is the driving force of research designing a computational unit for
image compression.

The compression of medical images based on transforms has recently resulted in a huge
demand due to their growing applications in the medical domain, attracting researchers.
The efficiency and computational speed of Discrete Cosine Transform (DCT) are among the
most sought-after algorithms, especially for medical images. Some of the DCT algorithms
used in different medical image compression applications are listed here to give a clear
idea about the existing work.

An image compression algorithm using DCT was proposed by Wu et al. [18], and the
significant coefficients were obtained using adaptive sampling techniques. The proposed
algorithm resulted in compressing the images and preserving the information fidelity.
Chen et al. [19] proposed a Two-Dimensional (2D) image compression method for medical
images utilizing DCT and hierarchical tree partitioning. An approach with a reduced bit
rate, resulting in minimizing the memory requirement for storing the remote diagnosis and
for the rapid transmission, was also adopted in this work.

An approximation technique for 8-point DCT with 14 addition operations utilizing
the separability property of DCT was presented by Potluri et al. [20]. A reduction in the
algorithm and computational complexity was observed. Kaur et al. [21] have proposed
context tree lossless compression for the Region Of Interest (ROI) image part and a lossy

Technologies 2024, 12, 121 5 of 25

compression fractal for the non-ROI part of the image. The proposed method provided
much faster and more accurate results even though the PSNR was slightly lower.

The research carried out by Suma et al. [22] focused on the utilization of the UT
sutra in the design of the multiplier that was incorporated into the image compression
algorithm. A significant reduction in the size of the image was observed with less data
loss. The compression speed was improved with the use of the Vedic multiplier as the
computation time of the image compression algorithm was reduced. In their work, Liu
et al. [23] discussed the different standards used in image compression, mainly for medical
images. A comparison of the performances of the different compression standards on
publicly available datasets was also conducted.

A DCT architecture without multipliers was proposed for medical applications tar-
geting capsule endoscopy by Xing et al. [24]. Approximate adders, threshold setting, and
coefficient optimization were incorporated into the DCT algorithm design. A DCT archi-
tecture utilizing inexact adders was proposed by Kumar et al. [25]. Considerable savings
in area and power were observed due to the absence of multipliers in the architecture.
Hosny et al. [26] presented a 2D medical image compression algorithm in their work. The
algorithm proposed exhibited high compression rates and good image resolution.

Alzahrani et al. [27], in their work, compared two lossless transforms, DCT and Haar
Wavelet Transform (HWT), with medical images in terms of image size and compression
ratio. It was observed from their inferences that while using grayscale images, DCT proved
to perform much better than HWT. HWT was found to be a better choice when color
images were used and in terms of compression time. A discussion on image compression
algorithms using DWT and Huffman coding was presented by Mydin et al. [28] in their
work. In their work, Rahman et al. [29] analyzed and evaluated the strength of different
lossless compression techniques based on more than one parameter. In an attempt to
improve the compression ratios, the medical image compression techniques discussed
resulted in a reduced quality of images and loss of minute details, which is undesirable in
medical images.

Medical image compression primarily aims to reduce the image size to minimize the
memory required for processing and storing the image without affecting its quality. Even
though considerable research strategies for medical image compression were developed, an
algorithm specific to medical image compression that focuses on reducing computational
speed, area, and power has not been developed.

The digital compression of medical images, especially for telemedicine, has gained
significant importance in recent years due to medical advancements. Primary health
care, especially in villages, is challenging owing to the limited facilities available and the
lack of well-trained health personnel. With telemedicine, most of the problems faced by
people living in villages can be solved. The main idea behind telemedicine is the efficient
transmission of medical images to healthcare professionals in modern cities. A critical factor
that comes into play in telemedicine is to handle the transmission of cumbersome medical
images with comparatively lower bandwidth. This demands that the medical images be
compressed to enable the efficient and error-free transmission of information. This research
explores the DCT that can be utilized for digital image compression by incorporating the
computational unit to reduce computational complexity and minimize power as well as
area. In the DCT coding technique followed in this research, a considerable set of highly
correlated pixels are transformed to a comparatively smaller set of transform coefficients
that are decorrelated. The quantization and encoding of the coefficients are then performed
to obtain the compressed image.

This research aims to design and develop a computational unit for medical image
compression comprising a modified Carry Select Adder (CSLA)-based Selector-Based
Error Tolerant Adder (SBETA)/Low-Power Selector-Based Error Tolerant Adder (LPS-
BETA)/Optimized Error Tolerant Adder (OETA) using RCA, a divide and conquer multi-
plier, a PDP optimized multiplier using iterative carry save SBETA and a logic unit using
operand isolation. In the proposed research work, an architecture of a computational unit

Technologies 2024, 12, 121 6 of 25

incorporated in the Loeffler 8-point DCT/IDCT algorithm and used for medical image
compression applications is proposed, designed, and implemented. The ET adders de-
signed using the low-power concept of approximate computing substitute the addition
operations involved in Loeffler’s fast algorithm’s DCT/IDCT computations. This reduces
the hardware complexity, resulting in significant savings in area and power. The Binary
to Excess 1 Converters (BEC) used in the modified CSLA reduces the number of gates
involved, leading to lesser power and area as the transitions rely on only one bit. The multi-
plications involved are minimized by approximating some of the cosine constants involved
and using the proposed low-power multipliers and shifters to reduce the computational
complexity. An efficient encoding and decoding block is proposed using the improved
Loeffler algorithm. The contributions of this research are as follows:

1. A DCT/IDCT architecture based on the Loeffler algorithm by incorporating the
computational unit to perform the additions involved in the butterfly diagram using
the ET adders and the low-power multipliers for the multiplications involved.

2. An improved encoding and decoding block is used to reduce the circuit complexity
and improve the compression ratio, SSIM, and PSNR without affecting the quality of
the reconstructed image.

3. An approach to building a computational unit by integrating VLSI ASIC design and
the concepts of low-power VLSI compatible for medical image compression used in
telemedicine was adopted in this research.

The VLSI ASIC design flow that is followed in this research work is presented in Section 2.
Section 3 elaborates on the development of the proposed computational unit designed and
implemented in this research. The modified CSLA-based SBETA/LPSBETA/OETA using
RCA, a divide and conquer multiplier, a PDP optimized multiplier using iterative carry save
SBETA, and a logic unit using operand isolation incorporated in the computational unit is
also discussed in Section 3. The digital image compression application using the proposed
computational unit for the medical image is demonstrated in the last portion of Section 3. The
results of the proposed computational unit are discussed in Section 4. The concluding remarks
of the research work are given in Section 5.

2. VLSI ASIC Design Flow

The ASIC design flow comprises several steps, from conceptualization to specification
and tape-outs, as shown in Figure 1. The end product usually is small in the order of
nanometers. The ASIC design flow starts with the specification definition of the system [30].

The current emphasis of low-power VLSI design is on designing and implementing
power-efficient algorithms of arithmetic units such as adders, subtractors, multipliers,
and dividers. Due to the rapid growth of wireless devices in the electronics market,
total power consumption, a core design constraint, must be addressed. The efficient
design of an Integrated Circuit (IC), considering low power, high speed, and small area,
is quite challenging [31]. Since maximizing the run time of these portable devices is
desirable, reducing power consumption becomes a critical factor that requires careful
consideration [32].

The most demanding constraint when it comes to the design of an efficient, high-
performance system in nanometer technologies is power dissipation. ASICs, having op-
timized performance, offer better power efficiency than other implementation schemes.
ASIC offers lower power solutions and higher speeds for the same processor technology
due to its interconnect architecture compared to FPGA. Due to the limitations imposed by
general-purpose processors regarding computational power and throughput, implement-
ing image processing algorithms in real time is complex as it requires high computational
power and throughput rate. ASICs are semiconductors that can be specially designed for a
particular function. They can reduce silicon area with high efficiency in speed and power,
making them suitable candidates for image processing applications.

Technologies 2024, 12, 121 7 of 25

Technologies 2024, 12, x FOR PEER REVIEW 7 of 27

Figure 1. VLSI ASIC Design Flow.

The current emphasis of low-power VLSI design is on designing and implementing
power-efficient algorithms of arithmetic units such as adders, subtractors, multipliers, and
dividers. Due to the rapid growth of wireless devices in the electronics market, total power
consumption, a core design constraint, must be addressed. The efficient design of an
Integrated Circuit (IC), considering low power, high speed, and small area, is quite
challenging [31]. Since maximizing the run time of these portable devices is desirable,
reducing power consumption becomes a critical factor that requires careful consideration
[32].

The most demanding constraint when it comes to the design of an efficient, high-
performance system in nanometer technologies is power dissipation. ASICs, having
optimized performance, offer better power efficiency than other implementation schemes.
ASIC offers lower power solutions and higher speeds for the same processor technology
due to its interconnect architecture compared to FPGA. Due to the limitations imposed by
general-purpose processors regarding computational power and throughput,
implementing image processing algorithms in real time is complex as it requires high
computational power and throughput rate. ASICs are semiconductors that can be
specially designed for a particular function. They can reduce silicon area with high

Figure 1. VLSI ASIC Design Flow.

The efficient implementation of the different arithmetic circuits of the computational
unit for executing distinct algorithms is realizable with ASIC. As the complexity of arith-
metic circuits increases, so does the power consumption and transistor density, giving
rise to the low-power design techniques of VLSI with state-of-the-art concepts. With the
ever-growing popularity of battery-powered electronic devices, area, power, and delay
from the perspective of a circuit play a significant part in VLSI. As the area increases, the
number of logic gates also increases, slowing the circuit and increasing power consumption.
A trade-off often exists among power, delay, and area in VLSI.

The PDP is the design metric that gauges the effectiveness and performance of low-
power devices. As the complexity of the devices increases, the power dissipation keeps
rising, impacting the performance and reliability. In such a scenario, power consumption
becomes an integral part of the design that requires the design constraints to be further
optimized. The latest technological advancements have led researchers to work to de-
sign power-efficient, high-speed, and smaller devices with a focus on Power Delay Area
(PDA) constraints.

Technologies 2024, 12, 121 8 of 25

3. Development of the Proposed Computational Unit

A universal integrated logic device, the computational unit performs arithmetic and
logical computations. The computational unit is an essential microprocessor component
due to its versatility. The computational unit proposed in this research is illustrated using
the block diagram shown in Figure 2. The computational unit takes two operands, A and
B, as inputs and produces an output by applying predefined operations to the inputs, as
presented in Table 1. The selection input S(2) decides the arithmetic or logic operation. The
inputs S(1) and S(2) decide the operations to perform within the arithmetic or logic block.
The arithmetic computational unit comprises an ET adder and a low-power multiplier. An
OR, AND, XOR, and NOT logical gate comprises the logic unit using operand isolation.

Technologies 2024, 12, x FOR PEER REVIEW 9 of 27

Figure 2. Proposed Computational Unit Block Diagram.

The computational unit is built by integrating the ET adders, the low-power
multipliers, and the logic unit for 8-bit, 16-bit, and 32-bit computations. The
computational unit has been configured so that the logical module activates when S(2) is
1, and the arithmetic module activates when the select input S(2) is 0. Depending on the
S(0) input, addition using the ET adders or multiplication utilizing the low-power
multipliers is performed. When the input S(2) is 1, the inputs S(1) and S(0) determine
which logical operation has to be carried out. The different combinations of designs are
mentioned in Table 2.

Table 2. Different Designs of Computational Units.

Computational Unit Modified CSLA-Based Adder Multiplier
CU1 SBETA Using RCA

Divide and Conquer Multiplier CU2 LPSBETA Using RCA
CU3 OETA Using RCA
CU4 SBETA Using RCA PDP Optimized Multiplier Using

Iterative Carry Save SBETA CU5 LPSBETA Using RCA
CU6 OETA Using RCA

3.1. Modified CSLA-Based Adders Using Error Tolerant Adders
The arithmetic computations are accomplished utilizing the ET Adders presented in

our previous research [33]. Three designs of ET adders were incorporated in the
computational unit as illustrated in Figure 3, where 1 depicts the logic for the Selector-
Based ET Adder (SBETA), 2 describes the logic for Low-Power Selector-Based ET Adder
(LPSBETA), and 3 depicts the logic for the Optimized ET Adder (OETA). The pseudocode
for SBETA is also depicted.

Figure 2. Proposed Computational Unit Block Diagram.

Table 1. Operation Table for Proposed Computational Unit.

S(2) S(1) S(0) Operation Function

0 0 0 A + B Addition using ET Adders

0 0 1 A × B Multiplication using LP Multipliers

1 0 0 A|B

Logical operation using logic unit1 0 1 A ⊕ B
1 1 0 ~A
1 1 1 A & B

The computational unit is built by integrating the ET adders, the low-power multipli-
ers, and the logic unit for 8-bit, 16-bit, and 32-bit computations. The computational unit
has been configured so that the logical module activates when S(2) is 1, and the arithmetic
module activates when the select input S(2) is 0. Depending on the S(0) input, addition
using the ET adders or multiplication utilizing the low-power multipliers is performed.
When the input S(2) is 1, the inputs S(1) and S(0) determine which logical operation has to
be carried out. The different combinations of designs are mentioned in Table 2.

Technologies 2024, 12, 121 9 of 25

Table 2. Different Designs of Computational Units.

Computational Unit Modified CSLA-Based Adder Multiplier

CU1 SBETA Using RCA
Divide and Conquer MultiplierCU2 LPSBETA Using RCA

CU3 OETA Using RCA

CU4 SBETA Using RCA PDP Optimized Multiplier Using
Iterative Carry Save SBETACU5 LPSBETA Using RCA

CU6 OETA Using RCA

3.1. Modified CSLA-Based Adders Using Error Tolerant Adders

The arithmetic computations are accomplished utilizing the ET Adders presented in
our previous research [33]. Three designs of ET adders were incorporated in the compu-
tational unit as illustrated in Figure 3, where 1 depicts the logic for the Selector-Based ET
Adder (SBETA), 2 describes the logic for Low-Power Selector-Based ET Adder (LPSBETA),
and 3 depicts the logic for the Optimized ET Adder (OETA). The pseudocode for SBETA is
also depicted.

Pseudocode: Selector-Based ET Adder

if (A == 1)
Carry Output = B AND Cin

else
Carry Output = B OR Cin

end

Sum Output = NOT (cout)

Technologies 2024, 12, x FOR PEER REVIEW 10 of 27

Figure 3. Modified Carry Select Adder (CSLA) using ET Adders.

Pseudocode: Selector-Based ET Adder
if (A == 1)
 Carry Output = B AND Cin
else
 Carry Output = B OR Cin
end
Sum Output = NOT (cout)

While using the approximate computing paradigm, we noted that errors are
introduced in the sum and carry output of the ET adders to minimize the complexity of
the Boolean expressions, thereby reducing the power and area. The conventional CSLA is
modified by incorporating the ET adders for the lower order bits, as illustrated in Figure
3. The RCA is used for addition when the previous carry is zero. A selector unit is utilized
for the higher order bits to reduce the switching activity whenever the previous carry is
1. The power is reduced further by the BEC, that is utilized whenever the carry generated
is one.

3.2. Multiplier Based on Divide and Conquer Approach
The proposed multiplier based on the divide and conquer approach is illustrated in

Figure 4 and Algorithm 1 depicts the algorithm used. Phase 1 determines the type of
multiplier operation to be performed depending on the input type.

Algorithm 1: Multiplier based on Divide and Conquer Approach
One Hot Block: Checks if multiplier/multiplicand is one hot (Input has exactly one bit set to
1).
Two-part Multiplicand Block: Checks if the multiplier is 3 or less than 99.
Divide and Conquer Block: Checks if multiplier/multiplicand is an even number.
Four Range Block: This block is enabled when the conditions mentioned above are not met.
In the second phase, just one block is activated, reducing power.

The detailed algorithm and block diagram is explained here.

Figure 3. Modified Carry Select Adder (CSLA) using ET Adders.

While using the approximate computing paradigm, we noted that errors are intro-
duced in the sum and carry output of the ET adders to minimize the complexity of the
Boolean expressions, thereby reducing the power and area. The conventional CSLA is
modified by incorporating the ET adders for the lower order bits, as illustrated in Figure 3.
The RCA is used for addition when the previous carry is zero. A selector unit is utilized for
the higher order bits to reduce the switching activity whenever the previous carry is 1. The
power is reduced further by the BEC, that is utilized whenever the carry generated is one.

Technologies 2024, 12, 121 10 of 25

3.2. Multiplier Based on Divide and Conquer Approach

The proposed multiplier based on the divide and conquer approach is illustrated
in Figure 4 and Algorithm 1 depicts the algorithm used. Phase 1 determines the type of
multiplier operation to be performed depending on the input type.

Algorithm 1: Multiplier based on Divide and Conquer Approach

One Hot Block: Checks if multiplier/multiplicand is one hot (Input has exactly one bit set to 1).
Two-part Multiplicand Block: Checks if the multiplier is 3 or less than 99.
Divide and Conquer Block: Checks if multiplier/multiplicand is an even number.
Four Range Block: This block is enabled when the conditions mentioned above are not met.

In the second phase, just one block is activated, reducing power.

Technologies 2024, 12, x FOR PEER REVIEW 11 of 27

Figure 4. Multiplier based on Divide and Conquer approach.

i. One Hot Block:
Figure 5 illustrates the block diagram of one hot block. The “Selector unit”

determines whether the multiplier/multiplicand is one hot or not.

Figure 5. Block diagram of One Hot Block.

A one hot flag checks if the multiplier/multiplicand is one hot. A priority encoder
determines the radix of the multiplier and multiplicand. The smaller number is made the
multiplier based on the radix obtained. The product is obtained by left shifting the
multiplicand by the radix of the multiplier when the multiplier is one hot. Likewise, when
the multiplicand is one hot, the product is obtained by left shifting the multiplier by the
radix of the multiplicand. The shifting operation can be accomplished using a barrel
shifter.

ii. (ii) Two-part Multiplicand Block:
The block diagram of the two-part multiplicand block is depicted in Figure 6. The

“Type Determinant” block determines whether the multiplier is a multiple of 3 or if the
multiplier is less than 99. The two-part multiplicand block is enabled if the multiplier
represented by B is in the range specified or is a multiple of 3. First, the multiplier is
divided into two parts of 4 bits each—B[7:4] and B[3:0]. Each part is multiplied with the
multiplier using the MUL block to obtain M1 and M2. A barrel shifter is utilized to left
shift M1 by four-bit positions. Finally, the adder block adds the shifted P1 with P2 to
obtain the product.

Figure 4. Multiplier based on Divide and Conquer approach.

The detailed algorithm and block diagram is explained here.

i. One Hot Block:

Figure 5 illustrates the block diagram of one hot block. The “Selector unit” determines
whether the multiplier/multiplicand is one hot or not.

Technologies 2024, 12, x FOR PEER REVIEW 11 of 27

Figure 4. Multiplier based on Divide and Conquer approach.

i. One Hot Block:
Figure 5 illustrates the block diagram of one hot block. The “Selector unit”

determines whether the multiplier/multiplicand is one hot or not.

Figure 5. Block diagram of One Hot Block.

A one hot flag checks if the multiplier/multiplicand is one hot. A priority encoder
determines the radix of the multiplier and multiplicand. The smaller number is made the
multiplier based on the radix obtained. The product is obtained by left shifting the
multiplicand by the radix of the multiplier when the multiplier is one hot. Likewise, when
the multiplicand is one hot, the product is obtained by left shifting the multiplier by the
radix of the multiplicand. The shifting operation can be accomplished using a barrel
shifter.

ii. (ii) Two-part Multiplicand Block:
The block diagram of the two-part multiplicand block is depicted in Figure 6. The

“Type Determinant” block determines whether the multiplier is a multiple of 3 or if the
multiplier is less than 99. The two-part multiplicand block is enabled if the multiplier
represented by B is in the range specified or is a multiple of 3. First, the multiplier is
divided into two parts of 4 bits each—B[7:4] and B[3:0]. Each part is multiplied with the
multiplier using the MUL block to obtain M1 and M2. A barrel shifter is utilized to left
shift M1 by four-bit positions. Finally, the adder block adds the shifted P1 with P2 to
obtain the product.

Figure 5. Block diagram of One Hot Block.

Technologies 2024, 12, 121 11 of 25

A one hot flag checks if the multiplier/multiplicand is one hot. A priority encoder
determines the radix of the multiplier and multiplicand. The smaller number is made
the multiplier based on the radix obtained. The product is obtained by left shifting the
multiplicand by the radix of the multiplier when the multiplier is one hot. Likewise, when
the multiplicand is one hot, the product is obtained by left shifting the multiplier by the
radix of the multiplicand. The shifting operation can be accomplished using a barrel shifter.

ii. Two-part Multiplicand Block:

The block diagram of the two-part multiplicand block is depicted in Figure 6. The
“Type Determinant” block determines whether the multiplier is a multiple of 3 or if the
multiplier is less than 99. The two-part multiplicand block is enabled if the multiplier
represented by B is in the range specified or is a multiple of 3. First, the multiplier is
divided into two parts of 4 bits each—B[7:4] and B[3:0]. Each part is multiplied with the
multiplier using the MUL block to obtain M1 and M2. A barrel shifter is utilized to left
shift M1 by four-bit positions. Finally, the adder block adds the shifted P1 with P2 to obtain
the product.

Technologies 2024, 12, x FOR PEER REVIEW 12 of 27

Figure 6. Two-part Multiplicand Block.

iii. Divide and Conquer Block:
The priority encoder block in the proposed architecture determines the range of the

multiplicand and multiplier to identify their radix. The numbers to be multiplied
represented by A and B are examined to identify if they are even or odd. The even number
is designated as the multiplier, and the trailing zeros count is determined. The
multiplicand is shifted to the left by the trailing zeros count of the multiplier. The
multiplier is shifted to the right by the trailing zeros count of the multiplier. Multiplication
is now performed on multiplier and multiplicand to obtain the product. The shifting
operation reduces the multiplier range, reducing the power consumption. Figure 7 shows
the block diagram of the divide and conquer block.

Figure 7. Divide and Conquer Block diagram.

iv. 4-Number Range Block:
The block diagram for the 4-power range method is illustrated in Figure 8. The radix

of the multiplier and multiplicand are determined using a priority encoder. A comparator
module then compares the radix of the two numbers to decide which is the smaller
number, which is assigned as the multiplier.

Figure 6. Two-part Multiplicand Block.

iii. Divide and Conquer Block:

The priority encoder block in the proposed architecture determines the range of
the multiplicand and multiplier to identify their radix. The numbers to be multiplied
represented by A and B are examined to identify if they are even or odd. The even number
is designated as the multiplier, and the trailing zeros count is determined. The multiplicand
is shifted to the left by the trailing zeros count of the multiplier. The multiplier is shifted
to the right by the trailing zeros count of the multiplier. Multiplication is now performed
on multiplier and multiplicand to obtain the product. The shifting operation reduces the
multiplier range, reducing the power consumption. Figure 7 shows the block diagram of
the divide and conquer block.

iv. 4-Number Range Block:

The block diagram for the 4-power range method is illustrated in Figure 8. The radix
of the multiplier and multiplicand are determined using a priority encoder. A comparator
module then compares the radix of the two numbers to decide which is the smaller number,
which is assigned as the multiplier.

Technologies 2024, 12, 121 12 of 25

Technologies 2024, 12, x FOR PEER REVIEW 12 of 27

Figure 6. Two-part Multiplicand Block.

iii. Divide and Conquer Block:
The priority encoder block in the proposed architecture determines the range of the

multiplicand and multiplier to identify their radix. The numbers to be multiplied
represented by A and B are examined to identify if they are even or odd. The even number
is designated as the multiplier, and the trailing zeros count is determined. The
multiplicand is shifted to the left by the trailing zeros count of the multiplier. The
multiplier is shifted to the right by the trailing zeros count of the multiplier. Multiplication
is now performed on multiplier and multiplicand to obtain the product. The shifting
operation reduces the multiplier range, reducing the power consumption. Figure 7 shows
the block diagram of the divide and conquer block.

Figure 7. Divide and Conquer Block diagram.

iv. 4-Number Range Block:
The block diagram for the 4-power range method is illustrated in Figure 8. The radix

of the multiplier and multiplicand are determined using a priority encoder. A comparator
module then compares the radix of the two numbers to decide which is the smaller
number, which is assigned as the multiplier.

Figure 7. Divide and Conquer Block diagram.
Technologies 2024, 12, x FOR PEER REVIEW 13 of 27

Figure 8. 4 number range Block diagram.

The multiplier’s range [L, H] is then decided based on the radix of the multiplier
obtained from the priority encoder. The range of the L value is 2n, and 2n + 4 is the H
value range. The H and L value average in the range gives the midpoint value (M). A
priority encoder is used to determine the radix of H and L. A comparator is used to check
if the multiplier is greater than the midpoint value M. If the multiplier is greater than M,
the multiplicand is shifted to the left by the radix of H, and the multiplier is shifted to the
right by the radix of H. A multiplier calculates the product, which is then added to the
multiplicand using an adder. If the multiplier is smaller than the midpoint value, the
multiplicand is shifted to the left by the radix of L, and the multiplier is shifted to the right
by the radix of L. The product is obtained by multiplying the multiplicand and the
multiplier.

3.3. PDP Optimized Multiplier Using Iterative Carry Save SBETA
The demand for image and signal processing systems in portable electronic devices

has been on the rise owing to the growing innovations in the field of semiconductor
technology. An indispensable component of almost all image processing applications is
multipliers. The low-power implementation of multipliers is tricky as it calls for high
performance and speed to keep up with modern electronic devices’ increasing clock
frequencies.

Figure 8. 4 number range Block diagram.

Technologies 2024, 12, 121 13 of 25

The multiplier’s range [L, H] is then decided based on the radix of the multiplier
obtained from the priority encoder. The range of the L value is 2n, and 2n + 4 is the H
value range. The H and L value average in the range gives the midpoint value (M). A
priority encoder is used to determine the radix of H and L. A comparator is used to check
if the multiplier is greater than the midpoint value M. If the multiplier is greater than
M, the multiplicand is shifted to the left by the radix of H, and the multiplier is shifted
to the right by the radix of H. A multiplier calculates the product, which is then added
to the multiplicand using an adder. If the multiplier is smaller than the midpoint value,
the multiplicand is shifted to the left by the radix of L, and the multiplier is shifted to
the right by the radix of L. The product is obtained by multiplying the multiplicand and
the multiplier.

3.3. PDP Optimized Multiplier Using Iterative Carry Save SBETA

The demand for image and signal processing systems in portable electronic devices has
been on the rise owing to the growing innovations in the field of semiconductor technology.
An indispensable component of almost all image processing applications is multipliers.
The low-power implementation of multipliers is tricky as it calls for high performance and
speed to keep up with modern electronic devices’ increasing clock frequencies.

The proposed work discusses about the design and implementation of a multiplier,
based on the UT sutra of Vedic arithmetic, incorporating an Iterative Carry Save Selector-
Based Error Tolerant Adder (ICS SBETA) for the partial product addition.

In the first phase of multiplication, a 4 × 4 multiplier using ICS SBETA is used as
illustrated in Figure 9. The SBETA design and the partial products generated are also
depicted in Figure 9.

Technologies 2024, 12, x FOR PEER REVIEW 14 of 27

The proposed work discusses about the design and implementation of a multiplier,
based on the UT sutra of Vedic arithmetic, incorporating an Iterative Carry Save Selector-
Based Error Tolerant Adder (ICS SBETA) for the partial product addition.

In the first phase of multiplication, a 4 × 4 multiplier using ICS SBETA is used as
illustrated in Figure 9. The SBETA design and the partial products generated are also
depicted in Figure 9.

Figure 9. 4 × 4 Multiplier incorporating Iterative Carry Save SBETA.

In the second phase, an 8 × 8 multiplier using Iterative Carry Save SBETA is utilized
to compute partial products generated in the first stage, as illustrated in Figure 10.

Figure 9. 4 × 4 Multiplier incorporating Iterative Carry Save SBETA.

Technologies 2024, 12, 121 14 of 25

In the second phase, an 8 × 8 multiplier using Iterative Carry Save SBETA is utilized
to compute partial products generated in the first stage, as illustrated in Figure 10.

Technologies 2024, 12, x FOR PEER REVIEW 15 of 27

Figure 10. 8 × 8 Multiplier incorporating Iterative Carry Save SBETA.

Finally, in the third phase of multiplication, a 16 × 16 multiplier using ICS SBETA is
utilized as depicted in Figure 11. Since ICS SBETA is incorporated into the multiplier
design, the processing time for the summing of partial products is nearly halved. The
arithmetic computation using the ICS SBETA is as given by Equation (1). 𝑡ூ஼ௌ ௌ஻ா்஺ = (𝑘 − 2)𝑡ௌ஻ா்஺ ൅ 𝑡஼௅஺ (1)

where 𝑘 denotes the bit size.

Figure 11. 16 × 16 Multiplier incorporating Iterative Carry Save SBETA.

3.4. Logic Unit Using Operand Isolation
The proposed logic module uses the operand isolation technique [34] to selectively

restrict switching activity that propagates through the circuit, hence avoiding unnecessary
operations. Operand isolation prevents specific circuit components from detecting
changes to their input operands until the desired result is achieved. AND gates, which
become transparent when the computation results are required, are used at the circuits’
inputs to achieve this. Operand isolation’s fundamental concept is to power off specific
logic blocks while no calculations are being processed. This can be achieved by shutting

Figure 10. 8 × 8 Multiplier incorporating Iterative Carry Save SBETA.

Finally, in the third phase of multiplication, a 16 × 16 multiplier using ICS SBETA
is utilized as depicted in Figure 11. Since ICS SBETA is incorporated into the multiplier
design, the processing time for the summing of partial products is nearly halved. The
arithmetic computation using the ICS SBETA is as given by Equation (1).

tICS SBETA = (k − 2)tSBETA + tCLA (1)

where k denotes the bit size.

Technologies 2024, 12, x FOR PEER REVIEW 15 of 27

Figure 10. 8 × 8 Multiplier incorporating Iterative Carry Save SBETA.

Finally, in the third phase of multiplication, a 16 × 16 multiplier using ICS SBETA is
utilized as depicted in Figure 11. Since ICS SBETA is incorporated into the multiplier
design, the processing time for the summing of partial products is nearly halved. The
arithmetic computation using the ICS SBETA is as given by Equation (1). 𝑡ூ஼ௌ ௌ஻ா்஺ = (𝑘 − 2)𝑡ௌ஻ா்஺ ൅ 𝑡஼௅஺ (1)

where 𝑘 denotes the bit size.

Figure 11. 16 × 16 Multiplier incorporating Iterative Carry Save SBETA.

3.4. Logic Unit Using Operand Isolation
The proposed logic module uses the operand isolation technique [34] to selectively

restrict switching activity that propagates through the circuit, hence avoiding unnecessary
operations. Operand isolation prevents specific circuit components from detecting
changes to their input operands until the desired result is achieved. AND gates, which
become transparent when the computation results are required, are used at the circuits’
inputs to achieve this. Operand isolation’s fundamental concept is to power off specific
logic blocks while no calculations are being processed. This can be achieved by shutting

Figure 11. 16 × 16 Multiplier incorporating Iterative Carry Save SBETA.

3.4. Logic Unit Using Operand Isolation

The proposed logic module uses the operand isolation technique [34] to selectively
restrict switching activity that propagates through the circuit, hence avoiding unnecessary
operations. Operand isolation prevents specific circuit components from detecting changes
to their input operands until the desired result is achieved. AND gates, which become

Technologies 2024, 12, 121 15 of 25

transparent when the computation results are required, are used at the circuits’ inputs to
achieve this. Operand isolation’s fundamental concept is to power off specific logic blocks
while no calculations are being processed. This can be achieved by shutting off the inputs
to logic blocks when their outputs are unnecessary. As a result, the unwanted switching
activity is minimized, reducing the power.

3.5. Application of the Proposed Computational Unit for Medical Image Compression

This research considers a medical image, a CT scan of the brain for aneurysm detection
of size 512 × 512 taken from the open-access database of medical images [35]. Block style
of DCT coding is followed in the DCT approach, in which the DCT is applied over blocks
of a fixed size of 8 × 8. So, for an image of size 512 × 512, there are 4096 blocks to which
DCT is applied to get the DCT of the entire image. The structure of the encoding of the
digital image compression referred to in this research work is depicted in Figure 12.

Technologies 2024, 12, x FOR PEER REVIEW 16 of 27

off the inputs to logic blocks when their outputs are unnecessary. As a result, the
unwanted switching activity is minimized, reducing the power.

3.5. Application of the Proposed Computational Unit for Medical Image Compression
This research considers a medical image, a CT scan of the brain for aneurysm

detection of size 512 × 512 taken from the open-access database of medical images [35].
Block style of DCT coding is followed in the DCT approach, in which the DCT is applied
over blocks of a fixed size of 8 × 8. So, for an image of size 512 × 512, there are 4096 blocks
to which DCT is applied to get the DCT of the entire image. The structure of the encoding
of the digital image compression referred to in this research work is depicted in Figure 12.

Figure 12. Encoding block of DCT Image Compression.

The compression ratios can be improvised by replacing the gray code with the binary
code when the original digital image is represented and utilized in the image compression
process [36]. A considerable improvement in the compression ratio was observed in this
research work by utilizing gray code [37]. The original image in binary code is first
converted to gray code using a binary-to-gray code converter. Gray coding offers a vibrant
property of requiring a single bit change from a value “G” to “G + 1” or “G − 1” unlike
binary codes, making gray coding an attractive addition to applications demanding lesser
power consumption. Figure 13 illustrates the transitioning of bits for both gray and binary
codes from numbers 0 to 15.

Figure 13. Bit Transitioning for Binary and Gray Codes.

The image is then divided into 8 × 8 blocks, to which DCT is applied. Several fast
DCT algorithms have been proposed recently for the practical computation of image
compression. Most of the proposed algorithms were focused on minimizing the addition
and multiplication operations associated with the butterfly blocks incorporated in the

Figure 12. Encoding block of DCT Image Compression.

The compression ratios can be improvised by replacing the gray code with the binary
code when the original digital image is represented and utilized in the image compression
process [36]. A considerable improvement in the compression ratio was observed in
this research work by utilizing gray code [37]. The original image in binary code is first
converted to gray code using a binary-to-gray code converter. Gray coding offers a vibrant
property of requiring a single bit change from a value “G” to “G + 1” or “G − 1” unlike
binary codes, making gray coding an attractive addition to applications demanding lesser
power consumption. Figure 13 illustrates the transitioning of bits for both gray and binary
codes from numbers 0 to 15.

Technologies 2024, 12, x FOR PEER REVIEW 16 of 27

off the inputs to logic blocks when their outputs are unnecessary. As a result, the
unwanted switching activity is minimized, reducing the power.

3.5. Application of the Proposed Computational Unit for Medical Image Compression
This research considers a medical image, a CT scan of the brain for aneurysm

detection of size 512 × 512 taken from the open-access database of medical images [35].
Block style of DCT coding is followed in the DCT approach, in which the DCT is applied
over blocks of a fixed size of 8 × 8. So, for an image of size 512 × 512, there are 4096 blocks
to which DCT is applied to get the DCT of the entire image. The structure of the encoding
of the digital image compression referred to in this research work is depicted in Figure 12.

Figure 12. Encoding block of DCT Image Compression.

The compression ratios can be improvised by replacing the gray code with the binary
code when the original digital image is represented and utilized in the image compression
process [36]. A considerable improvement in the compression ratio was observed in this
research work by utilizing gray code [37]. The original image in binary code is first
converted to gray code using a binary-to-gray code converter. Gray coding offers a vibrant
property of requiring a single bit change from a value “G” to “G + 1” or “G − 1” unlike
binary codes, making gray coding an attractive addition to applications demanding lesser
power consumption. Figure 13 illustrates the transitioning of bits for both gray and binary
codes from numbers 0 to 15.

Figure 13. Bit Transitioning for Binary and Gray Codes.

The image is then divided into 8 × 8 blocks, to which DCT is applied. Several fast
DCT algorithms have been proposed recently for the practical computation of image
compression. Most of the proposed algorithms were focused on minimizing the addition
and multiplication operations associated with the butterfly blocks incorporated in the

Figure 13. Bit Transitioning for Binary and Gray Codes.

Technologies 2024, 12, 121 16 of 25

The image is then divided into 8 × 8 blocks, to which DCT is applied. Several fast
DCT algorithms have been proposed recently for the practical computation of image
compression. Most of the proposed algorithms were focused on minimizing the addition
and multiplication operations associated with the butterfly blocks incorporated in the
DCT algorithms. The algorithm proposed by Loeffler proved to be the fastest, with just
11 multiplications and 29 additions, making it the ideal choice for this research work [38].
The structure of the 8-point DCT structure incorporating the computational unit in Loeffler’s
algorithm is illustrated in Figure 14. The adders used for computations in the butterfly
diagram are replaced by the ET adders by incorporating the computational unit designed
in this research work, reducing the power. The multiplications involved are reduced by
approximating the cosine constants as given in Table 3 to one wherever applicable, and in
cases where multiplications were required, it was achieved using the low-power multipliers
and shifters, as illustrated in Figure 14.

Technologies 2024, 12, x FOR PEER REVIEW 17 of 27

DCT algorithms. The algorithm proposed by Loeffler proved to be the fastest, with just 11
multiplications and 29 additions, making it the ideal choice for this research work [38].
The structure of the 8-point DCT structure incorporating the computational unit in
Loeffler’s algorithm is illustrated in Figure 14. The adders used for computations in the
butterfly diagram are replaced by the ET adders by incorporating the computational unit
designed in this research work, reducing the power. The multiplications involved are
reduced by approximating the cosine constants as given in Table 3 to one wherever
applicable, and in cases where multiplications were required, it was achieved using the
low-power multipliers and shifters, as illustrated in Figure 14.

Figure 14. An 8-point Loeffler’s DCT flow diagram incorporating the computational unit.

Table 3. Constant Factors used in DCT.

a b c d e f g h 𝑠𝑖𝑛 𝜋16 𝑐𝑜𝑠 𝜋16 𝑠𝑖𝑛 3𝜋16 𝑐𝑜𝑠 3𝜋16 𝑐𝑜𝑠 𝜋4 𝑐𝑜𝑠 𝜋16 𝑠𝑖𝑛 𝜋8 𝑐𝑜𝑠 𝜋8

0.2 0.98 0.5 0.83 0.707 0.98 0.38 0.92

The bit-width of the digital input images is 10 bits, and after the row DCT, the output
images’ bit-width is 14 bits. The second column DCT and first row IDCT had an input and
output bit-width of 14 bits. Finally, 14 was the bit-width of the last column IDCT, with the
output image having a bit-width of 10 bits.

The next step is quantization, where the high-frequency DCT coefficients that are not
imperative are reduced to 0. The quantization process is achieved by dividing each 8 × 8
block by a coefficient Q (u,v) obtained using the quantization matrix. As the division
involved is an integer computation, most coefficients are 0, whereas the remaining
coefficients are smaller numbers. A situation ideal for run length encoding and entropy
encoding is obtained now. The quantization matrix determines the quality of the
compression. Larger values in the quantization table are chosen for lower quality,
resulting in higher compression rates.

Q (u,v) =
16 11 10 16 24 40 51 6112 12 14 19 26 58 60 5514 13 16 24 40 57 69 5614 17 22 29 51 87 80 6218 22 37 56 68 109 103 7724 35 33 64 81 104 113 9249 64 78 87 103 121 120 10172 92 95 98 112 100 103 99

A quality factor of 50 was utilized for the quantization process. Each matrix element

should be multiplied by (100 − q)/50 for higher qualities; the multiplication factor is 50/q
for lower qualities. The high-frequency components are eliminated without

Figure 14. An 8-point Loeffler’s DCT flow diagram incorporating the computational unit.

Table 3. Constant Factors used in DCT.

a b c d e f g h

sin π
16 cos π

16 sin 3π
16 cos 3π

16 cos π
4 cos π

16 sin π
8 cos π

8

0.2 0.98 0.5 0.83 0.707 0.98 0.38 0.92

The bit-width of the digital input images is 10 bits, and after the row DCT, the output
images’ bit-width is 14 bits. The second column DCT and first row IDCT had an input and
output bit-width of 14 bits. Finally, 14 was the bit-width of the last column IDCT, with the
output image having a bit-width of 10 bits.

The next step is quantization, where the high-frequency DCT coefficients that are
not imperative are reduced to 0. The quantization process is achieved by dividing each
8 × 8 block by a coefficient Q (u,v) obtained using the quantization matrix. As the divi-
sion involved is an integer computation, most coefficients are 0, whereas the remaining
coefficients are smaller numbers. A situation ideal for run length encoding and entropy en-
coding is obtained now. The quantization matrix determines the quality of the compression.

Technologies 2024, 12, 121 17 of 25

Larger values in the quantization table are chosen for lower quality, resulting in higher
compression rates.

Q(u, v) =

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 33 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

A quality factor of 50 was utilized for the quantization process. Each matrix element
should be multiplied by (100 − q)/50 for higher qualities; the multiplication factor is 50/q
for lower qualities. The high-frequency components are eliminated without compromising
the image quality. Higher numbers are located at the bottom right of the quantization table,
whereas data with high-frequency and low-frequency values are located at the top left. This
makes the high-frequency components to be rounded off to zero. Once the DCT coefficients
are quantized, a zig-zag scanning pattern, as depicted in Figure 15, is followed to maintain
the redundancy of zeroes due to the presence of several zeroes at the bottom left corner.
The high-frequency components are reduced to zero once quantization is fulfilled, due to
which the zig-zag pattern of scanning is pursued.

Technologies 2024, 12, x FOR PEER REVIEW 18 of 27

compromising the image quality. Higher numbers are located at the bottom right of the
quantization table, whereas data with high-frequency and low-frequency values are
located at the top left. This makes the high-frequency components to be rounded off to
zero. Once the DCT coefficients are quantized, a zig-zag scanning pattern, as depicted in
Figure 15, is followed to maintain the redundancy of zeroes due to the presence of several
zeroes at the bottom left corner. The high-frequency components are reduced to zero once
quantization is fulfilled, due to which the zig-zag pattern of scanning is pursued.

Figure 15. Zig-zag scan pattern.

The list of integer values obtained after zig-zag scanning generates the sequence of
symbols. Run Length Encoding (RLE) is the next step since there are many zeroes from
which each number, along with the number of times it is repeated, is obtained. The
quantized coefficients are sampled using the zig-zag scan pattern from the lowest to
highest frequencies to generate longer runs. The data stream obtained has a length of 64
bytes, which has a high probability of zeros toward the end. The RLE of the stream
obtained is highly efficient.

After this, Huffman Coding must be carried out, where the numbers with higher
frequency are denoted with lesser bits than the other numbers. RLE and Huffman Coding
are performed to reduce the space required without removing any data. The data obtained
are then converted back to binary format using the gray-to-binary code converter, after
which the compressed image is obtained [38–42].

The reverse process is applied to obtain the reconstructed image using the decoding
process illustrated in Figure 16. The Huffman-coded data are decoded, and the run-length
encoded data are expanded into an 8 × 8 matrix to restore the matrix of quantized
coefficients. These are multiplied by the values from the quantization matrix Q (u,v). Next,
the Inverse Discrete Cosine Transform (IDCT), which is the reverse of the DCT, is carried
out on the values obtained in a similar manner using the computational unit for the
computations involved. At this instant, data loss becomes evident as the DCT coefficients
that were set to zero due to rounding remain zero after decompression.

Figure 15. Zig-zag scan pattern.

The list of integer values obtained after zig-zag scanning generates the sequence
of symbols. Run Length Encoding (RLE) is the next step since there are many zeroes
from which each number, along with the number of times it is repeated, is obtained. The
quantized coefficients are sampled using the zig-zag scan pattern from the lowest to highest
frequencies to generate longer runs. The data stream obtained has a length of 64 bytes,
which has a high probability of zeros toward the end. The RLE of the stream obtained is
highly efficient.

After this, Huffman Coding must be carried out, where the numbers with higher
frequency are denoted with lesser bits than the other numbers. RLE and Huffman Coding
are performed to reduce the space required without removing any data. The data obtained
are then converted back to binary format using the gray-to-binary code converter, after
which the compressed image is obtained [38–42].

The reverse process is applied to obtain the reconstructed image using the decoding
process illustrated in Figure 16. The Huffman-coded data are decoded, and the run-
length encoded data are expanded into an 8 × 8 matrix to restore the matrix of quantized

Technologies 2024, 12, 121 18 of 25

coefficients. These are multiplied by the values from the quantization matrix Q (u,v).
Next, the Inverse Discrete Cosine Transform (IDCT), which is the reverse of the DCT, is
carried out on the values obtained in a similar manner using the computational unit for the
computations involved. At this instant, data loss becomes evident as the DCT coefficients
that were set to zero due to rounding remain zero after decompression.

Technologies 2024, 12, x FOR PEER REVIEW 19 of 27

Figure 16. Decoding block of IDCT Image Compression.

Figure 16. Decoding block of IDCT Image Compression.

4. Results and Discussion

The metrics used to evaluate and assess the architecture’s performance are estimated
by calculating the reconstructed image’s Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), and Compression ratio (CR). The power, delay, area, PDP, and
PSNR of various architectures based on DCT architectures are also assessed in this section.

Implementation of the Proposed Architecture for Image Processing Application

The implementation adopts standard-cell-based ASIC or semi-custom design built on
preassembled library cells. Custom-designed standard cells are included in the library after
being created. A few standard cells are available as a file in the IEEE library format. Through
“place and route” Computer Aided Design (CAD) tools, these cells are subsequently used
in the design by being arranged in rows and wired together. These cells are arranged
physically and validated for specific process nodes. The Verilog HDL is used for the
functional design in the RTL, which is mapped through a logic synthesis process into
preassembled cells.

The designs proposed and from the literature are verified for their functionality by
applying random inputs and examining the actual and anticipated results. It was observed
that the anticipated and actual results matched for each design. The RTL verification of the
design was performed using Cadence’s incisive tool. The toggle information of all inputs
and outputs is captured by a Value Change Dump (VCD) file generated during the design’s
functional verification. The VCD file is given as one of the inputs to the logic synthesis
process. Logic synthesis is the process that transforms the technology-independent RTL
into a technology-specific gate-level netlist optimized for a set of predefined constraints by
using the process library. Logic synthesis starts with the RTL design, standard cell libraries,
and design constraints. It completes with a gate-level netlist, mapped to the standard cell
library that is efficient in terms of power, delay, and area.

The RTL defines how the design functions. The process library describes the logic
gates’ physical, electrical, and logical information. The logic synthesis Electronic Design
Automation (EDA) tool converts the RTL into an optimized netlist. The process library
serves to map this netlist into a technology-specific netlist. The Genus tool of Cadence with
gpdk 90 and 45 nm standard cell libraries is used for the logic synthesis of the designs

Technologies 2024, 12, 121 19 of 25

proposed and from the literature. On completion of the logic synthesis, the next step of the
ASIC design flow is physical design.

The 16-bit integrated computational units are designed, implemented, and synthesized
using 45 nm gpdk technology libraries. The statistical parameter PSNR, as defined in
Equation (2), calculates the ratio of the image strength to the noise power that affects the
image quality.

PSNR = 10 log10
Max2

MSE
(2)

where Max is the maximum value of the image pixel. MSE denotes the Mean Squared
Error (MSE) defined by Equation (3).

MSE =
1

mn

m−1

∑
x=0

n−1

∑
y=0

[Io(x, y)− Ir(x, y)]2 (3)

where m and n denote each output image’s number of rows and columns and Io = Original
image and Ir = reconstructed image.

A PSNR of higher value indicates that the reconstructed image is of better quality. The
SSIM that predicts the reference and noisy image quality is another quality metric that is
used in this research denoted by Equation (4).

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (4)

where µx is the pixel sample mean of x, µy is the pixel sample mean of y, σ2
x is the variance

of x, σ2
y is the variance of y, σxy is the covariance of x and y, C1 = (k1L)2, C2 = (k2L)2 are

two variables to stabilize the division with a weak denominator, L is the dynamic range of
the pixel values (typically, this is 2# o f bits per pixel − 1), k1 is 0.01, and k2 is 0.03 by default.

SSIM values vary between 0 and 1. An SSIM value of 0 signifies that the two images are
different. A higher SSIM value indicates a higher-quality image. The metric that evaluates
the compression algorithm performance is defined by the CR given by Equation (5).

Compression Ratio (CR)(%) =
Output Image size (bytes)
Input Image size (bytes)

(5)

The performance in terms of power, critical delay, area, PDP, SSIM, and PSNR is tabu-
lated in Table 4, and the PDP-PSNR Plot of the computational unit and the reconstructed
image is presented in Figure 17.

The PDP of the overall image encoding and decoding computations are reduced by the
incorporation of the modified CSLA-based ET adders, the divide and conquer multiplier,
and the iterative CSA multiplier in the proposed computational unit using the Loeffler algo-
rithm for DCT and IDCT computations. The analysis of Table 4 indicates an improvement
in performance metrics of the power, delay, area, and PDP of CU4 in comparison to the
other implemented designs and the DCT designs from the existing literature considered
in this research work due to the low-power concept of approximate computing that is
used in the butterfly diagram computations of the DCT/IDCT operations involved in the
encoding and decoding block of the architecture. A substantial improvement in PSNR was
also observed in the reconstructed image obtained using CU4, as depicted in Figure 17.
The reconstructed image obtained using the computational unit exhibited less distortion,
making this design the ideal choice for medical image compression applications.

The synthesis results performed using 45 nm standard technology libraries indicated
that the proposed implementation is better than the existing architectures listed in [46–48]
in terms of PDP by 46.87%, 44.113%, and 33.88%, respectively, due to the incorporation of
the computational unit in the Loeffler algorithm for the DCT/IDCT block used in the image
compression process. Reducing the multiplications involved and utilizing the low-power

Technologies 2024, 12, 121 20 of 25

multipliers and the shifters minimize the power. The PSNR is considered as a Figure of
Merit (FOM) to evaluate the performance of the computational unit. The PSNR of the
proposed design was better than the PSNR of the existing architectures in [46–48] by 5.89%,
9.88%, and 6.14%. Compared to the existing DCT architectures, the SSIM obtained was
0.967, which was quite good.

Table 4. Power, Delay, Area, PDP, SSIM, and PSNR Analysis for various DCT Structures.

Technology: 45 nm

Architecture Power (mW) Delay (nS) Area (µmm2) PDP (pJ) SSIM PSNR (dB)

High-Performance 2D Transform [43] 11.89 32.86 23.78 393.10 0.898 37.766

Loeffler using AIE [44] 11.77 26.45 10.12 311.32 0.901 31.23

Cost-Efficient Loeffler algorithm [45] 8.17 21.5 9.5 175.65 0.886 31.45

EHA for DCT—Imp. Loeffler [46] 13.64 23.76 18.98 320.32 0.928 38.33

DIC using Approx. Addition [47] 15.31 19.89 21.34 304.51 0.915 36.94

DCT using Imp. B.G Lee [48] 9.72 26.48 17.69 257.38 0.906 38.24

CU1 11.16 22.12 19.07 246.86 0.953 40.24

CU2 11.27 22.13 19.06 249.4 0.961 39.67

CU3 11.29 22.14 19.05 249.96 0.965 39.54

CU4 9.31 18.28 14.63 170.18 0.967 40.59

CU5 9.32 18.31 14.62 170.65 0.958 39.24

CU6 9.23 18.61 14.61 171.77 0.962 39.14

Technologies 2024, 12, x FOR PEER REVIEW 22 of 27

of the proposed design was better than the PSNR of the existing architectures in [46–48]
by 5.89%, 9.88%, and 6.14%. Compared to the existing DCT architectures, the SSIM
obtained was 0.967, which was quite good.

Figure 17. PDP-PSNR Plot of various DCT architectures and the proposed Computational units 1—
[43], 2—[44], 3—[45], 4—[46], 5—[47], 6—[48].

The SSIM, PSNR, and CR values of the reconstructed and original CT scan images
obtained by incorporating the computational unit CU4 in the Loeffler algorithm for the
DCT and IDCT computations are illustrated in Figure18. SSIM and PSNR are used in
image processing as the figure of merit. An image with less noise and distortion is
generally preferable as it gives a high signal-to-noise ratio. In image processing, high
values of SSIM and PSNR indicate a good-quality image.

Figure 17. PDP-PSNR Plot of various DCT architectures and the proposed Computational units
1—[43], 2—[44], 3—[45], 4—[46], 5—[47], 6—[48].

The SSIM, PSNR, and CR values of the reconstructed and original CT scan images
obtained by incorporating the computational unit CU4 in the Loeffler algorithm for the
DCT and IDCT computations are illustrated in Figure 18. SSIM and PSNR are used in
image processing as the figure of merit. An image with less noise and distortion is generally
preferable as it gives a high signal-to-noise ratio. In image processing, high values of SSIM
and PSNR indicate a good-quality image.

Technologies 2024, 12, 121 21 of 25Technologies 2024, 12, x FOR PEER REVIEW 23 of 27

Figure18. Original and reconstructed CT scan images obtained using image compression.

The physical design was obtained using the place and route option of the Cadence
Innovus tool. The physical design of the computational unit proposed and selected for the
final implementation of the digital image compression process is depicted in Figure19.

Figure19. Physical Layout Design of the computational unit used for image compression.

5. Conclusions
The ASIC design of computational units is vital for processors, especially in

contemporary technologies. The research work’s prime focus was designing, developing,
and implementing an ASIC-based computational unit using the concepts of low-power
VLSI, mainly approximate computing, multipliers based on UT sutra utilizing ICS SBETA,

Figure 18. Original and reconstructed CT scan images obtained using image compression.

The physical design was obtained using the place and route option of the Cadence
Innovus tool. The physical design of the computational unit proposed and selected for the
final implementation of the digital image compression process is depicted in Figure 19.

Technologies 2024, 12, x FOR PEER REVIEW 23 of 27

Figure18. Original and reconstructed CT scan images obtained using image compression.

The physical design was obtained using the place and route option of the Cadence
Innovus tool. The physical design of the computational unit proposed and selected for the
final implementation of the digital image compression process is depicted in Figure19.

Figure19. Physical Layout Design of the computational unit used for image compression.

5. Conclusions
The ASIC design of computational units is vital for processors, especially in

contemporary technologies. The research work’s prime focus was designing, developing,
and implementing an ASIC-based computational unit using the concepts of low-power
VLSI, mainly approximate computing, multipliers based on UT sutra utilizing ICS SBETA,

Figure 19. Physical Layout Design of the computational unit used for image compression.

5. Conclusions

The ASIC design of computational units is vital for processors, especially in con-
temporary technologies. The research work’s prime focus was designing, developing,
and implementing an ASIC-based computational unit using the concepts of low-power
VLSI, mainly approximate computing, multipliers based on UT sutra utilizing ICS SBETA,

Technologies 2024, 12, 121 22 of 25

operand isolation, and low-power multipliers for stand-alone medical image processing
applications. This research covers implementing an ASIC-based computational unit for
medical image compression applications. The synthesis was performed with standard
semi-custom ASIC design flow using the Genus tool of Cadence. In addition, 45 nm gpdk
technology libraries were used to synthesize the image compression architecture designed
using the computational unit with Loeffler’s algorithm, resulting in improved performance
compared to existing architectures. The PSNR and SSIM of the proposed design were
better than the existing architectures due to the incorporation of the computational unit.
A significant reduction in PDP and an improved PSNR for VLSI implementations was
observed in the synthesis results when carried out on a medical image

The research work can be explored further by including the ET adders in convolution or
digital filter applications involving addition. Future work involves replacing the standard
libraries with the optimized digital libraries from Taiwan Semiconductor Manufacturing
Company Limited (TSMC) and realizing the design up to chip fabrication. The design can
be extended further to make it suitable for the high real-time performance required for
video compression coding. The incorporation of low-power techniques can be explored
to reduce power. Other multiplier and adder designs can be analyzed to form different
combinations of computational units suitable for image processing applications. Different
signal processing algorithms can also be explored and implemented using the proposed
computational unit.

The developed computational unit for image compression that was utilized in the
DCT algorithm demonstrates significant potential for direct application in medical image
compression. The DCT-based computational unit can substantially reduce the storage
requirements, enabling healthcare providers to maintain comprehensive image archives
without the necessity of extensive physical storage infrastructure. The hospitals can save
on storage costs and enhance data management practices, facilitating quicker retrieval and
review of patient images by efficiently compressing images. Compressing medical images
reduces their file size, which can be advantageous for encryption processes. Smaller file
sizes can be encrypted more quickly and with potentially less computational overhead,
thus enhancing the overall security of medical image data. Ensuring the confidentiality
and integrity of medical images is critical, and the DCT-based computational unit can play
a vital role in facilitating secure storage and transmission protocols.

The computational unit can be used to efficiently handle medical images on mobile
platforms, allowing healthcare providers to review and share images using smartphones
and tablets. This flexibility supports a wide range of healthcare scenarios, from emergency
response to routine check-ups, enhancing the accessibility and responsiveness of medical
services. In wearable medical devices, DCT compression can compress and transmit data,
reducing power consumption and increasing device lifespan.

The implementation of this computational unit not only addresses current challenges
but also paves the way for future advancements in medical image processing. Continued
development and optimization could lead to even more efficient compression algorithms,
further enhancing the utility and applicability of this technology in diverse medical environ-
ments. Additionally, integrating machine learning techniques could refine the compression
process, ensuring that diagnostically relevant features are preserved with even greater pre-
cision.

The DCT-based computational unit designed for image compression presents an
effective tool for medical image compression, with direct applications that can significantly
enhance storage, transmission, and overall management of medical images. Its integration
into healthcare systems promises to improve operational efficiencies, reduce costs, and
ultimately contribute to better patient care outcomes.

Author Contributions: Conceptualization, T.M. and S.G.N.; methodology, T.M.; software, T.M.;
validation, T.M., S.G.N., T.P., and V.K.K.; formal analysis, T.M.; investigation, T.M., T.P., and S.G.N.;
resources, T.M. and S.G.N.; writing—original draft preparation, T.M.; writing—review and editing,

Technologies 2024, 12, 121 23 of 25

T.P. and V.K.K.; visualization, T.M.; supervision, S.G.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors thank Manipal Academy of Higher Education for offering them the
T.M.A. Pai scholarship to complete this research. The authors would also like to thank the Department
of Electronics and Communication Engineering at Manipal Institute of Technology for providing the
necessary laboratory environment and resources.

Conflicts of Interest: The authors declare no conflict of interest.

List of Abbreviations

ALU Arithmetic Logic Unit
ASIC Application-Specific Integrated Circuits
BEC Binary to Excess 1 Converters
CAD Computer Aided Design
CT Computed Tomography
CPU Central Processing Unit
CR Compression ratio
CSA Carry Save Adder
CSLA Carry Select Adder
DCT Discrete Cosine Transform
DIP Digital Image Processing
EDA Electronic Design Automation
ET Error-Tolerant
FOM Figure of Merit
GDI Gate Diffusion Input
GPP General-Purpose Processors
HWT Haar Wavelet Transform
IC Integrated Circuit
ICSBETA Iterative Carry Save Selector-Based Error Tolerant Adder
IDCT Inverse Discrete Cosine Transform
LPSBETA Low-Power Selector-Based Error Tolerant Adder
MAS Multiplier Adder and Subtractor
MRI Magnetic resonance imaging
OETA Optimized Error Tolerant Adder
PDA Power Delay Area
PDP Power Delay Product
PSNR Peak Signal-to-Noise Ratio
RCA Ripple Carry Adder
RLE Run Length Encoding
ROI Region Of Interest
RTL Register Transfer Level
SBETA Selector-Based Error Tolerant Adder
SSIM Structural Similarity Index
TSMC Taiwan Semiconductor Manufacturing Company Limited
2D Two-Dimensional
UT Urdhva Tiryagbhyam
VCD Value Change Dump
VLSI Very Large-Scale Integration

Technologies 2024, 12, 121 24 of 25

References
1. Roy, K.; Prasad, S.C. Low-Power CMOS VLSI Circuit Design; John Wiley & Sons: Hoboken, NJ, USA, 2009.
2. Lachireddy, D.; Ramesh, S. Power and delay efficient alu using vedic multiplier. In Advances in Electrical and Computer Technologies:

Select Proceedings of ICAECT 2019; Springer: Coimbatore, India, 2020; pp. 703–711.
3. Sengupta, S.; Sarkar, P.; Dastidar, A. Design of a 4 bit arithmetic & logic unit, evaluation of its performance metrics & its

implementation in a processor. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum,
India, 5–7 June 2020; pp. 1–8.

4. Kulkarni, M.A.L.; Baligar, J. Asic implementation of high speed and low power alu. Int. J. Eng. Res. Technol. 2019, 8.
5. Shirol, S.B.; Ramakrishna, S.; Shettar, R.B. A novel design and implementation of 32-bit hybrid alu. In Computing and Network

Sustainability: Proceedings of IRSCNS 2018; Springer: Hubballi, India, 2019; pp. 239–249.
6. Kamaraj, A.; Marichamy, P. Design of integrated reversible fault-tolerant arithmetic and logic unit. Microprocess. Microsyst. 2019,

69, 16–23.
7. Samanth, R.; Chaitanya, C.; Nayak, G.S. Power reduction of a functional unit using rt-level clock-gating and operand isolation.

In Proceedings of the 2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics
(DISCOVER), Manipal, India, 11–12 August 2019; pp. 1–4.

8. Telagam, N.; Kandasamy, N. Low power delay product 8-bit alu design using decoder and data selector. Majlesi J. Electr. Eng.
2018, 12, 103–108.

9. Hameed, M.; Khmag, A.; Zaman, F.; Ramli, A. Cmos technology for increasing efficiency of clock gating techniques using tri-state
buffer. Walailak J. Sci. Technol. (WJST) 2017, 14, 327–338.

10. Mukhedkar, M.; Pandurang, W.B. A 180 nm efficient low power and optimized area alu design using gate diffusion input
technique. In Proceedings of the 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), Pune,
India, 24–26 February 2017; pp. 47–51.

11. Priyanka, M.; Ravi, T. Design and analysis of competent arithmetic and logic unit for risc processor. ARPN J. Eng. Appl. Sci. 2016,
11, 7141–7146.

12. Buzdar, A.R.; Sun, L.; Buzdar, A. Comparative analysis of alu implementation with rca and sklansky adders in asic design flow.
Int. J. Adv. Comput. Sci. Appl. 2016, 7. [CrossRef]

13. Shrivastava, G.; Singh, S. Power optimization of sequential circuit based alu using gated clock & pulse enable logic. In
Proceedings of the 2014 International Conference on Computational Intelligence and Communication Networks, Bhopal, India,
14–16 November 2014; pp. 1006–1010.

14. Akram, S.M.; Rani, V.L.; Sailaja, K. Implementation of low leakage and high performance 8-bit alu for low power digital circuits.
Int. J. Comput. Appl. 2013, 82, 24–28. [CrossRef]

15. Pandey, B.; Yadav, J.; Pattanaik, M.; Rajoria, N. Clock gating based energy efficient alu design and implementation on fpga.
In Proceedings of the 2013 International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India,
10–12 April 2013; pp. 93–97.

16. Huddar, S.R.; Rupanagudi, S.R.; Janardhan, V.; Mohan, S.; Sandya, S. Area and speed efficient arithmetic logic unit design using
ancient vedic mathematics on fpga. In International Conference on Advances in Computing, Communication and Control; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 475–483.

17. Kamaraju, M.M.; Kishore, K.L.; Tilak, A. Power optimized alu for efficient data path. Int. J. Comput. Appl. 2010; 11, 39–43.
[CrossRef]

18. Wu, Y.-G. Medical image compression by sampling DCT coefficients. IEEE Trans. Inf. Technol. Biomed. 2002, 6, 86–94.
19. Chen, Y.-Y. Medical image compression using DCT-based subband decomposition and modified SPIHT data organization. Int. J.

Med. Inform. 2007, 76, 717–725. [CrossRef]
20. Potluri, U.S.; Madanayake, A.; Cintra, R.J.; Bayer, F.M.; Kulasekera, S.; Edirisuriya, A. Improved 8-point approximate DCT for

image and video compression requiring only 14 additions. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1727–1740. [CrossRef]
21. Kaur, M.; Wasson, V. ROI based medical image compression for telemedicine application. Procedia Comput. Sci. 2015, 70, 579–585.

[CrossRef]
22. Sridhar, V. Design of multiplier for medical image compression using Urdhava Tiryakbhyam sutra. Int. J. Electr. Comput. Eng.

2016, 6, 1140–1151.
23. Liu, F.; Hernandez-Cabronero, M.; Sanchez, V.; Marcellin, M.W.; Bilgin, A. The current role of image compression standards in

medical imaging. Information 2017, 8, 131. [CrossRef] [PubMed]
24. Xing, Y.; Zhang, Z.; Qian, Y.; Li, Q.; He, Y. An energy-efficient approximate DCT for wireless capsule endoscopy application. In

Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4.
25. Kumar, U.A.; Jain, N.; Chatterjee, S.K.; Ahmed, S.E. Evaluation of Multiplier-Less DCT Transform Using In-Exact Computing.

In Proceedings of the Second International Conference on Machine Learning, Image Processing, Network Security and Data
Sciences, Silchar, India, 30–31 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 11–23.

26. Hosny, K.M.; Khalid, A.M.; Mohamed, E.R. Optimized medical image compression for telemedicine applications. In Artificial
Intelligence and Data Mining in Healthcare; Springer: Berlin/Heidelberg, Germany, 2021; pp. 119–142. [CrossRef]

https://doi.org/10.14569/IJACSA.2016.070767
https://doi.org/10.5120/14265-2411
https://doi.org/10.5120/1624-2185
https://doi.org/10.1016/j.ijmedinf.2006.07.002
https://doi.org/10.1109/TCSI.2013.2295022
https://doi.org/10.1016/j.procs.2015.10.037
https://doi.org/10.3390/info8040131
https://www.ncbi.nlm.nih.gov/pubmed/34671488
https://doi.org/10.1007/978-3-030-45240-7_7

Technologies 2024, 12, 121 25 of 25

27. Alzahrani, M.; Albinali, M. Comparative Analysis of Lossless Image Compression Algorithms based on Different Types of
Medical Images. In Proceedings of the 2021 International Conference of Women in Data Science at Taif University (WiDSTaif),
Taif, Saudi Arabia, 30–31 March 2021; pp. 1–6.

28. Mydin, M.A.; Alkawaz, M.H.; Ghafoor, K.Z.; Mohammad, O.F.; Johar, M.G. A Study on Medical Image Compression Techniques
based on Huffman Coding and Discrete Wavelet Transform (DWT). In Proceedings of the 2021 IEEE 9th Conference on Systems,
Process and Control (ICSPC 2021), Melaka, Malaysia, 10–11 December 2021; pp. 86–91.

29. Rahman, M.A.; Hamada, M.; Shin, J. The Impact of State-of-the-Art Techniques for Lossless Still Image Compression. Electronics
2021, 10, 360. [CrossRef]

30. LaMeres, B.J.; LaMeres, B.J. The modern digital design flow. In Quick Start Guide to Verilog; Springer: Berlin/Heidelberg, Germany,
2019; pp. 1–12. [CrossRef]

31. Taraate, V. ; Taraate; Meherishi. Advanced HDL Synthesis and SOC Prototyping; Springer: Berlin/Heidelberg, Germany, 2019.
32. Natarajan, V.; Nagarajan, A.K.; Pandian, N.; Savithri, V.G. Low power design methodology. In Very-Large-Scale Integration; 2018;

p. 47. [CrossRef]
33. Mendez, T.; Nayak, S.G.; Kumar, P.V.; Kedlaya, K.V. Performance Metric Evaluation of Error-Tolerant Adders for 2D Image

Blending. Electronics 2022, 11, 2461. [CrossRef]
34. Yeap, G.K. Practical Low Power Digital VLSI Design. Kluwer Academic Publishers: New York, NY, USA; Springer:

Berlin/Heidelberg, Germany, 1998.
35. Computed Tomography (CT) of the Brain. Available online: https://www.kaggle.com/datasets/trainingdatapro/computed-

tomography-ct-of-the-brain (accessed on 15 December 2023).
36. Abdat, M.; Bellanger, M.G. Combining gray coding and JBIG for lossless image compression. In Proceedings of the 1st

International Conference on Image Processing, Austin, TX, USA, 13–16 November 1994; Volume 3, pp. 851–855.
37. Rabbani, M.; Jones, P.W. Digital Image Compression Techniques; SPIE Press: Bellingham, WA, USA, 1991.
38. Ochoa-Dominguez, H.; Rao, K.R. Discrete Cosine Transform, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019.
39. Haidekker, M. Advanced Biomedical IMAGE Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2010.
40. Jayaraman, S.; Esakkirajan, S.; Veerakumar, T. Digital Image Processing; Tata McGraw Hill Education: New Delhi, India, 2009.
41. Gonzalez, R.C.; Woods, R.E.; Masters, B.R. Digital Image Processing; Pearson International Edition: Bellingham, WA, USA, 2009.
42. Coelho, D.F.; Cintra, R.J.; Kulasekera, S.; Madanayake, A.; Dimitrov, V.S. Error-free computation of 8-point discrete cosine

transform based on the Loeffler factorisation and algebraic integers. IET Signal Proc. 2016, 10, 633–640. [CrossRef]
43. Mert, A.C.; Kalali, E.; Hamzaoglu, I. High performance 2D transform hardware for future video coding. IEEE Trans. Consum.

Electron. 2017, 63, 117–125. [CrossRef]
44. Coelho, D.F.; Nimmalapalli, S.; Dimitrov, V.S.; Madanayake, A.; Cintra, R.J.; Tisserand, A. Computation of 2D 8 × 8 DCT based on

the Loeffler factorization using algebraic integer encoding. IEEE Trans. Comp. 2018, 67, 1692–1702. [CrossRef]
45. Chung, R.L.; Chen, C.W.; Chen, C.A.; Abu, P.A.; Chen, S.L. VLSI implementation of a Cost-Efficient Loeffler DCT algorithm with

recursive CORDIC for DCT-based encoder. Electronics 2021, 10, 862. [CrossRef]
46. Zhou, Z.; Pan, Z. Effective hardware accelerator for 2d DCT/IDCT using improved Loeffler architecture. IEEE Access 2022, 10,

11011–11020. [CrossRef]
47. Balasubramanian, P.; Nayar, R.; Maskell, D.L. Digital Image Compression Using Approximate Addition. Electronics 2022, 11, 1361.

[CrossRef]
48. Mendez, T.; Kedlaya, K.V.; Nayak, D.; Mruthyunjaya, H.S.; Nayak, S.G. A Novel ASIC Implementation of Two-Dimensional

Image Compression Using Improved BG Lee Algorithm. Appl. Sci. 2023, 13, 9094. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics10030360
https://doi.org/10.1007/978-3-030-10552-5
https://doi.org/10.5772/intechopen.73729
https://doi.org/10.3390/electronics11152461
https://www.kaggle.com/datasets/trainingdatapro/computed-tomography-ct-of-the-brain
https://www.kaggle.com/datasets/trainingdatapro/computed-tomography-ct-of-the-brain
https://doi.org/10.1049/iet-spr.2015.0175
https://doi.org/10.1109/TCE.2017.014862
https://doi.org/10.1109/TC.2018.2837755
https://doi.org/10.3390/electronics10070862
https://doi.org/10.1109/ACCESS.2022.3146162
https://doi.org/10.3390/electronics11091361
https://doi.org/10.3390/app13169094

	Introduction
	VLSI ASIC Design Flow
	Development of the Proposed Computational Unit
	Modified CSLA-Based Adders Using Error Tolerant Adders
	Multiplier Based on Divide and Conquer Approach
	PDP Optimized Multiplier Using Iterative Carry Save SBETA
	Logic Unit Using Operand Isolation
	Application of the Proposed Computational Unit for Medical Image Compression

	Results and Discussion
	Conclusions
	References

