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Abstract: The symptoms of multiple sclerosis (MS) are determined by the location of demyelinating
lesions in the white matter of the brain and spinal cord. Currently, magnetic resonance imaging
(MRI) is the most common tool used for diagnosing MS, understanding the course of the disease,
and analyzing the effects of treatments. However, undesirable components may appear during the
generation of MRI scans, such as noise or intensity variations. Mathematical morphology (MM) is
a powerful image analysis technique that helps to filter the image and extract relevant structures.
Granulometry is an image measurement tool for measuring MM that determines the size distribution
of objects in an image without explicitly segmenting each object. While several methods have
been proposed for the automatic segmentation of MS lesions in MRI scans, in some cases, only
simple data preprocessing, such as image resizing to standardize the input dimensions, has been
performed before the algorithm training. Therefore, this paper proposes an MRI preprocessing
algorithm capable of performing elementary morphological transformations in brain images of MS
patients and healthy individuals in order to delete undesirable components and extract the relevant
structures such as MS lesions. Also, the algorithm computes the granulometry in MRI scans to
describe the size qualities of lesions. Using this algorithm, we trained two artificial neural networks
(ANNs) to predict MS diagnoses. By computing the differences in granulometry measurements
between an image with MS lesions and a reference image (without lesions), we determined the
size characterization of the lesions. Then, the ANNs were evaluated with the validation set, and
the performance results (test accuracy = 0.9753; cross-entropy loss = 0.0247) show that the proposed
algorithm can support specialists in making decisions to diagnose MS and estimating the disease
progress based on granulometry values.

Keywords: magnetic resonance imaging; multiple sclerosis; mathematical morphology; granulometry;
artificial neural networks

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous
system (CNS), characterized pathologically by demyelination and clinically by episodes of
neurological dysfunction disseminated in space and time, which produces a wide variety of
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symptoms such as alteration of the body’s sensitivity [1]. Symptoms are determined based
on the location of demyelinating lesions along the CNS [2]. Initially, MS pathology was
defined as an inflammatory process associated with focal plaques of primary demyelination
in the white matter of the brain and spinal cord [3]. A reliable and accurate diagnosis of
MS is necessary to introduce early treatments for the disease. Disease-modifying drug
therapies can help to control symptoms and prevent progression [4,5]. Currently, magnetic
resonance imaging (MRI) is the most common tool for diagnosing MS, detecting MS lesions,
understanding the course of the disease, and analyzing the effects of treatments [6,7].

MRI is a non-invasive method of obtaining detailed images of the internal structure
of the body, such as organs and tissues. MRI uses radiofrequency (RF) radiation in the
presence of controlled magnetic fields to generate cross-sectional images of the body. An
MRI scan is obtained by placing the patient inside a large magnet, which induces a relatively
strong external magnetic field. This causes the cores of the body atoms to align with the
magnetic field, and then the RF signal is applied. The energy released from the body is
detected and used to create the MRI scan via a computer [8]. As with any other data
acquisition system, in the generation of MRI scans, there may be components not correlated
with the desired signal, known as noise or random signals. This noise signal is generally
caused by spontaneous fluctuations such as the thermal movement of free electrons within
real or equivalent electrical components [9]. The signal-to-noise ratio (SNR) is essential
for evaluating image quality and determining the use of image-processing techniques
such as noise removal [10]. On the other hand, diagnosing MS using MRI requires a long
time due to the large number of images that need to be labeled (e.g., T1-weighted, T2-
weighted, and fluid-attenuated inversion recovery (FLAIR) magnetic resonance images),
so the manual diagnostic approach is susceptible to errors. This can affect image quality
and make it difficult to identify areas of CNS injury. Therefore, it is necessary to implement
new methods for automatically processing MRI scans to remove undesirable components
and correctly detect MS lesions in order to determine the progress of the disease.

Most image-processing applications require extensive analyses of the objects within
an image. Segmentation refers to dividing an image into regions of interest according to
their features, such as their grayscale characteristics, colors, spatial texture, and geometric
shapes [11]. The most common form of segmentation is binary, where each pixel is clas-
sified as belonging to either the foreground or the background. One of the most useful
methods for segmenting images is thresholding, which includes choosing an intensity
value and then classifying pixels below this value as false and pixels above it as true [12].
Fully supervised, semi-supervised, and unsupervised learning have been widely applied
to medical image segmentation tasks [13–15]. Most existing medical image segmentation
approaches have applied semi-supervised learning. Semi-supervised segmentation is a
more practical method since it employs large amounts of unlabeled data in conjunction
with small amounts of labeled data. You et al. [16] proposed a novel contrastive voxel-
wise representation learning (CVRL) method to effectively learn low-level and high-level
features by capturing 3D spatial context and rich anatomical information along both the
feature dimension and the batch dimension. You et al. [17] presented SimCVD, a simple
contrastive voxel-wise distillation framework that performed on the same level as previous
fully supervised methods with much less labeled data. You et al. [18] developed an iterative
contrastive distillation algorithm (ACTION, an Anatomical-Aware Contrastive Distillation
Framework) by labeling the negatives rather than employing binary supervision between
positive and negative pairs. You et al. [19] introduced a novel 2D medical image segmenta-
tion framework termed Mine Your Own Anatomy (MONA), and made three contributions.
First, they observed that every pixel does not have the same importance to define anatom-
ical features. Second, they reinforced the model to decompose medical images into a
collection of anatomical features. Lastly, they demonstrated the efficacy of MONA on
three benchmark datasets with different labeled settings. You et al. [20] proposed a con-
trastive learning (CL) framework (ARCOARCO) through the concept of variance-reduced
estimation. You et al. [21] also presented an improved contrastive learning framework
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(ACTION++) with adaptive anatomical contrast. Fully supervised segmentation aims to
acquire expert-examined comments (labeled data) for training models. You et al. [22] pro-
posed MORSE, a generic implicit neural rendering framework designed at an anatomical
level to support learning in medical image segmentation. On the other hand, unsupervised
segmentation only utilizes unlabeled data. You et al. [23] presented an approach based on
the Wasserstein distance-guided disentangled representation to achieve 3D multi-domain
liver segmentation.

Also, some deep learning tools have been developed for automated MS lesion de-
tection/segmentation, such as computational algorithms based on convolutional neural
networks (CNNs) and U-Nets [24–26]. Ghosh et al. [27] proposed four convolutional en-
coder networks (CENs) with different network architectures (U-Net, U-Net++, Linknet, and
Feature Pyramid Network models) to determine the optimal MRI sequence to reduce auto-
matic segmentation times in MS lesion detection. La Rosa et al. [28] proposed a generative
adversarial network (GAN) that retrospectively generates realistic uniform images (UNIs)
based on magnetization-prepared 2 rapid acquisition gradient echoes (the MP2RAGE
method) from MPRAGE images in order to improve the automatic segmentation of MS
lesions and tissues. Bandyopadhyay et al. [29] implemented a multi-level thresholding
method using evolutionary metaheuristics. Their proposal incorporates the concept of
altruism into the Harris Hawks Optimization (HHO) algorithm to improve its exploitation
capabilities. Macin et al. [30] developed a machine learning (ML) model for MS diagnosis
using brain MRI (axial and sagittal), wherein features were generated with a fixed-size
patch-based (exemplar) feature extraction based on local phase quantization (LPQ). The
resulting exemplar multiple-parameter LPQ (ExMPLPQ) features were concatenated to
form a final feature vector. De Oliveira et al. [31] proposed a deep learning (DL) technique
for the volumetric quantification of lesions in MRI scans of MS patients using automatic
brain and lesion segmentation via two CNNs. The first CNN was used to perform brain
extraction, and the second was for lesion segmentation. Acar et al. [32] proposed a CNN
model for identifying MS lesions in brain FLAIR MRI scans. Hashemi et al. [33] imple-
mented a method to segment MS lesions on FLAIR and T2 MRI scans using a modified
U-Net and a modified attention U-Net. Wang et al. [34] proposed a complete CNN U-Net
for the automatic segmentation of MRI scans, based on spine features and the contrast
between gray levels of intervertebral discs and vertebrae. Rondinella et al. [35] imple-
mented a model that includes a U-Net architecture augmented with a long short-term
memory (LSTM) convolutional layer and an attention mechanism, capable of segmenting
and quantifying MS lesions detected in MRI scans. Bose et al. [36] implemented a refined
version of the fuzzy c-means (FCM) type 2 technique (EMT2FCM) to isolate diverse tissues
in brain MRI scans, achieved through an improved entropy-based membership function.

While several methods have been proposed for the automated segmentation of MS
lesions in MRI scans, in some cases, only simple data preprocessing, such as image re-
sizing to standardize the input dimensions, is performed before the algorithm training.
Mathematical morphology (MM) is a classic image analysis technique that helps to filter
the image and extract relevant structures. Granulometry is an image measurement tool
for measuring MM that determines the size distribution of objects in an image without
explicitly segmenting each object [37]. Therefore, this paper proposes an alternative method
based on an MRI preprocessing algorithm that includes two stages:

1. Stage 1 involves performing morphological opening transformations on brain MRI
scans (of MS patients and healthy individuals diagnosed by medical experts) to delete
noise and other undesirable components, and then computing the granulometry of
objects in the MRI scans in order to characterize the demyelination lesions in the brain
white matter caused by MS. The resulting data are used to train two artificial neural
network (ANN) models to predict MS diagnoses.

2. Stage 2 involves performing morphological closing transformations on the brain MRI
scans (of MS patients) to create a reference image (without lesions), and computing
the granulometry of the objects within the image containing lesions and within the
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reference image in order to compare them. Then, the size of the MS lesions is estimated
by calculating the differences in granulometry measurements. These measurements
could support specialists’ decision-making processes to determine the course or
progression of this disease.

2. Materials and Methods
2.1. Database

The analyzed database is the same as that used in [30], and it can be downloaded at
https://www.kaggle.com/datasets/buraktaci/multiple-sclerosis (accessed on 20 October
2023). The acquired dataset includes 200 brain FLAIR MRI scans (100 axial and 100 sagittal)
from MS patients and healthy individuals who attended the Ozal University Faculty of
Medicine in 2021. Medical experts analyzed the sections of axial and sagittal images of MS
patients with identifiable MS lesions and these were assigned to the MS class, and image
sections of healthy individuals with a normal appearance, without white-matter lesions,
were assigned to the healthy class.

2.2. Proposed Algorithm

This paper proposes an alternative MRI preprocessing algorithm including elementary
morphological transformations on brain images of MS patients and healthy individuals
(axial and sagittal MRI scans), and granulometry measurements to characterize MS lesions
without affecting the original dimensions of the image. Figures 1 and 2 describe the
two-stage procedure of the proposed algorithm. Tables 1 and 2 present the implemented
pseudocode of the preprocessing algorithm.

𝑀𝑎𝑠𝑘 𝐼𝑚𝑎𝑔𝑒 (𝑔) 

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 
(𝑆𝐸)

𝑀𝑎𝑟𝑘𝑒𝑟 𝐼𝑚𝑎𝑔𝑒 𝑓 =
𝑚𝑜𝑟𝑝ℎ𝑂𝑝𝑒𝑛(𝑚𝑎𝑠𝑘𝐼𝑚𝑔, 𝑆𝐸)

𝑂𝑝𝑒𝑛𝑖𝑛𝑔 𝑏𝑦 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑜𝑝𝑒𝑛𝑅𝑒𝑐(𝑚𝑎𝑟𝑘𝑒𝑟𝐼𝑚𝑔, 𝑚𝑎𝑠𝑘𝐼𝑚𝑔)

𝛾𝜇𝑆𝐸(𝑓)(𝑥) = 𝛿𝑓
1𝛿𝑓

1 ⋯ 𝛿𝑓
1(𝜀𝜇𝑆𝐸 𝑓 )(𝑥)

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡
(𝑀𝑆 𝐿𝑒𝑠𝑖𝑜𝑛𝑠)

𝐺𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑒𝑡𝑟𝑦 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔

𝜒 =
𝑣𝑜𝑙 𝛾 𝜇−1 𝑆𝐸(𝑓)(𝑥) − 𝑣𝑜𝑙 𝛾 𝜇 𝑆𝐸(𝑓)(𝑥)

𝑣𝑜𝑙 𝑓(𝑥)

𝑇𝑟𝑎𝑖𝑛 𝐴𝑁𝑁 𝑚𝑜𝑑𝑒𝑙𝑠 
𝑤𝑖𝑡ℎ 𝑔𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑒𝑡𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑡𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑀𝑆 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠

𝑥1

𝑥2

𝑥3

⋯

𝑥𝑛

𝑎1

𝑎2

𝑎𝑘

⋯

𝑓(𝑋)

𝑂𝑢𝑡𝑝𝑢𝑡

Figure 1. First-stage procedure of the proposed algorithm. Opening morphological transformations
on MS and healthy brain scans and granulometry measurements to predict MS diagnosis.

https://www.kaggle.com/datasets/buraktaci/multiple-sclerosis
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𝑀𝑎𝑠𝑘 𝐼𝑚𝑎𝑔𝑒 (𝑔) 𝑀𝑎𝑟𝑘𝑒𝑟 𝐼𝑚𝑎𝑔𝑒 =
𝑚𝑜𝑟𝑝ℎ𝐶𝑙𝑜𝑠𝑒(𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑐𝑡, 𝑆𝐸)

𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑦 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 
(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐼𝑚𝑎𝑔𝑒) =

𝑐𝑙𝑜𝑠𝑒𝑅𝑒𝑐(𝑚𝑎𝑟𝑘𝑒𝑟𝐼𝑚𝑔, 𝑚𝑎𝑠𝑘𝐼𝑚𝑔)

𝜑𝜇𝑆𝐸(𝑓)(𝑥) = 𝜀𝑓
1𝜀𝑓

1 ⋯ 𝜀𝑓
1(𝛿𝜇𝑆𝐸 𝑓 ) 𝑥

𝑀𝑆 𝐿𝑒𝑠𝑖𝑜𝑛𝑠

𝐺𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑒𝑡𝑟𝑦 (𝑚𝑎𝑠𝑘𝐼𝑚𝑔 𝑣𝑠 𝑟𝑒𝑓𝐼𝑚𝑔)

𝜒 =
𝑣𝑜𝑙 𝛾 𝜇−1 𝑆𝐸(𝑓)(𝑥) − 𝑣𝑜𝑙 𝛾 𝜇 𝑆𝐸(𝑓)(𝑥)

𝑣𝑜𝑙 𝑓(𝑥)

𝑆𝑖𝑧𝑒 𝐿𝑒𝑠𝑖𝑜𝑛𝑠 =
𝐺𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑒𝑡𝑟𝑦 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠,
𝑡𝑜 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑡ℎ𝑒 
𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 𝑜𝑓 𝑀𝑆

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 
(𝑆𝐸)

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑐𝑡 =
𝑠𝑢𝑏𝐼𝑚𝑔(𝑚𝑎𝑠𝑘𝐼𝑚𝑔, 𝐿𝑒𝑠𝑖𝑜𝑛𝑠)

− 

Figure 2. Second-stage procedure of the proposed algorithm. Closing morphological transformations
on MS brain scans and granulometry measurements to estimate the course of the disease.

Table 1. Implemented pseudocode of the MRI preprocessing algorithm (Stage 1).

Pseudocode

Start
rgb = readImg(‘sample’.png)
grayScale = rgbTogray(rgb)
maskImg = grayScale
markerImg1 = morphOpen(maskImg, SE 1(‘disk’, 5))
openRec1 = openRec(markerImg1, maskImg)
MSlesions = intensityAdjust(openRec1)

volMaskImg1 = 1.0×sum(maskImg)
For radius = 1:15

markerImg2 = morphOpen(maskImg, SE(‘disk’, radius − 1))
openRec2 = openRec(markerImg2, maskImg)
volOpenRec1 = sum(openRec2)

markerImg3 = morphOpen(maskImg, SE(‘disk’, radius))
openRec3 = openRec(markerImg3, maskImg)
volOpenRec2 = sum(openRec3)

volGranu(radius) = (volOpenRec1 − volOpenRec2)/volMaskImg1
End

1 Structuring element.
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Table 2. Implemented pseudocode of the MRI preprocessing algorithm (Stage 2).

Pseudocode

Start
subtract = imgSub(maskImg, MSLesions)
markerImg4 = morphClose(subtract, SE(’disk’, radius = 5))
closeRec1 1 = closeRec(markerImg4, maskImg)

volMaskImg2 = 1.0×sum(closeRec1)
For radius = 1:15

markerImg5 = morphOpen(closeRec1, SE(’disk’, radius − 1))
openRec5 = openRec(markerImg5, closeRec1)
volOpenRec3 = sum(openRec5)

markerImg6 = morfOpen(closeRec1, SE(’disk’, radius))
openRec6 = openRec(markerImg6, closeRec1)
volOpenRec4 = sum(openRec6)

volGranu(radius) = (volOpenRec3 − volOpenRec4)/volMaskImg2
End

1 Reference image (without MS lesions).

Artificial Neural Network

An ANN structure consists of an input layer of neurons that receive the sample inputs
X = x1, x2, . . . , xm, and one or more hidden layers of neurons that convert the values from
the previous layer into a weighted linear sum, w1x1 + w2x2 + . . . + wmxm, followed by a
nonlinear activation function used to learn the weights. Then, the output layer predicts the
class label of the samples [38]. During the learning stage, the ANN compares the true class
labels with the continuous output values of the nonlinear activation function in order to
compute the classification loss and update the weights.

Our dataset was randomly divided into training (80%) and test (20%) sets to validate
the ANN models. Then, the test accuracy, the Dice similarity coefficient (DSC), the true pos-
itive rate (TPR) or sensitivity, and the true negative rate (TNR) or specificity were computed
with the validation dataset to evaluate the performance of the prediction models [39–41].
The DSC is given by the following equation:

DSC =
2TP

FP + 2TP + FN
, (1)

where TP represents the numbers of true positives, TN the true negatives, FP the false
positives, and FN the false negatives. Also, the cross-entropy loss was calculated with
different regularization strength values (the lambda hyperparameter) to train the ANNs.
The weighted cross-entropy loss is calculated as

L =
n

∑
j=1

wjlog(mj)

Kn
, (2)

where the weights wj are normalized to sum to n instead of 1. The test accuracy was
calculated using Acc = 1 − L. The lambda value was adjusted to minimize the loss
function. Table 3 describes the hyperparameters configured for the ANNs’ training.
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Table 3. Configured ANN hyperparameters. ‘Activations’ is an activation function for the fully
connected layers in the ANN. ‘Standardize’ is a flag to standardize the predictor data. ‘Lambda’ is
the regularization term strength; the software composes the objective function for minimization from
the cross-entropy loss function and the ridge (L2) penalty term. For ‘LayerSizes’, the ith element is
the number of outputs in the ith fully connected layer of the ANN.

Model Activations Standardize Lambda LayerSizes
(Default) (Enabled) (Adjusted) (Default)

ANN (axial) ‘relu’ true 0.005 10
ANN (sagittal) ‘relu’ true 0.02 10

2.3. Mathematical Morphology

MM is a powerful image analysis technique based on set theory, integral geometry, and
lattice algebra. The target of morphological operators is to extract relevant structures from
an image. This is achieved by testing the image with another set of known shapes called a
structuring element (SE). The fundamental morphological operators need the definition
of an origin for each SE. This origin allows the positioning of the SE at a given point or
pixel: an SE at point x means its origin matches x. The elementary planar isotropic SEs
are represented in Figure 3 for octagonal and disk graphs. The pixels that match with
each elemental planar SE centered on a given pixel p correspond to the neighbors of p in
the graph G plus the pixel itself p, as N̄G(p). The shape and size of each SE are chosen
according to the geometric properties of the relevant and irrelevant structures in the image.
Irrelevant structures refer to noise or objects to be deleted [42].

(a) (b) (c)

Figure 3. Elementary flat isotropic SEs for octagonal and disk graphs: (a) Diamond. (b) Octagon.
(c) Disk. The origin of each of these SEs is at their center.

2.4. Geodesic Transformations

Some morphological transformations include combinations of an input image with
specific SEs. The geodesic transformation approach regards two input images. Initially, a
morphological transformation is applied to the first image and then forced to remain either
above or below the second image. In this case, morphological transformations are limited
to elementary erosions and dilations. In practice, geodetic transformations are iterated
until stability [43].

Geodesic dilation also involves two images: a marker image and a mask image. By
definition, both images must have the same domain and the mask image must be greater
than or equal to the marker image. First, the marker image is dilated by the elemental
isotropic SE. Then, the resulting dilated image is forced to remain below the mask image.
Therefore, the mask image acts as a limit to the spread of the marker image dilation. Let f
be the marker image and g be the mask image (D f = Dg and f ≤ g). The geodesic dilation
of size 1 of the marker image f concerning the mask image g is denoted by Equation (3)
and it is defined as the minimum point between the mask image and the elemental dilation
δ(1) of the marker image. The geodesic dilation of a binary image is shown in Figure 4.

δ
(1)
g ( f ) = δ(1)( f ) ∧ g. (3)
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𝑀𝑎𝑟𝑘𝑒𝑟 𝑠𝑒𝑡 𝑌, 𝑌 ⊆ 𝑋 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝛿 1 (𝑌) 𝐺𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝛿𝑋
1

(𝑌) 

𝐺𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑚𝑎𝑠𝑘 𝑋

∩

Figure 4. Geodesic dilation of a binary image or set Y within a geodesic mask X. The marker
set is first dilated by the elementary isotropic SE and then intersected with the geodesic mask:

δ
(1)
X (Y) = δ(1)(Y) ∩ X.

Geodesic erosion is the double transformation of geodesic dilation concerning the
complementation of sets:

ε
(1)
g ( f ) =

[
δ(1)( f c) ∧ gc

]c[
(ε(1)( f ))c ∧ gc

]c

ε(1)( f ) ∨ g

, (4)

where f ≥ g and ε(1) is the elemental erosion. First, the marker image is eroded and then
the maximum point is computed with the mask image. Figure 5 shows an example of
geodesic erosion. Here, the mask image acts as a limit for the marker image reduction.

(b) Elementary erosion
𝜀 1 (𝑓).

(a) 1−D marker signal f and
mask signal g, f ≥ 𝑔.

(c) Geodesic erosion 𝜀𝑔
1

(𝑓).

𝑓
𝑔

𝜀𝑔
1

(𝑓)

𝑔

𝜀 1 (𝑓)

𝑔

Figure 5. Geodesic erosion of a 1D marker signal f with respect to a mask signal g. Owing to the
point-wise maximum operator, all pixels of the elementary erosion of f with values lower than g are
set to the value of g.

2.5. Morphological Reconstruction

In practice, geodesic transformations of a given size are rarely used. However, when
they are iterated until stability, very efficient morphological reconstruction algorithms can
be created. Geodesic transformations of bounded images always converge after a finite
period of iterations (i.e., until the mask image completely obstructs the propagation of the
marker image and stops it from being reduced). The morphological reconstruction of a
mask image g from a marker image f is based on this principle. Geodesic transformations
by reconstruction allow the deletion of some undesired components without considerably
affecting the remaining structures [43].
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Like geodesic dilations and erosions, the iteration of the autodual geodesic trans-
formation v always achieves stability for a definition domain of a bounded image. The
corresponding transformation is known as the self-dual reconstruction of a mask image g
from a marker image f , and it is defined as follows:

Rv
g( f ) = v(i)g ( f ), (5)

where i exists such that v(i+1)
g ( f ) = v(i)g ( f ). Figure 6 displays self-dual reconstruction.

In practice, self-dual reconstruction can be obtained by computing erosion and dilation
reconstruction in parallel, determining the output at a given pixel x alternating between
erosion and dilation reconstruction depending on whether f (x) is above or below g(x):

[
Rv

g( f )
]
(x) =


[

Rδ
g( f )

]
(x), i f f (x) ≤ g(x)[

Rε
g( f )

]
(x), otherwise.

(6)

(a) 1−D marker signal f and
mask signal g.

t

x

g f

(b) Self-dual reconstruction 𝑅𝑔
𝑣(𝑓).

t

x

g

𝑅𝑔
𝑣(𝑓)

Figure 6. Self-dual morphological reconstruction Rv of a mask image g from a marker image f .

Opening and Closing by Reconstruction

For morphological reconstruction, the erosion and dilation of size 1 are iterated until
stability is achieved. The geodesic dilation δ1

f (g) and the geodesic erosion ε1
f (g) of size 1 are

given by δ1
f (g) = f ∧ δ(g) with g ≤ f , and ε1

f (g) = f ∨ ε(g) with g ≥ f , respectively. When
the function g is equal to the morphological erosion or dilation of the original function, the
opening by reconstruction γ̃µB( f )(x) is given as

γ̃µB( f )(x) = δ1
f δ1

f . . . δ1
f (εµB( f ))(x),︸ ︷︷ ︸

Until stability

(7)

or the closing by reconstruction φ̃µB( f )(x) is given as

φ̃µB( f )(x) = ε1
f ε1

f . . . ε1
f (δµB( f ))(x),︸ ︷︷ ︸

Until stability

(8)

where B represents the SE and µ is a size parameter. For this research, a disk-shaped SE
with radius r = µ (rB = µB) was chosen. For example, a disk of radius r = 5 represents a
disk of 9 × 9 pixels; therefore, 9 neighbors are analyzed in this study. So, an SE of size n
consists of a disk of (2n − 1)× (2n − 1) pixels.

2.6. Image Measurements

Image measurements aim to characterize objects in an image by computing some
numerical values. For a given criterion, the measurement is discriminant if the obtained
values for objects satisfying this criterion differ from those for all other objects. MM
provides various image measurement tools, such as pattern spectrography or granulometry,
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direction analysis, texture analysis, shape description, etc. These measures define a vector
of features that can be used as an input for a statistical analysis or classification method [42].

Granulometry determines the size distribution of objects in an image without explicitly
segmenting (detecting) each object, and it is used in some areas to describe the features of
the size and shape of individual granules within an object [44]. The formal definition of
this concept is presented below.

Let (ψλ)λ∈Z be a transformation family depending on a unique positive parameter λ.
This family comprises a granulometry if, and only if, the following properties are fulfilled:
(i) ∀λ is a positive, and Ψλ is increasing; (ii) ∀λ is a positive, and Ψλ is antiextensional; (iii)
∀λ and µ are positives, and ΨλΨµ = Ψmax(λ,µ).

In particular, the family of morphological openings and closings for the numerical
instance γµB, φµB with µ = {1, 2, . . . , n} satisfy the previous definition.

The granulometric measurement associated with the clear regions is denoted as χ, and
it is computed as

χ =
vol[γ(µ−1)B( f )(x)]− vol[γ(µ)B( f )(x)]

vol[ f (x)]
, (9)

where vol refers to the total number of pixels in an image. The granulometric measurement
associated with the dark regions is denoted as ζ and is calculated as

ζ =
vol[φµB( f )(x)]− vol[φ(µ−1)B( f )(x)]

vol[ f (x)]
. (10)

3. Results

The proposed MRI preprocessing algorithm was implemented on 100 MS sample
images (axial) and 100 healthy sample images (sagittal). Also, granulometry was calculated
to acquire relevant information about some structures in the brain images. In particular,
the morphological opening transformation was used as a filter that satisfies the definition
of granulometry and mainly affects the clear regions directly associated with MS lesions.

3.1. Algorithm (Stage 1)

In the first stage, the preprocessing algorithm was implemented for all MS and healthy
images (axial and sagittal MRI). Figures 7 and 8 describe the results obtained with the
applied opening morphological transformations.

Then, the granulometry of objects was computed for all MRI samples for SEs of differ-
ent radius values (r = 1, 2, 3, . . . , 15). Figure 9 compares the granulometry measurement
results between the brain images of two MS patients (axial and sagittal) and those of
two healthy individuals (axial and sagittal) with similar dimensions (569 × 1158 pixels,
respectively).

After granulometry was computed, the resulting data were entered into two arrays
(100 × 15 samples) to train the ANNs. Figure 10 displays the values of the sum of granu-
lometry for 80 MRI samples (axial and sagittal).

Then, the performance metrics (DSC, sensitivity, and specificity) were computed
using the confusion matrix results to evaluate the ANN models. Figure 11 shows the
classifications of the ANNs’ predictions.

Also, the cross-entropy loss was calculated with different regularization strength
values; the corresponding results are displayed in Figure 12.
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(a) (b)

(c) (d)

Figure 7. Implementation of opening morphological transformations: (a) Mask image (MS axial).
(b) Morphological opening. (c) Opening by reconstruction. (d) Intensity adjustment. One of the
targets of the first stage was to highlight the lesion areas in MS samples (axial MRI scans) using a
disk-shaped SE of radius r = 5.

(a) (b)

(c) (d)

Figure 8. Implementation of opening morphological transformations: (a) Mask image (MS sagittal).
(b) Morphological opening. (c) Opening by reconstruction. (d) Intensity adjustment. One of the
targets of the first stage was to highlight the lesion areas in MS samples (sagittal MRI scans) using a
disk-shaped SE of radius r = 5.
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Figure 9. Comparison of granulometry measurements in preprocessed brain images using the
proposed algorithm (Stage 1): (a) MS axial image (SumVolGranu = 0.1011). (b) Healthy axial image
(SumVolGranu = 0.0786). (c) MS sagittal image (SumVolGranu = 0.1389). (d) Healthy sagittal image
(SumVolGranu = 0.1079). The sum of intensity values of objects (sumVolGranu) in MS brains is higher
than that in healthy brains, due to the presence of lesion regions.

0 2 4 6 8 10 12 14 16 18 20

Sample MR Image

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

S
um

 o
f G

ra
nu

lo
m

et
ry

 o
f O

bj
ec

ts

MS Axial
Healthy Axial
MS Sagittal
Healthy Sagittal

Figure 10. Comparison of the sum of granulometry of objects. The sum of granulometry values in
MS samples (axial and sagittal) is higher than that in healthy ones.
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Figure 11. Confusion matrix of predictions. ANN (axial) results: TP = 10 (true positives correctly
classified as MS), TN = 10 (true negatives correctly classified as healthy), FP = 0 (false positives
correctly classified as MS), and FN = 0 (false negatives correctly classified as healthy). ANN (sagittal)
results: TP = 8 (true positives correctly classified as MS), TN = 10 (true negatives correctly classified
as healthy), FP = 2 (false positives incorrectly classified as MS), and FN = 0 (false negatives correctly
classified as healthy).

Figure 12. Cross-entropy loss function vs regularization strength graph. The corresponding lambda
hyperparameters, X = 0.005 (axial) and X = 0.02 (sagittal), were adjusted to minimize the loss functions.
At these points, the loss functions achieved the lowest values: Y = 0.0272 (axial) and Y = 0.0632
(sagittal), respectively.

The ANNs were trained using the best lambda regularization strengths. Figures 13 and 14
show the loss function’s behavior throughout different iterations.
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Figure 13. ANN (axial) cross-entropy loss function behavior. At the 20th iteration (X = 20), the loss
function converged to approximately Y = 0.0416.
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Figure 14. ANN (sagittal) cross-entropy loss function behavior. At the 20th iteration (X = 20), the loss
function converged to approximately Y = 0.100. So, the axial ANN loss function achieved the lowest
value when compared to the sagittal ANN loss function.

Table 4 compares the performance metric results between the implemented ANN
models.

Table 4. Performance metric results. The test accuracy is the proportion of correct predictions, the
DSC measures the similarity between the test data and predictions, the TPR is the proportion of
positives classified correctly, the TNR is the proportion of negatives classified correctly, and cross-
entropy loss computes the loss between the test data and predictions. The performance of the ANN
trained with axial images was higher than that of the ANN trained with sagittal images.

Model Test
Accuracy DSC 1 TPR 2 TNR 3 Cross-

Entropy Loss

ANN (axial) 0.9753 1.0 1.0 1.0 0.0247
ANN

(sagittal) 0.9197 0.888 1.0 0.833 0.0803

1 Dice similarity coefficient. 2 True positive rate (sensitivity). 3 True negative rate (specificity).

3.2. Algorithm (Stage 2)

In the second stage of the implemented algorithm, the MS lesion areas (acquired at
the intensity adjustment step) were subtracted from the mask image (original image), and
the morphological closing transformation of the resulting image (with lesion holes) was
computed. Then, the image was closed by reconstruction to fill the holes, and a reference
image (without lesions) was created to be compared with the mask image (with lesions).
The previous procedure was applied to two MS sample images (axial and sagittal), and the
results are displayed in Figures 15 and 16.
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(a) (b)

(c) (d)

Figure 15. Implementation of closing morphological transformations (MS axial): (a) Mask image (MS
axial). (b) Mask image minus MS lesions. (c) Morphological closing. (d) Closing by reconstruction
(reference image or healthy brain approach).

(a) (b)

(c) (d)

Figure 16. Implementation of closing morphological transformations (MS sagittal): (a) Mask im-
age (MS sagittal). (b) Mask image minus MS lesions. (c) Morphological closing. (d) Closing by
reconstruction (reference image or healthy brain approach).

Finally, the granulometry of objects in the mask image and the reference image was
computed. Figures 17 and 18 show the granulometry results for two MS sample images
(axial and sagittal). The observed differences demonstrate that it is possible to estimate the
size of MS lesions by computing the granulometry of objects within a mask image (with
lesions) and a reference image (without lesions).
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Figure 17. Granulometry measurements (axial) of the mask image and the reference image using a
disk-shaped SE with different radius values (r = 1, 2, 3, . . . , 15). The size of MS lesions is estimated by
calculating the difference between each data point.
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Figure 18. Granulometry measurements (sagittal) of the mask image and the reference image using a
disk-shaped SE with different radius values (r = 1, 2, 3, . . . , 15).

4. Discussion

Segmentation is useful for analyzing and identifying damaged tissues or other ab-
normalities in MRI scans and for different tasks such as disease diagnosis [11]. Although
several computational models have been proposed for the automatic segmentation of MS
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lesions in MRI scans, in some cases, only simple data preprocessing (image resizing to stan-
dardize the input dimensions) has been performed before the algorithm training [27–29,37].
Therefore, this paper proposes an MRI preprocessing algorithm based on elementary mor-
phological transformations and granulometry computing. The algorithm helps filter the
image by eliminating undesired components without affecting its original dimensions. Also,
it improves the characterization of MS lesions by extracting only the relevant structures.

For the first stage of the proposed algorithm, morphological opening transformations
were performed on the brain images to identify high-intensity objects (clear objects that can
be associated with MS lesions), followed by intensity adjustment to increase the contrast
and extract the relevant structures. Also, the granulometry of objects in the preprocessed
images was computed. The granulometry results in Figure 9 show that the intensity values
for MS brains are higher than those for healthy brains, meaning that these measurements
are directly associated with the lesions. Then, these granulometry values were used to
train two ANN models to predict MS diagnoses. The performance metric results in Table 4
prove that granulometry measurements work as efficient predictors to train ANN models.
In this way, this algorithm can support the decisions of specialists when diagnosing MS
based on granulometry computing. Also, the loss function behavior in Figures 13 and 14
indicates that it is not necessary to spend so much time tuning the hyperparameters of
a learning model; it is possible to minimize the loss by only adjusting the regularization
strength hyperparameter (lambda). Table 5 presents the performance results reported in
some other studies concerning the analysis of MS lesions in MRI scans. According to these
data, the results obtained in our paper show a high accuracy (0.9753) and the highest DSC
value (1.0) compared to other studies. A limitation of this paper is that some MRI scans
available in the analyzed database had different dimensions, so only 100 images of MS
patients (axial and sagittal) and 100 images of healthy individuals (axial and sagittal) were
chosen, with dimensions of 569 × 1158 × 3 pixels.

Table 5. Comparison of performance results across different studies analyzing MS lesions.

Image-
Reference Processing Classifier Accuracy DSC 1

Technique

[27] CEN U-Net, U-Net++, - 0.7159
Linknet

[30] ExMPLPQ kNN 0.9837 2 -
0.9775 3 -

[31] Lesion volume CNN 0.9969 0.9786
quantification

[32] CNN CNN 0.98 4 -
0.903 5 -

[33] Attention Modified - 0.823
U-Net U-Net

[34] U-Net U-Net++ - 0.88

[35] Augmented
U-Net LSTM - 0.89

This paper Morphology and ANN 0.9753 2 1.0
granulometry 0.9197 3

1 Dice similarity coefficient. 2 Axial. 3 Sagittal. 4 Cutting-level. 5 Patient-level.

In the second stage of the implemented algorithm, morphological closing transforma-
tions were performed on brain MRI scans (of MS patients) to create an image of a healthy
brain (the reference image approach). Then, the granulometry of the objects within the
images containing MS lesions and the reference image was computed to determine the size
of the lesions. The results in Figures 12 and 13 show that it is possible to estimate the size
of MS lesions by calculating the difference in granulometry measurements at each data
point. These measurements could support specialists and decision-makers to estimate the
progress of this disease and possibly prescribe certain specific treatments.
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In order to validate the findings of this paper, the results were analyzed by a neurol-
ogist expert. He remarked that characterizing the size of lesions based on granulometry
measurements could be useful for monitoring periods of disease activity (new plaques in
MS), monitoring the progress of other demyelinating diseases such as Devic disease [45]
(at the spinal cord level), and monitoring the growth of low-grade glioma tumors or even
glioblastoma multiform (GBM) tumors [46] (in order to evaluate the tumor’s response to
treatment and reduce its growth).
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Abbreviations
The following abbreviations are used in this manuscript:

MS multiple sclerosis;
MRI magnetic resonance imaging;
MM mathematical morphology;
ANN artificial neural network;
CNS central nervous system;
RF radiofrequency;
SNR signal-to-noise ratio;
FLAIR fluid-attenuated inversion recovery;
CNN convolutional neural network;
CEN convolutional encoder network;
GAN generative adversarial network;
MP2RAGE magnetization-prepared 2 rapid acquisition gradient echoes;
UNI uniform image;
HHO Harris Hawks Optimization;
ML machine learning;
LPQ local phase quantization;
ExMPLPQ exemplar multiple-parameter local phase quantization;
LSTM long short-term memory;
FCM fuzzy c-means;
SE structuring element;
DSC Dice similarity coefficient;
TPR true positive rate;
TNR true negative rate.
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