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Abstract: Forecasting nuclear energy production is essential for market operations such as security,
economic efficiency, resource optimization, grid stability, and the integration of renewable energy
sources. Forecasting approaches allow nuclear power plants to operate consistently, contributing to
the overall reliability and long-term viability of the energy system. It is noted that energy systems
researchers are increasingly interested in machine learning models used to face the challenge of time
series forecasting. This study evaluates a hybrid ensemble learning of three time series forecasting
models including least-squares support vector regression, gated recurrent unit, and long short-
term memory models applied to nuclear power time series forecasting on the dataset of French
power plants from 2009 to 2020. Furthermore, this research evaluates forecasting results in which
approaches are directed towards the optimized RreliefF (Robust relief Feature) selection algorithm
using a hyperparameter optimization based on tree-structured Parzen estimator and following an
ensemble learning approach, showing promising results in terms of performance metrics. The
suggested ensemble learning model, which combines deep learning and the RreliefF algorithm using
a hold-out, outperforms the other nine forecasting models in this study according to performance
criteria such as 75% for the coefficient of determination, a root squared error average of 0.108, and an
average absolute error of 0.080.

Keywords: time series forecasting; feature selection; deep neural networks; nuclear energy

1. Introduction

The escalating demand for electricity, driven by global economic and demographic
growth, has underscored the urgency to diversify energy sources, especially nuclear
power [1]. This change is required by the rapid depletion of non-renewable fossil fu-
els, contributing to an increasing energy crisis and exacerbating environmental issues such
as global warming and air pollution [2]. In response, a worldwide movement towards clean,
efficient, and sustainable renewable energy solutions has gained momentum to support
future economic development [3]. Among these, nuclear energy emerges as a critical com-
ponent due to its high energy yield, reliability, and wide accessibility [4]. Its adoption has
been widespread, with countries such as France leading in nuclear power facilities within
the European Union, even as nations such as Germany move toward decommissioning
their plants [5].

Some methodologies have been developed to estimate the power generation of nuclear
power plants (NPPs), which are crucial for decision-making processes. Recent studies
have emphasized the importance of ensemble learning in this context [6], highlighting
its ability to improve accuracy and robustness by combining predictions from multiple
models. Ensemble learning reduces bias and variance, thus enhancing the reliability and
precision of forecasting models in critical structures such as nuclear power plants [7]. This
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ensemble learning approach can be used in both homogeneous and heterogeneous forms,
using different algorithms such as decision trees, support vector machines, or artificial
neural networks trained on various subsets of data, which has been shown to significantly
improve the forecasting of power generation [8].

Accurate forecasting of nuclear power generation is a complex, yet vital issue. It
plays a crucial role for energy planners and grid operators in managing the electricity grid
efficiently. Accurate forecasts enable companies to incorporate nuclear power availability
into their broader energy generation and delivery strategies, ensuring system reliability
and reducing the risks of blackouts or shortages. In nuclear power plants, the careful
handling of fuel sources, such as uranium, is paramount. Optimized fuel utilization is
achievable through accurate forecasting, which helps plant operators plan fueling cycles
and efficiently manage inventory. This optimization not only leads to cost savings but also
improves plant productivity by facilitating informed decisions regarding the timing and
quantity of fuel purchases [9].

Accurate nuclear power generation forecasting is essential to the economic efficiency of
nuclear power stations. By strategically scheduling maintenance activities during periods of
lower demand, the need for expensive shutdowns during peak periods can be significantly
reduced. This strategy not only ensures a continuous revenue stream but also minimizes
operating costs, contributing to the overall sustainability and efficiency of nuclear power
generation [2]. It is essential too to ensure the safety and security of nuclear power plant
operations, which are subject to strict safety standards. A reliable forecasting approach help
operators organize and schedule maintenance, inspections, and other safety-related tasks.
Additionally, they improve preparedness and planning for unexpected circumstances,
such as extreme weather events or unexpected operational difficulties. The significance of
nuclear power generation forecasting increases as renewable energy sources like solar and
wind gain greater use. Predicting nuclear energy is important because while nuclear power
provides a stable base load, it supports the integration of intermittent renewable sources
by ensuring overall grid reliability. This stability allows more flexible energy sources to be
used to compensate for the short-term variability inherent in renewable energy production.

The main contribution of this paper is the proposition of a novel ensemble learning
model with a heterogeneous learning structure. Through a comparative evaluation with
established forecasting models, the proposed ensemble learning model demonstrates
significant performance improvements. It combines three distinct machine learning models,
namely least-squares support vector regression (LSSVR), gated recurrent unit (GRU), and
long-short-term memory (LTSM) models. Additionally, the forecasting model incorporates
feature selection using the RreliefF (Robust relief Feature) algorithm to identify the most
relevant features for prediction. The model’s hyperparameters are optimized using a
tree-structured Parzen estimator.

The suggested ensemble learning model effectively leverages the strengths of each
model while mitigating their limitations through the integration of diverse approaches,
including feature selection and hyperparameters tuning. As a result, the model can com-
prehensively capture a wide range of patterns and generate more accurate predictions
compared to conventional models. The heterogeneous structure of the ensemble learning
model combines various learning algorithms, leading to improved prediction accuracy
and generalization.

The research findings highlight the effectiveness of ensemble learning models with
heterogeneous structures and establish their superiority over conventional models in
different domains. The contributions of this research are:

• The comparison of several machine learning and deep learning models under the
scope of nuclear energy generation forecasting using performance metrics;

• The implementation of feature selection to improve forecasting’s performance of the
machine learning models for the French nuclear fleet dataset;
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• The creation of a stacking ensemble model, based on LSTM, GRU, and support vector
regression (SVR) that outperforms the other models evaluated in this research in terms
of performance criteria.

The remainder of the paper is organized as follows: Section 2 provides a review of
related works in this field. Section 3 presents the proposed research development, including
details of the methodology and algorithms employed. The results obtained and a discussion
of the forecast performance of the models are presented in Section 4. Finally, Section 5
concludes the article with final remarks and suggestions for future research directions.

2. Related Works

Forecasting power generation, particularly nuclear power, has gained a lot of attention
from researchers in recent times, especially since the events that took place in Europe in
2022 and the energy crisis in some countries, such as Germany. Within the scope addressed,
2018 was the year that presented the lowest number of publications, with 245 publications.
In 2019, there was a growth in publications (292, 47 more than the previous year) that,
despite representing a shy volume, presented a percentage of 16.1% more publications
than the previous year. In 2020, the interest in the energy area continued to grow, with
373 publications (128 more than in 2018), representing an increase of 34.4% compared to
2018, and 21.8% compared to 2019.

However, it was in 2021 that the number of publications in the area of power generation
forecasting reached its peak: 457 publications, representing an increase of 46.4%, which
shows that interest in the area has remained on a growing curve. The year 2022 so far
(month 9, September) has shown a volume of publications in the area of 320. Although
this is lower than 2021, it may give a misleading idea of a loss of interest in the area. If
you average the number of publications in 2021 by the number of months, you obtain
38.08 publications per month. Performing the same arithmetic operation with the 2022 data
(320 publications divided by 9 months) gives an average of 35.55 publications per month.
This monthly percentage difference (6.58%) is too small to say that researchers are losing
interest in the area, but it shows that the volume of research may have reached a plateau.

In 2023, as shown in Figure 1 the number of publications in nuclear power generation
forecasting continued to grow, reaching 490 publications. This represents a 53.1% increase
from 2018 and a 7.2% increase from 2021, indicating a sustained interest in the field [10].
In 2024, preliminary data suggest that publications are likely to surpass 500, maintaining
a robust trend in research output [11]. This demonstrates a continuing and significant
investment in research on nuclear power generation forecasting, likely driven by ongoing
global energy challenges and the need for sustainable energy solutions.

To understand the most representative research in the field, several performance
indicators were taken into consideration for the bibliometric analysis in this state-of-art
research, including Total Papers (TP), which is the total number of publications from a
specific source, Total Citations (TC), which is the total number of citations an article has
received, Citations per Paper (CPP) which is the total number of citations divided by the
total publications, a metric to assess the average impact for a journal or author, and Citation
Median (CM), used to reduce the potential confounding effect of a few highly mentioned
articles when the data are presented as means [12].

The most productive authors were measured based on their number of publications.
For those with the same number of publications, the rank was then measured by the number
of citations. The list with the 10 most productive authors is presented in Table 1. The author
Mohammad Rizwan is the largest contributor to this analysis, with 10 publications and
141 citations.
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Figure 1. Number of publications split in years up to June of 2024.

Table 1. Top ten authors by the number of publications and citations.

Rank Authors Country TP TC CPP CM

1 Mohammad Rizwan India 10 141 14.10 3.50
2 Yuan-Kang Wu China 10 95 9.50 1.50
3 Yan Xu China 9 1100 122.22 15.00
4 Jian-Zhou Wang China 9 190 21.11 8.00
5 Stanislav A Eroshenko Russia 9 12 1.33 0.00
6 Yang Du China 8 268 33.50 8.50
7 Shu Li Wen China 7 154 22.00 18.00
8 Xin Ma China 7 102 14.57 6.00
9 Wenqing Wu China 7 102 14.57 6.00
10 Alexandra Khalyasmaa Russia 7 6 0.86 0.00

Following Rizwan, there are Yuan-Kang Wu also with 10 publications. Yan Xu, Jian-
Zhou Wang, and Stanislav A. Eroshenko continue the list, with nine publications each.
Yang Du is the only one with eight publications, followed by Shu Li Wen, Xin Ma, Wenqing
Wu, and Alexandra Khalyasmaa with seven publications each. However, being the author
with the most papers does not mean being the most influential author. Among those who
produced the most papers, the most influential authors were determined by the number of
citations, as presented in Table 2.

As indicated in Table 2, the researchers were ranked according to the total number of
citations they had in all of the publications to compile a list of the most significant authors.
Rizwan, who was the author with the most productions, appeared in fifth place of most
influential authors, as did Yuan-Kang Wu, who appeared in eighth place. However, Yan
Xu who was third on the list of most productive authors, showed himself to be the most
influential, with a substantially high number of citations compared to the other authors,
having almost five times as many citations as the second-place author (Yang Du) and also
holding the highest CPP (122.22).
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Table 2. Top ten most influential authors.

Rank Authors TP TC CPP CM

1 Yan Xu 9 1100 122.22 15.00
2 Yang Du 8 268 33.50 8.50
3 Jian-Zhou Wang 9 190 21.11 8.00
4 Shu Li Wen 7 154 22.00 18.00
5 Mohammad Rizwan 10 141 14.10 3.50
6 Xin Ma 7 102 14.57 6.00
7 Wenqing Wu 7 102 14.57 6.00
8 Yuan-Kang Wu 10 95 9.50 1.50
9 Stanislav A Eroshenko 9 12 1.33 0.00
10 Alexandra Khalyasmaa 7 6 0.86 0.00

As shown in Table 2, Yan Xu, even with nine articles, had a total of 1100 citations.
Authors usually work in cooperation with each other. By analyzing Figure 2, one can see
that many of them are correlated, as shown in the clusters.

Figure 2. The frequency with which researchers quote one another indicates how related they are.

In Figure 2 are considered 500 authors in the energy field between the years 2018 to
2024. Each cluster presents a group of authors who publish together, and the lines between
the clusters represent the citations made between them. It is possible to see then that papers
from certain clusters can come to influence other clusters by the relationship between the
members of the clusters and the related citations. The first-place author Yan Xu (gray
cluster) has correlations with the fourth-place author (Shu Li Wen), and both reference the
same groups of authors in the energy field.

Finally, among the analyses performed in this related works section, the 40 most
important articles that could influence this research were studied. Each of them is briefly
explained in this section, and their study reflects where this article is placed in the literature
and where its contributions occur, as presented in Table 3. The most referenced paper, with
980 TC, is the work of [13]. This paper deals with the application of RNN (recurrent neural
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network), more specifically, LSTM, for residential energy consumption. Although it is not
energy generation forecasting but consumption forecasting, the techniques have a similar
valid applicability.

Table 3. Model Parameters and Search Space.

Model Parameters Minimum Maximum

LSSVR C = 0.2024 C = 0.1 C = 0.5
γ = 1.9983 γ = 1 γ = 3
Kernel = rbf

LSTM Epochs = 500 Epochs = 100 Epochs = 1000
Batch size = 10 Batch size = 5 Batch size = 20

GRU Epochs = 50 Epochs = 10 Epochs = 100
Batch size = 100 Batch size = 50 Batch size = 200

Although the search strings did not consider any specific technique, many of the most
cited papers had a combination of LSTM and photovoltaics or wind energy [13–16], for
energy forecasting. Other techniques were also used in combination with these energy
sources [17–20].

Among the most representative papers, several reviews used a large number of
different techniques to benchmark [21–24]. These are important works to compare the best
techniques. Finally, some research studies show a trend towards the use of optimization
techniques and variations of existing techniques such as LSSVR [25]. With a difference
of more than twice as many citations compared to the second place, it can be seen in
Figure 3 that the work of (Kong, 2019) was the most referenced according to the state of
the art. The second and third places in the number of citations had a similar number of
references in terms of importance. The work of [21] is a review of photovoltaic energy
forecasting models, while the study of [14] also presents a short-term forecast using LSTM
for photovoltaic energy.

Figure 3. Most influential papers clustered by authors [13–16].

The fourth and fifth places are the works of [15,16]. Looking at Figure 3, it is possible to
see the correlation between these articles. The other papers presented have a representation
of citations with small differences between them, as can be seen in the size of their clusters.
These related works presented papers that were significant not only for the nuclear energy
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forecasting scenario but also for the field of energy research. Among all the articles analyzed
and studied for this research, this article stands out for its use of LSTM in conjunction with
GRU and SVR for nuclear energy power forecasting, for presenting results that combine
the three algorithms, and for the application of feature selection using RreliefF, optimizing
with tree-structured Parzen estimator.

3. Materials and Methods

The following subsections provide information about dataset description, time series
forecasting models, and performance metrics.

3.1. Dataset

The primary source of data for this study was obtained from the Power Reactor
Information System (PRIS) page. The dataset used includes the electricity production
of nuclear power plants in France from 2009 to 2020. That dataset is comprehensive,
comprising four separate files that contain information on yearly electricity delivered,
operating factor, online time, and primary reactor data. These files are organized according
to individual nuclear power plants. Figure 4 provides a detailed analysis of the French
nuclear power generation from 2009 to 2020 through four distinct visualizations, offering
a comprehensive analysis of trends and patterns in French nuclear power generation
over the past decade, emphasizing both individual reactor performance and broader
production trends:

Figure 4. Total production over the years (a), production comparison of top 5 reactors in 2020 (b),
yearly production distribution (c), and production in 2019 vs. 2020 (d).

• Total production over the years: Line chart (a) illustrates the total annual production of
all nuclear reactors from 2009 to 2020, measured in TWh. The data indicate fluctuations
in production, with notable peaks in 2011 and 2014, and a marked decline in 2020.
These trends suggest variability in nuclear power generation, which may be attributed
to factors such as maintenance schedules, operational changes, or policy changes
that affect nuclear energy. Figure 4a captures the cyclic nature of power generation,
highlighting recovery periods and subsequent drops, reflecting the dynamic nature of
nuclear power production influenced by operational, regulatory, and external factors.



Technologies 2024, 12, 148 8 of 21

• Production comparison of top 5 reactors in 2020: The bar chart (b) compares the
production output of the top five reactors in 2020, measured in TWh. Belleville-2,
Penly-2, St Alban-2, Paluel-4, and Nogent-1 are identified as the reactors with the
highest production, each contributing significantly to the total output.

• Yearly production distribution: The box plot (c) shows the distribution of production
values for all reactors over the years, measured in TWh. This visualization provides
insight into the central tendency and variability of the reactor output. There is consid-
erable consistency in production levels with occasional outliers, indicating that most
reactors operate within a similar range of output each year, with some exceptions.

• Production in 2019 vs. 2020: The scatter plot (d) examines the relationship between the
production of reactors in 2019 and their production in 2020, both measured in TWh.
There is a general correlation visible, suggesting that reactors with higher production
in 2019 tended to maintain higher production levels in 2020, despite the overall decline
in total production, which suggests consistent performance levels across consecutive
years for individual reactors.

The dataset https://pris.iaea.org (accessed on 16 June 2024) includes various details
related to each reactor, such as its name, model, status, owner, operator, reference unit
power, net design capacity, gross electrical capacity, thermal capacity, construction start
date, first critical date, first grid connection date, commercial operation date, lifetime
electricity supplied, lifetime energy availability factor, lifetime operation factor, lifetime
energy unavailability factor, and lifetime load factor. Electricity generation is expressed
in (GW/h).

For this study, only two fields were considered: “Reactor Name” and “Electricity
Provided for Ten Years”. The analysis focused on the dataset spanning from 2009 to 2019.
In terms of forecast analysis, data for the year 2020 were used. The dataset was divided
into training (70%), validation (15%), and testing (15%) subsets for the analysis.

In nuclear power forecasting, understanding both long-term trends and cyclicity is
critical for accurate predictions. A comprehensive forecasting model should ideally account
for seasonal patterns (such as routine maintenance schedules and weather-related efficiency
changes) and cyclic factors (such as long-term economic trends or technological advances).
Analyzing these patterns can help optimize nuclear plant operations and provide valuable
insights for strategic planning in the nuclear power industry. The long-term trend and
cyclicity observed in nuclear electricity generation can be attributed to a combination
of operational, economic, and demand-related factors. As the energy landscape evolves
with the integration of more renewable sources, the role and operation of nuclear reactors
will also change, necessitating a deeper understanding of these patterns for effective
energy management.

Additionally, the overall stability and slight increase in the baseline power generation
across the years indicate an overall robust performance of the nuclear fleet, with each reactor
contributing to a steady supply of power. However, the occasional extreme deviations, such
as sharp drops or peaks in individual lines, might signify specific incidents or exceptional
maintenance periods. Figure 5 presents the cyclic trends in power generation for the French
nuclear fleet from 2009 to 2020. The x-axis represents the years, while the y-axis indicates
the total power generation in MWh. This graph showcases the overall performance and
cyclic patterns in the nuclear power output, providing insights into the long-term trends
and fluctuations in power generation. The power generation of the French nuclear fleet
experienced significant variations over the 11 years. The total power generation peaked
around 2010 and then exhibited a gradual decline. This decline was punctuated by periods
of recovery and subsequent drops, indicating cyclic trends in power production. For
example, there was a noticeable dip around 2012 followed by a brief recovery, and then
another decline from 2015 onwards. The most significant drop occurred after 2018, with a
steep decline continuing into 2020.

https://pris.iaea.org
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Figure 5. Cyclicity for the nuclear French fleet power generation.

Several factors could contribute to the observed cyclic patterns in power generation.
Maintenance schedules and reactor outages for refueling are routine operations that can
temporarily reduce power output. In addition, regulatory changes, upgrades, and mod-
ernization efforts can also impact generation capacity. External factors such as variations
in electricity demand, economic conditions, and policy shifts toward renewable energy
sources could further influence these trends. The pronounced decline in recent years could
be attributed to a combination of aging reactors requiring more frequent maintenance and
a strategic shift in France’s energy policy to diversify its energy mix.

In general, the figure effectively captures the cyclic nature of power generation within
the French nuclear fleet from 2009 to 2020. While the overall trend shows a decline, the
cyclic patterns highlight periods of recovery and subsequent drops, reflecting the dynamic
nature of nuclear power production influenced by operational, regulatory, and external
factors. Understanding these trends is crucial for planning and optimizing the future
energy strategy of the French nuclear fleet.

The data illustrated in these figures are ideal for forecasting because they demonstrate
clear and consistent patterns in long-term trends and cyclicity, which are essential for
reliable predictions. The graphs show regular, predictable fluctuations over the years,
highlighting trends and periods of increase or decrease in nuclear power generation. This
regularity makes it possible to anticipate changes in power generation needs based on
historical patterns, such as increased demand during winter months. The cyclicity graph
reveals longer-term trends and periodic fluctuations over multiple years, capturing broader
economic and policy influences on power generation. By combining these insights, it is
possible to develop a comprehensive understanding of both short-term and long-term
variations in nuclear power output. This dual perspective enables more accurate and
proactive planning, reduces the risk of unexpected supply shortages or overproduction,
and ensures a stable and efficient power generation process. Consequently, the presence of
these clear patterns makes the data highly reliable for forecasting purposes.

3.2. Feature Engineering

In signal processing, white noise is a random signal having equal intensity at different
frequencies, giving it a constant power spectral density [26]. In time series, white noise is
defined by a zero mean, constant variance, and zero correlation [27]. Considering this, the
annual energy output of each reactor was normalized. Figure 6 shows that the series is
random, where the numbers 0 to 11 represent the 12 years used as the dataset (2009–2020)
for each power generation sequence of each of the 58 reactors. This visualization helps to



Technologies 2024, 12, 148 10 of 21

understand the variability and operational dynamics of each reactor in a standardized way.
By normalizing the energy output, we can observe the relative performance and trends of
each reactor over time on a comparable basis.

Figure 6. Normalized annual energy output for each of the 58 reactors from 2009 to 2020. The normal-
ization process scales the energy output to a common range, allowing for comparison across reactors.

Figure 6 shows the normalized annual energy output for each of the 58 reactors over
the twelve-year period from 2009 to 2020. Normalization allows for a comparison of the
energy production across different reactors by scaling the data to a common range. This
helps identify trends, consistency, and anomalies in reactor performance over time.

Skewness is a measure of the asymmetry of the probability distribution of a real-valued
random variable about its mean. The skewness value can be positive, zero, negative, or
undefined. For example, the skewness of a random variable X is the third standardized
moment µ̃3, and it is defined as [28]:

µ̃3 = E

[(
X − µ

σ

)3
]
=

µ3

σ3 =
E
[
(X − µ)3]

(E[(X − µ)2])
3/2 =

κ3

κ3/2
2

(1)

where µ is the mean, σ is the standard deviation, E is the expectation operator, µ3 is the
third central moment, and kt is the t-cumulant. The dataset used in this study presented a
skewness of 0.05, very close to zero, indicating that the data were almost symmetric.

Kurtosis measures whether the data are heavy-tailed or light-tailed relative to a normal
distribution, and datasets with high kurtosis tend to have heavy tails or outliers. Datasets
with low kurtosis tend to have light tails or a lack of outliers. A uniform distribution would
be the extreme case. The definition of the kurtosis formula for univariate data, as proposed
by [28], is:

kurtosis =
∑N

i=1(Yi − Ȳ)4/N
s4 (2)

where Ȳ is the mean, s is the standard deviation, and N is the number of data points [29]. A
0.57 kurtosis value was calculated for this research dataset, indicating a low right tail (not
too many outliers) after improvements using a power transformation function.

Figure 7 shows the distributions of the data for each of the twelve years from 2000 to
2019 for all reactors. The application of a power transformation helped stabilize variance,
making the data more normally distributed.
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Figure 7. Data distributions for each of the twelve years (2000–2019) for all reactors.

This transformation also improved the validity of association measures, such as the
Pearson correlation between variables. Additionally, a new family of distributions, similar
to the Box-Cox power family [30], can be used without restrictions and offers many of the
same advantages. These transformations are defined by:

ψ(λ, y) =


(
(y + 1)λ − 1

)
/λ

log(y + 1)
−
[
(−y + 1)2 − λ − 1

)]
/(2 − λ)

− log(−y + 1)

(3)

If y is strictly positive, then the Yeo–Johnson transformation is the same as a Box–Cox
power transformation of (y + 1). If y is strictly negative, then the Yeo–Johnson transforma-
tion is the Box–Cox power transformation of (−y + 1), but with a power of 2− λ. With
negative and positive values, the transformation is a mixture of these two; then, different
powers are used for positive and negative values [31]. The Yeo–Johnson power transforma-
tion was the best option in this study because some negative values were present during
the dataset preprocessing.

3.3. Feature Selection

ReliefF and its equivalent for handling regression data, i.e., RreliefF [32], are the most
widely used Relief-Based Algorithms (RBAs) [33]. Similar to ReliefF, RreliefF penalizes
predictors that give different values to neighbors with the same response values and
rewards forecasters that give different values to neighbors with different response values
when working with a continuous y. Relief algorithms are successful, generalized attribute
estimators, that can detect conditional connections between attributes and provide a unified
perspective on the estimation of attributes in regression [34]. However, RreliefF computes
the final predictor weights using medium weights.

Given two nearest neighbors, then

• Wdy is the weight of having different values for the response y;
• Wdj is the weight of having different values for the predictor Fj;
• Wdy∧dj is the weight of having different response values and different values for the

predictor Fj.

RreliefF first sets the weights Wdy, Wdj, Wdy∧dj , and Wj equal to 0. Then, the algorithm
iteratively selects a random observation xr, finds the k-nearest observations to xr, and
updates, for each nearest neighbor xq, all intermediate weights as follows:

Wdy
i = Wdy

i−1 + ∆y
(
xr, xq

)
· drq
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Wi
dj = Wi−1

dj + ∆j
(
xr, xq

)
· drq

Wi
dy∧dj = Wi−1

dy∧dj + ∆y
(
xr, xq

)
· ∆j

(
xr, xq

)
· drq

where the i and i − 1 superscripts denote the iteration step number. m is the number of
iterations specified by “updates”. ∆y

(
xr, xq

)
is the difference in the value of the continuous

response y between observations xr and xq. Let yr denote the value of the response for
observation xr, and let yq denote the value of the response for observation xq.

∆y
(
xr, xq

)
=

∣∣yr − yq
∣∣

max(y)− min(y)
(4)

where the ∆j
(

xr, xq
)

and drq functions are the same as for ReliefF, but RreliefF calculates
the predictor weights Wj after fully updating all the intermediate weights.

Wj =
Wdy∧dj

Wdy
−

Wdj − Wdy∧dj

m − Wdy
(5)

3.4. Forecasting Models

In this research, three well-established machine learning algorithms for nuclear power
generation forecasting were used: long-short-term memory neural network, gate recurrent
unit, and least-square support vector regression (LSSVR).

1. Long-short-term memory neural network: LSTM neural networks are a type of
recurrent neural network (RNN) capable of learning long-term dependencies, which
makes them effective for time series prediction [35].

2. Gate Recurrent Unit: GRUs are a simplified version of LSTM neural networks that also
address the problem of vanishing gradients in RNNs. They have fewer parameters
and can be more efficient for certain tasks [36].

3. Least-Square Support Vector Regression: LSSVR is a variant of support vector regres-
sion that aims to find a linear or non-linear relationship between input variables and
the target variable. It is particularly useful for regression problems involving time
series data [37].

These methods were chosen for their proven effectiveness in time series forecasting.
This study combined these techniques into an ensemble model, leveraging their strengths
to improve prediction accuracy for nuclear power generation. Although LSTM models
are typically employed for datasets with extensive temporal data, the decision to include
LSTM in the ensemble approach was based on its robustness and ability to capture complex
patterns in time series data. Despite the relatively small dataset of 11 annual data points,
the LSTM model contributed to the overall accuracy of the hybrid ensemble by leveraging
its unique capabilities to identify underlying trends and dependencies. This approach
ensures a comprehensive analysis and prepares our model for future scalability as more
data become available.

3.5. Performance Criteria

Forecasting models can be analyzed using many types of performance measures. The
selection of criteria is based on the details of the forecast issue and the analysis goals. In
this study, three performance criteria were adopted, the coefficient of determination (R2),
the Mean Squared Error (MSE), and the Mean Absolute Error (MAE), presented in the
following equations:

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2 (6)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (7)
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MAE =
1
n

n

∑
i=1

|yi − ŷi| (8)

where N is the number of samples, ŷi is the prediction (estimated) value for the test sample
i, yi is the true (measured) value of test sample i, and ȳ is the average value of true test
samples. The coefficient of determination (R2) is the ratio of the variance of the anticipated
value to the variance of the actual value [38]. A higher R2 value indicates a better fit,
suggesting that the model captures a larger portion of the variance in the dependent
variable. The MSE provides a quantitative measure of the model’s accuracy, with lower
values indicating better performance [39]. In addition, the MAE calculates the average
magnitude of absolute differences between n predicted vectors. If the MAE for a specific
data point is significantly larger than the average MAE, it may indicate an anomaly.

3.6. Tree-Structured Parzen Estimator

Hyperparameters determine the model architecture and govern the learning process in
machine learning, such as the number of hidden layers, activation function type, and learn-
ing rate. Automatic hyperparameter optimization is crucial to the development of machine
learning models, such as current deep neural networks, e.g., LSTM, whose learning perfor-
mance is highly dependent on the selection of multiple hyperparameters [40]. Automatic
hyperparameter optimization has several significant advantages, including: (1) a reduction
in the human effort when deploying machine learning, which is essential in applications
because different hyperparameter configurations are required for different datasets [41]
and (2) an improvement in the performance of machine learning models, by choosing the
values of the most appropriate (according to specified objectives) hyperparameters for the
target application [42].

In this work, the hyperparameters of the proposed prediction model were automat-
ically optimized using a form of Bayesian optimization (BO) known as tree-structured
Parzen estimator (TPE). A common benefit of BO approaches is that they require fewer
function evaluations than other classical optimization approaches, such as grid search or
random search, because these approaches learn and select the optimal hyperparameter sets
based on their distributions describing the fitness scores from previous iterations.

Thus, TPE has been widely used to tune machine learning models in various applica-
tions, such as image processing [43–45], electricity price forecasting [46], solar irradiance
forecasting [47], rail defect prediction [48], occupational accident prediction [49]. Parzen
window density estimation, also known as kernel density estimation, is a non-parametric
way to build a probability density function from empirical data. In the TPE algorithm,
each sample from the empirical data defines a Gaussian distribution with a mean equal to
the hyperparameter value and a specified standard deviation. At the start-up iterations, a
random search is employed to initialize the distributions by sampling the response surface{

θ(i), y(i), i = 1, . . . , Ninit

}
, where θ denotes the hyperparameter set, y is the corresponding

value on the response surface, i.e., the validation loss or the fitness value, and Ninit is the
number of start-up iterations. Then, the hyperparameter space is divided into two groups,
namely good and bad samples, based on their fitness values and a predefined threshold
value y∗ (usually set to 15%), as follows:

p(θ | y) =

{
Prgood (θ) if y < y∗

Prbad (θ) if y ≥ y∗
(9)

where Prgood and Prbad are the probabilities that the hyperparameter set θ is in the good
and bad groups, respectively. The TPE initialization process for the hyperparameter
distributions used y∗ = 15% and Ninit = 100 [50].

The red points are the samples with the lowest fitness values after evaluation, thus
being classified into the good group Prgood , whereas the others form the bad group Prbad.
In this way, the selection of optimal hyperparameters relies on a set of best observations
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and their distributions. Then, the more iterations are used for initialization, the better the
distribution we obtain at the beginning. An expected improvement (EI) is then calculated
as follows:

EI(θ) =
Prgood(θ)

Prbad(θ)
(10)

The hyperparameter configuration θ* that maximizes the expected improvement is
chosen at each iteration. Figure 8 shows the flowchart of the TPE optimization procedure.

Figure 8. Flowchart of the TPE optimization procedure.

3.7. Ensemble Learning

Stacked generalization, stacking-ensemble learning, or STACK for short, is one of the
ensemble learning approaches cited in [51]. In the STACK technique, which employs two
or more levels or layers, different models are trained in the first layers, where the prediction
of the response variable for each model is determined and utilized as input for the other
ones. These predictions of the first layer models are known as weak or basic models.

For the next layer, the model, known as a robust or meta-model, is trained, and its
prediction is the end outcome of the forecasting process. In addition, when there is variety
amongst models of different levels, predicting results improve, mostly because models with
distinct generalization principles tend to provide divergent outcomes. In other words, the
total number of models in a level does not ensure model success; variety is crucial [52]. This
method has shown predicting enhancements in several sectors, including agrobusiness [52],
finance [53], and epidemiology [54].

3.8. Proposed Forecasting Approach

As shown in Figure 9, three machine learning algorithms were individually applied to
the dataset in the computational model proposed in this study. The process began with the
model training using input data (step 1). Each algorithm, GRU, LSTM, and LSSVR, was
individually trained, generating training output data (step 2) for each respective model.

The training process involved multiple steps to ensure the robustness and accuracy of
the model. Initially, the dataset was preprocessed to handle missing or inconsistent data
points. Each machine learning algorithm (GRU, LSTM, and LSSVR) was then applied to
the preprocessed data, focusing on capturing different aspects of the time series patterns.

After training, the fitted models were subjected to RreliefF to select features, reduce
dimensionality, and focus on the most relevant features. The feature selection process gener-
ated optimized models for each technique, which were then validated using the validation
data (step 3), producing validation outputs (step 4). Subsequently, the tree-structured
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Parzen estimator (TPE) was used for hyperparameter optimization via the Optuna tool in
Python. This Bayesian optimization technique iteratively refines the hyperparameters based
on their performance, ultimately selecting the most effective configuration for each model.

The final stage involved combining the outputs from the three optimized models into
an ensemble stack. The test data (step 5) were then submitted to the combined model, which
generated the test output (step 6). This stacked-ensemble approach leveraged the strengths
of each individual model, providing a more comprehensive and accurate prediction.

Figure 9. Schematics from the proposed model.

4. Results

The models were optimized, and their parameters discovered, whose best values are
presented in Table 4.

Once the optimized hyperparameters models were generated, they were passed
through the ensemble stack. The ensemble model was then submitted to feature selection
for dimensionality reduction with RreliefF, and compared to other models such as SVR,
eXtreme gradient booting (XGBoost), adaptive boosting (AdaBoost), and Gradient Boost
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Regressor (GBR), as presented in Table 4. Note that the best number of features indicated
by RreliefF was fourteen. These models were not optimized with Optuna.

Table 4. Model comparison based on validation data results.

Model R2 RMSE MAE

Proposed Model 0.751 0.108 0.080
SVR 0.472 0.135 0.112
AdaBoost 0.415 0.143 0.129
Bagging 0.226 0.164 0.139
XGBoost 0.216 0.165 0.123
GBR 0.166 0.170 0.142
Random forest 0.141 0.173 0.154
Decision tree 0.073 0.180 0.147
Ridge 0.013 0.188 0.167
ElasticNet 0.029 0.189 0.166

For the evaluation of various predictive models, including the proposed model, SVR,
and a suite of ensemble models such as AdaBoost, Bagging, XGBoost, and Gradient Boost-
ing Regressor (GBR), along with random forest, decision tree, ridge, and ElasticNet regres-
sion models, their performance was compared based on three key metrics: R2 (coefficient of
determination), RMSE (Root-Mean-Square Error), and MAE (Mean Absolute Error). These
metrics served as critical indicators of the model’s capacity to explain variance, predict
with accuracy, and minimize the average magnitude of prediction errors.

The proposed model emerged as the superior one, showcasing exemplary performance
with an R2 value of 0.751. This indicated a robust ability to account for variance within the
dependent variable. In addition, it achieved the lowest RMSE and MAE values of 0.108 and
0.080, respectively, highlighting its superior predictive accuracy and consistency compared
to its counterparts.

SVR exhibited moderate effectiveness, with an R2 of 0.472, suggesting it as a viable
though less capable alternative to the proposed model. Its RMSE and MAE values, although
not as low as those of the proposed model, still indicated relatively high accuracy and
lower prediction errors than the majority of other evaluated models.

Among the ensemble methods evaluated, AdaBoost and Bagging demonstrated mod-
erate performance, with AdaBoost slightly outperforming Bagging in R2 terms. XGBoost
and GBR showed less capability in explaining variance. All ensemble models registered
higher RMSE and MAE values compared to the proposed model and SVR, reflecting less
accuracy in their predictions.

The random forest and decision tree models recorded lower R2 values, indicating a
diminished ability to capture variance in the dataset. This was further evidenced by their
higher RMSE and MAE values, denoting a decline in predictive accuracy and consistency.

Ridge and ElasticNet regression models were the least effective, with notably low
R2 values and the highest RMSE and MAE scores among the compared models. This
significant discrepancy between predicted and actual values highlighted their limitations
in explaining variance and in predictive precision.

Figure 10 illustrates the performance comparison of various models based on three
evaluation metrics: coefficient of determination (R2), Root-Mean-Square Error (RMSE),
and Mean Absolute Error (MAE). These metrics provide a comprehensive assessment of
each model’s accuracy and predictive capability, crucial for evaluating their effectiveness
in nuclear energy forecasting. The models compared included the proposed model, SVR,
AdaBoost, Bagging, XGBoost, GBR, random forest, decision tree, ridge, and ElasticNet.
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Figure 10. (a) R2, (b) RMSE, and (c) MAE models’ comparison.

In the coefficient of determination chart, the proposed model exhibited a significantly
higher R2 value of 0.751, indicating a better fit to the validation data compared to the other
models. The next best model, SVR, achieved an R2 value of 0.472, which was substantially
lower. This considerable difference highlighted the superior ability of the proposed model
to explain the variance in the data, making it a more reliable predictor for the given
forecasting task. Models like ridge and ElasticNet showed very low R2 values, suggesting
poor performance in capturing the underlying patterns of the data.

The RMSE and MAE charts further emphasize the efficacy of the proposed model.
With an RMSE of 0.108 and an MAE of 0.080, the proposed model outperformed all other
models, which had higher error values in both metrics. Lower RMSE and MAE values
indicate that the Proposed model not only had smaller prediction errors but also maintained
consistency across different predictions. For instance, SVR, the second-best model in terms
of R2, recorded an RMSE of 0.135 and an MAE of 0.112, both higher than those of the
proposed model. This consistent performance across multiple error metrics confirmed the
proposed model’s robustness and accuracy, making it the optimal choice for nuclear energy
forecasting among the models evaluated.

The proposed model presented better results than the others evaluated in this study in
terms of performance metrics. Table 4 presents the values (not testing and training) using
a validation dataset for each of the forecast algorithms evaluated. Once the model was
created, the validation dataset was used to generate predictions, as shown in Figure 11.

Analyzing Figure 11, it is possible to make several observations regarding the perfor-
mance of the model. The actual and predicted values are closely aligned for most of the
data points, indicating that the model had a reasonable level of accuracy in its forecasts. The
blue line representing the actual values and the red dashed line representing the predicted
values show a similar trend, suggesting that the model captured the overall pattern of the
data quite well.

However, there are noticeable discrepancies at certain points, reflected by the residuals
(green bars). Some residuals are relatively large, indicating significant prediction errors at
those points. For example, at data points where the residuals are most pronounced, such
as those corresponding to large negative or positive bars, the model either significantly
under-predicted or over-predicted the actual values. These instances of larger residuals
suggest that while the model generally performed well, it occasionally failed to predict
certain values accurately.

The LSSVR, LSTM, and GRU models individually presented lower results than the
proposed model. However, once in the stacked ensemble, its results were superior to the
other models tested in this research. Table 4 presents the valid values (not testing and
training) for each of the tested algorithms. Once the model was generated, the validation
dataset was used to generate predictions, as shown in Table 5.
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Figure 11. Model comparison between valid results.

Table 5. Values generated by the proposed model.

Actual Predicted Residuals

0.712 0.687 −0.025
0.479 0.445 −0.033
0.512 0.332 −0.180
0.488 0.506 0.018
0.511 0.290 −0.220
0.479 0.445 −0.033
0.479 0.445 −0.033
0.494 0.505 0.010
0.505 0.471 −0.034
0.715 0.855 0.140

Except for a few cases, the predicted values were very close to the current ones, with
a shallow residual difference, which indicated the efficiency of the model of this study in
predicting the results of nuclear energy generation. The residual difference was, in most
predictions, less than 0.1, showing that the model could predict the power generation
behavior of the reactors used in the dataset.

5. Conclusions and Future Research

This study presented the analysis of machine learning models using LSTM, GRU and
LSSVR, optimized with the tree-structured Parzen estimator, and reducing dimensionality
using short-term forecasting of nuclear energy from power plants in France. First, we
conclude that the regression techniques based on deep learning and support vectors are
more efficient when stacked together for this specific case. The dataset for training, in
most models, was the one with the best response precisely because it had the most data
(70% of the total), which means that for testing and validation, those that showed lower
performance compared to training may have increased performance with a larger volume
of data (up to a certain point). The tree-structured Parzen optimizer, through the Optuna
framework, was efficient in improving the performance of all models. It means that in the
case of the dataset of this research, using a vast number of features can cause overfitting.
In conclusion, the use of LSTM, GRU, and LSSVR ensemble models was highly efficient
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for the analysis of nuclear energy prediction with this dataset, having a margin of mean
error and quadratic error (except for outliers) of 15% to 20% on average, which could be
significantly reduced with the use of the RreliefF algorithm. While the model demonstrated
good predictive capabilities by following the actual data trends closely, the presence of
notable residuals indicated room for improvement. The consistent patterns in residuals
suggest that the model may benefit from further tuning or the inclusion of additional
data features. In conclusion, the proposed model was the most effective and reliable for
outcome prediction, as evidenced by its superior R2, RMSE, and MAE values. This analysis
underscores the importance of model selection that is not only theoretically sound but also
empirically effective in real-world data application.

To progress this research, some improvements can be considered:

1. Model accuracy and residuals: Despite the model’s overall accuracy, there were
noticeable discrepancies in some predictions. The presence of significant residuals
at certain data points indicated that the model occasionally failed to predict actual
values accurately. This suggests that while the model generally performed well, it may
benefit from further tuning or the inclusion of additional data features to improve its
accuracy in all cases.

2. Overfitting concerns: The use of a vast number of features can cause overfitting,
particularly when the model is trained on a dataset with a considerable quantity of
data (70% of the total). Overfitting can lead to a decrease in model performance when
applied to new, unseen data. This highlights the need for careful feature selection and
possibly reducing the number of features used to mitigate this risk.

3. Dataset limitations: The dataset used for training and validation was limited to the
electricity production data of nuclear power plants in France from 2009 to 2020. This
may limit the generalizability of the model’s findings to other regions or different
time periods. Expanding the dataset to include more diverse data could improve the
robustness and applicability of the model.

4. Models’ improvements: Future research could focus on improving the model by
evaluating it with enhancements based on stacking learning, adopting multi-objective
optimization for hyperparameter tuning and feature selection, and using the tree-
structured Parzen optimizer combined with optimization metaheuristics. The current
model, while effective, has room for improvement through these advanced techniques

In conclusion, while the ensemble learning model shows strong predictive capabilities,
the presence of notable residuals, overfitting concerns, and dataset limitations highlight
areas for potential improvement. Future research should focus on further tuning the model,
expanding the dataset, and exploring advanced optimization techniques to enhance the
model’s performance and generalizability.
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