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Abstract

:

Optimization methods, namely, gradient optimization methods, are a key part of neural network training. In this paper, we propose a new gradient optimization method using exponential decay and the adaptive learning rate using a discrete second-order derivative of gradients. The MAMGD optimizer uses an adaptive learning step, exponential smoothing and gradient accumulation, parameter correction, and some discrete analogies from classical mechanics. The experiments included minimization of multivariate real functions, function approximation using multilayer neural networks, and training neural networks on popular classification and regression datasets. The experimental results of the new optimization technology showed a high convergence speed, stability to fluctuations, and an accumulation of gradient accumulators. The research methodology is based on the quantitative performance analysis of the algorithm by conducting computational experiments on various optimization problems and comparing it with existing methods.
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1. Introduction


Deep learning is widely used to solve problems such as image recognition and classification [1,2,3,4], target localization [4,5], object detection [6,7,8], speech and action recognition [9,10], face recognition [11,12], and machine translation [13,14,15], improving the efficiency of agribusiness [16] and intelligent industrial robotics [17], as well as in the field of cybersecurity [18,19,20,21]. The model structure and optimization algorithm play a key role in the performance of a deep neural network. Based on this, the optimization algorithm significantly improves the performance and accuracy of deep neural network models. The choice of optimization algorithms is a priority in the model. In the case of a fixed network architecture and dataset, applying different optimization algorithms will give different training efficiencies.



Optimization methods, namely, gradient-based optimization methods, are a key part of training neural networks, which play an important role in various fields of science and business. With the development of deep learning and its widespread application in various tasks, there is a need for efficient optimization methods that can accelerate learning and improve the accuracy of models. Including optimization methods minimizes multivariate real functions. Because most mathematical models are some functions from several and usually from many variables, optimizers will help to find the extrema of such functions, which are solutions to problems that are applied in various fields of mathematical modeling. Neural networks are a branch of machine learning called deep machine learning. In deep learning, a neural network with a different number of layers and parameters is created, which generates a multidimensional function; in turn, the optimizer tries to change the parameters of the neural network so as to minimize the deviations of the predictions from the training data. To measure such deviations, there are a large number of metrics, which are the target function for optimization and, more specifically, minimization. Currently, there are various optimization methods that combine the ideas of stochastic gradient descent, the adaptive learning rate, exponential smoothing, and the iterative correction of optimization algorithm parameters. Currently, the most popular optimization methods are SGD [22], Adagrad [23], RMSprop [24], and Adam [25], as well as Adam-based algorithms that apply various ideas to it, such as Nadam [22], AdaMax [25], and AdaFactor [26]. All these algorithms are implemented in the keras deep machine learning library and are used in training neural networks.



The authors of [27] propose a method that does not require computational costs and does not require backward iterations; this method is based on step-size adaptation, and the entire performance of the learning trajectory is considered as a function of the step size. Leslie N. Smith uses a cyclic learning rate method that does not need to find the best values and plan global learning rates, which reduces the number of iterations [28]. Zhibin Zhu et al. [29] propose a method that does not add additional computational effort, and the Powell restart strategy developed by the authors allows for improving numerical performance. The online adaptive gradient descent with communication event-triggered method [30] provides minimization of dynamic regret by a group of agents, which is a cumulative loss for agent evaluations of the optimal strategy.



SAM [31] is an efficient sharpness-aware minimization optimizer for training deep learning (DL) models. The main advantage of the optimizer is improved generalization for training deep learning models. The improvement is achieved by adding additional perturbation steps, which results in the flattening of the deep learning model landscape. The SAM optimizer is applied in various machine learning problems [32,33,34,35]. Recently, many new data-driven and network-based layout generation methods have been introduced in the field of deep learning, which provide performance improvements and automation after the training stage. The authors of [36] propose a new geometric representation that can encode correlations between objects, the ground, and the camera position.



Izuchukwu et al. [37] propose a method that demonstrates the improvement by including inertial terms in the reflected gradient projection methods, and the method includes one projection onto the feasible set and one cost operator estimate per iteration. Meruza Kubentayeva et al. [38] propose a method for solving dual optimization problems using accelerated gradient methods. They present a network equilibrium model, and this model is formulated as a convex minimization program. Xiaolin Zhou et al. [39] propose a reflected gradient projection method with a new step size to solve the variational inequality problem in Hilbert spaces. The authors of [40] propose a first-order gradient descent optimization algorithm based on NWM-Adam. The authors’ proposed algorithm eliminates the undesirable convergence behavior of some optimization algorithms that use a fixed window of past gradients to scale gradient updates and improves the performance of Adam and AMSGrad.



Traditional pixel-based classifications face problems, such as misclassification, omissions, and noise. Object-based classifications effectively deal with these problems by taking into account the provided domain information and dividing the image into several objects based on the specified criteria. Regarding the importance of pixel-based and sub-pixel-based methods, the study by Valjarević et al. [41] provides a valuable insight.



This paper presents a new optimization method that combines the ideas of existing optimizers and new methods. The algorithm shows good convergence speed and accuracy results, including outperforming the current optimization methods with the proper selection of hyperparameters. The MAMGD optimizer uses an adaptive learning step, exponential smoothing and gradient accumulation, parameter correction, and some discrete analogies from classical mechanics. The MAMGD optimizer is designed to address the slow convergence and instability inherent in conventional gradient optimization methods, such as SGD and its variations. The main goal of MAMGD is to provide a high convergence speed and stability when dealing with different types of data, including those characterized by high gradient variability. This is achieved by adaptively tuning the learning rate and using a discrete second-order representation of the derivatives to better account for the curvature of the loss function. Like all gradient-based optimization methods, the MAMGD method can be used for training neural networks, in optimization problems in which it is possible to take partial derivatives of the target function, and in mathematical modeling problems that are based on previous problems.




2. Materials and Methods


2.1. Classic Gradient Descent


The simplest and most basic algorithm is gradient descent [21], and all other optimization algorithms are formed based on this method. Classical gradient descent is easy to implement and understand, which makes it attractive to a wide range of users and researchers. Also, this method guarantees convergence to the local minimum of the loss function if certain conditions, such as the convexity and continuity of the loss function, are met (Algorithm 1).



	Algorithm 1 Gradient descent



	    g t  ←  ∇  θ  t − 1    f  (  θ  t − 1   )   

    θ t  ←  θ  t − 1   − η  g t   








The classical gradient descent algorithm (Algorithm 1 Gradient descent) is simple to implement and can work well with a good choice of initial approximations and the learning rate parameter. However, gradient descent is very dependent on the choice of initial values and may be subject to build-ups in the local minima. All subsequent optimization methods are based on the idea of gradient descent and are improvements of its idea. To improve the gradient descent, derived optimization algorithms implement adaptive stepping and gradient accumulation methods to eliminate the problem of building up in the local minimum.




2.2. Momentum


The Momentum optimization method [22] eliminates some problems in classical gradient descent and allows for converging to a minimum faster. The idea of the optimizer is to accumulate gradients, i.e., the algorithm uses information about previous iterations of the algorithm (Algorithm 2).



	Algorithm 2 Momentum



	    g t  ←  ∇  θ  t − 1    f  (  θ  t − 1   )   

    m t  ← β  m  t − 1   +  g t   

    θ t  ←  θ  t − 1   − η  m t   








At the same time, the method may be subject to the overflight of the global minima due to the accumulation of gradients, which can also be strongly affected by explosive gradients. This will greatly increase the accumulation of gradients and the optimizer will jump the global minimum. The problem of sensitivity to the choice of the learning rate remains, just as with classical gradient descent; at high learning rates, the optimizer overshoots the global minima, and at low learning rates, it may converge to them more slowly but still faster than classical gradient descent because of the gradient accumulator. In any case, if the learning rate value is too small, learning may be slow and there is a risk of getting stuck in a local minimum. If the value is too large, oscillation or divergence of the algorithm may occur.




2.3. Adagrad


The optimization algorithm Adagrad [23] applies the idea of the adaptive learning rate, which can solve the problem of the very fast or very slow convergence of the method to a minimum. Adagrad uses an accumulator of gradient squares to accumulate velocities and adjusts the step depending on the gradient vector (Algorithm 3).



	Algorithm 3 Adagrad



	    g t  ←  ∇  θ  t − 1    f  (  θ  t − 1   )   

    n t  ←  n  t − 1   +  g t 2   

    θ t  ←  θ  t − 1   − η    g t     n t   + ϵ     








The method adjusts the gradient vector by removing the influence of large gradients and increasing the influence of small values. This idea solves the problem of discharged models with a large number of different values of weights and increases the convergence rate by changing the learning rate. But it also introduces the problem of explosive gradients, where the values can greatly increase the accumulator, leading to moving away from the global minimum or converging to a local minimum.



Also, Adagrad tends to have slow convergence and may even stop learning in some cases. This is due to the fact that weights that are rarely updated have small gradient values, as well as being due to the accumulation of the sum of squares of gradients in the denominator. Because of this, the method may "freeze" on the way to a local minimum.




2.4. RMSProp


In order to reduce the influence of explosive and damped gradients, the RMSProp optimization method [24] uses the idea of exponential smoothing. This helps to increase the influence of the accumulator of gradient squares or gradients at the current iteration step. At the same time, a new parameter of the optimizer, the smoothing factor, appears, which is responsible for adjusting the influence of the accumulator of gradients (Algorithm 4).



	Algorithm 4 RMSProp



	    g t  ←  ∇  θ  t − 1    f  (  θ  t − 1   )   

    n t  ← β  n  t − 1   +  ( 1 − β )   g t 2   

    θ t  ←  θ  t − 1   − η    g t     n t   + ϵ     








The algorithm, like Adagrad, uses an adaptive learning step based on accumulators of gradient squares. The improvement of RMSProp compared to Adagrad is there is less influence of outliers on the optimization progress due to exponential smoothing. RMSProp is less prone to overshooting the minima and movement due to accumulated gradients but is also subject to oscillations. There is also a new exponential smoothing hyperparameter that can affect the convergence rate, which requires more parameter experiments when training the model, but can significantly speed up training or reduce oscillations and overshoots of global minima.




2.5. Adam


The Adam optimizer [25] combines the Momentum and RMSProp optimization methods. The method uses an accumulator of gradients, gradient squares, and exponential smoothing while adding a correction to the exponential smoothing coefficients to increase the impact of the first iteration steps for faster convergence to a minimum (Algorithm 5).



At the moment, the Adam optimizer is the most popular in training neural networks; this is due to its high convergence rate and low susceptibility to oscillations. At the same time, Adam is highly dependent on initial parameters, which, if properly selected experimentally, can significantly increase convergence to the global minimum. In any case, Adam does not completely solve the problem of large gradient accumulations and damping, which, in turn, is greatly helped by the correction of the exponential damping coefficients. Generalizing, Adam combines the methods of adaptive step learning, accumulator gradients, exponential smoothing, and coefficient correction, which helps to solve the problems of a low convergence rate, overflight of the global minima, and susceptibility to oscillations.



	Algorithm 5 Adam



	    g t  ←  ∇  θ  t − 1    f  (  θ  t − 1   )   

    m t  ←  β 1   m  t − 1   +  ( 1 −  β 1  )   g t   

    n t  ←  β 2   n  t − 1   +  ( 1 −  β 2  )   g t 2   

     m t  ^  ←    m t   1 −  β 1 t      

     n t  ^  ←    n t   1 −  β 2 t      

    θ t  ←  θ  t − 1   − η     m t  ^      n t  ^   + ϵ     










3. Algorithm


The MAMGD optimization method combines the ideas of the Adam algorithm and supplements them with the ideas of exponential damping and discrete acceleration, which is a discrete form of the second derivative of the gradient. These methods are used to reduce the influence of accumulated gradient accumulators when the number of iterations of the algorithm increases. So, if the damping hyperparameter is successfully chosen, the learning rate can be reduced in time and the minimum that can be passed when the accumulated gradients are large cannot be missed (Algorithm 6).



	Algorithm 6 MAMGD



	    g t  ←  ∇  θ  t − 1    f  (  θ  t − 1   )   

     β 1  ^  ←  β 1  e x p  ( − k t )   

     β 2  ^  ←  β 2  e x p  ( − k t )   

    m t  ←  β 1   m  t − 1   +  ( 1 −  β 1  )   g t   

    n t  ←  β 2   n  t − 1   +  ( 1 −  β 2  )   g t 2   

   a ←     (     g t  −  g  t − 1      θ t  −  θ  t − 1   + ϵ    )  2  +  n t     

     m t  ^  ←    m t   1 −   β ^  1 t      

    a ^  ←   a  1 −   β ^  2 t      

    θ t  ←  θ  t − 1   − η     m t  ^    a ^  + ϵ     








The hyperparameters used are the learning rate  η  (usually taken as   η = 0.001   in the initial approximation), the exponential smoothing coefficients    β 1  ,  β 2  ∈  [ 0 ; 1 )   , the exponential damping factor   k ∈ [ 0 , 1 )  , and   ϵ = 1 ×  10  − 7    , a small number for the prerotation of the division to zero. In most cases, to determine a successful attenuation coefficient is a separate problem. For very small values, the algorithm can still fly over the global minima as well as other optimization methods, and for very large values, very early damping may occur. As can be seen at each iteration, the smoothing coefficients are updated using the rule    β ^  ← β e x p  ( − k t )   , and the more iterations that pass, the greater the influence of the current gradient and less that of the accumulator of gradients. This is performed in order to reduce the speed. Because the optimizer cannot know in advance when the global minimum will occur, the task of selecting a successful damping parameter is a purely heuristic problem.



MAMGD achieves a high convergence rate and stability through a combination of several methods. Exponential decay gradually reduces the influence of old gradients and accumulated values, contributing to a more accurate adaptation to current optimization conditions. The use of second-order derivative discretization to estimate the curvature of the loss function allows for a more precise adjustment of the optimization step, avoiding overly large or small corrections, which improves stability. The adaptive learning rate adjusts according to the current state of gradients and accumulated values, enabling more efficient progress toward the minimum of the loss function.



The discrete second derivative of gradients in MAMGD is computed by calculating the difference between the current and previous gradients    g t  −  g  t − 1    , which is then divided by the difference in the corresponding parameters    θ t  −  θ  t − 1    . The result is squared to account for the magnitude of the gradient change and added to the accumulated value of   n t  , which also accounts for past gradient squares. This approach allows us to take into account not only the current gradient change but also the accumulated effects, which provides a more accurate estimate of the curvature of the loss function and hence a more efficient adaptation of the optimization step.



The parameter correction in MAMGD is performed through normalization of the moments   m t   and a (analogous to   n t  ). The correction by dividing by   ( 1 −   β ^  1 t  )   and   ( 1 −   β ^  2 t  )   compensates for the initial bias of the moments   m t   and a, which avoids their underestimation in the early stages of optimization. This is important to ensure the correct adaptation of the learning rate in the initial iterations.



The MAMGD optimizer is less oscillatory due to the hyperparameter of exponential damping, which reduces the influence of accumulated gradients with increasing iterations. The difference from the other presented optimizers is the finite form of the weights change, which uses the idea of discrete acceleration, which gives some similarity to the Newton–Raphson method, but without searching for the Hessian of the error function; hence, the optimizer can be partially called quasi-Newtonian, with the difference in the formula and in the absence of additional memory and computation costs. On the other hand, due to discreteness, we have to store weights and gradients for the previous iteration, which will have a negative impact when the number of weights of the neural network is large.



The main parameters of MAMGD include the following:




	
The attenuation coefficients   β 1   and   β 2  : They decrease exponentially with each iteration according to the formula     β 1  ^  ←  β 1  exp  ( − k t )    and     β 2  ^  ←  β 2  exp  ( − k t )   , where k is the attenuation coefficient.



	
The learning rate coefficient  η : This parameter is chosen similarly to other optimizers, such as Adam, and can be tuned empirically.



	
The smoothing parameter  ϵ : This is used to avoid division by zero and is usually chosen to be very small (  10  − 7   ).








The parameters are chosen based on experiments with different datasets to ensure a balance between the convergence speed and stability of the optimization. One option for a parameter search is a grid search.



The advantages of the MAMGD optimization method may be its rather high convergence speed, resistance to oscillations, and accumulations of gradient accumulators, with these factors being closely related to exponential damping and the discrete analog of the second derivative of the gradients. The disadvantages are the possible high computational and memory costs, as it is necessary to store the results of gradient and weight calculations from previous iterations.




4. Experiments and Analysis of Results


For the experiments, the MAMGD optimization method was implemented using the deep machine learning libraries tensorflow and keras. The matplotlib library was used for plotting the function graphs. The Optuna library was used to select the optimal hyperparameters. The experiments included the minimization of multivariate real functions, approximation of functions using multilayer neural networks, and training of neural networks on popular classification and regression datasets.



4.1. Minimization of Functions


In this chapter, we will review the results of the MAMGD gradient method for minimizing various functions and compare it with the other popular methods discussed in the previous chapters. The MSE (mean squared error) metric was used as an error estimate. The MSE is expressed as follows:


  M S E =   1 n    ∑  i = 1  n    (  y i  −   y ^  i  )  2   








where n is the number of observations,   y i   is the actual value, and    y ^  i   is the predicted value.



The MSE (mean squared error) is a metric used to assess model quality in regression problems. It measures the mean square deviation of predicted values from actual values.



4.1.1. Quadratic Function of One Variable


A quadratic function of one variable is one of the most trivial variants for minimization testing, so it was chosen as the first test. In this case, we considered a function of the following form:   f  ( x )  =  x 2  − x   (Figure 1).



The results of the graph and table (Table 1) of values show that the classical gradient descent and RMSprop method converged to the minimum the fastest, and the speed of the MAMGD and Adam methods were almost the same, but MAMGD was able to reach the minimum faster.




4.1.2. Sphere Function


The sphere function is a function of two variables and shows how gradient methods deal with multivariate optimization. In this case, we considered a function of the following form:   f  ( x )  =  x 2  +  y 2    (Figure 2).



As in the previous case, the measurement results show that the MAMGD method quickly reaches a minimum when the exponential decay hyperparameter is properly chosen (Table 2). At the same time, the SGD and RMSprop methods are most effective at the initial stages.




4.1.3. Three-Hump Camel Function


The three-hump camel function was chosen as the next function to be optimized, which is described as follows:   f  ( x , y )  = 2  x 2  − 1.05  x 4  +    x 6  6   + x y +  y 2   . It has several local minima and one global minimum. The main characteristics are as follows:




	
The area of definition is usually considered on (  x , y ∈ [ − 5 , 5 ]  ).



	
The global minimum is (  f ( 0 , 0 ) = 0  ).



	
It has three local minima, which gave the name of the function.








It can be seen from the data that the SGD and RMSprop methods quickly converged to a minimum, as in the previous cases (Figure 3). The Adam method underwent correction. The MAMGD method converged slower than the Adam method but was not corrected and obtained better results (Table 3).




4.1.4. Matyas Function


Further experiments were performed for the Matyas function, which is expressed as follows:   f  ( x , y )  = 0.26  (  x 2  +  y 2  )  − 0.48 x y  . This function is less difficult to optimize than the three-hump camel function but is still of interest for testing algorithms, especially with respect to its accuracy and convergence rate near the minimum (Figure 4).



Some properties of the function are as follows:



Description:




	
The area of definition is usually considered on (  x , y ∈ [ − 10 , 10 ]  ).



	
The global minimum is (  f ( 0 , 0 ) = 0  ).



	
It is a unimodal function, which means it has only one minimum.



	
The function is symmetric about the origin.



	
Despite the simplicity of the formula, the Matyas function can be difficult for some optimization algorithms because of its flat region near the minimum.








The results show that in this case, SGD did not show the best results, probably due to the flat region near the minimum of the function (Table 4). The best result was shown by the RMSprop method. Adam underwent correction as in the previous case. MAMGD achieved a good result at the 14th iteration, but after that it also underwent a small correction.




4.1.5. Booth Function


Another function chosen for optimization was the Booth function, which is described as follows:   f  ( x , y )  =   ( x + 2 y − 7 )  2  +   ( 2 x + y − 5 )  2   . The Booth function represents a good balance between simplicity and complexity, which makes it useful for testing optimization algorithms, especially when it is important to test the algorithm’s ability to find a minimum that is not located in the center of the search area (Figure 5).



Some properties include the following:




	
The area of definition is usually considered on (  x , y ∈ [ − 10 , 10 ]  ).



	
The global minimum is (  f ( 1 , 3 ) = 0  ).



	
It is a unimodal function, which means that it has only one minimum.








As can be seen from the graph and measurement table, MAMGD accelerated sharply to the global minimum after 16 iterations; this result may be related to the choice of the exponential decay hyperparameter (Table 5). The SGD and RMSprop methods showed stable results, and Adam and Adagrad were rather slow to converge to the minimum in this function.




4.1.6. Himmelblau’s Function


The last function used for optimization was Himmelblau’s function, which is described as follows:   f  ( x , y )  =   (  x 2  + y − 11 )  2  +   ( x +  y 2  − 7 )  2   . Himmelblau’s function is a popular choice for testing global optimization algorithms because it combines several complex characteristics: multiple minima, symmetry, and nonlinearity. This makes it an excellent tool for evaluating the efficiency and robustness of optimization algorithms (Figure 6).



Properties:




	
The area of definition is usually considered on (  x , y ∈ [ − 5 , 5 ]  ).



	
For the global minima, the function has four identical local minima, all with the value 0: [  f ( 3.0 , 2.0 )    = f ( − 2.805118 , 3.131312 ) = f ( − 3.779310 , − 3.283186 ) = f ( 3.584428 , − 1.848126 ) = 0  ].



	
The function is multimodal, which means it has several local minima.



	
It has one local maximum at the point (−0.270845, −0.923039) with a value of 181.617.








The measurement results show that the SGD method began to move away from the local and global minima and was therefore excluded from the measurement table (Table 6). The RMSprop and MAMGD methods moved steadily toward the minimum, Adagrad also showed weak results, and the Adam method also underwent correction.





4.2. Approximation Using Multilayer Neural Network


A multilayer neural network was chosen to approximate the function   f  ( x )  =  x 2  + x − 1   (Figure 7).



As can be seen in the plot, MAMGD quickly converged to a minimum, which may have been influenced by the lucky exponential decay coefficient (  k = 0.0001  ) and the discrete second derivative of the gradients (Table 7).




4.3. MNIST Dataset


The MNIST dataset [42] is one of the most well-known and widely used datasets in the field of computer vision and neural network training. It consists of a set of images of handwritten digits from 0 to 9 that were created from a combination of handwritten samples from college students and staff at the National Institute of Standards and Technology (NIST).



The MNIST dataset contains a total of 60,000 training images and 10,000 test images; each image is 28 × 28 pixels. The images have been pre-processed to unify the size and center the digits in the center of each image.



Each image in the dataset has a label associated with it, which indicates which digit is depicted in the image (from 0 to 9). These labels are used to train the neural network and to evaluate its performance. MNIST is a popular choice for training neural networks because it is relatively small and easily accessible. It is also a convenient dataset for testing and comparing different neural network algorithms and architectures in handwritten digit recognition (Figure 8).



As can be seen, the MAMGD optimizer initially lags behind the Adam and RMSProp optimizer but soon catches up and converges to a minimum. This shows the problem of initial approximations and the choice of hyperparameters, such as the exponential decay factor (Table 8).




4.4. IMDB Dataset


The IMDB (Internet Movie Database) dataset is one of the most widely used and popular datasets for training neural networks in the tasks of text tone analysis and classification of movie reviews.



The IMDB dataset consists of 50,000 movie reviews, which have been divided into two parts: 25,000 reviews are for training and the remaining 25,000 are for testing the classifier. Each review has its own class label indicating whether the review is positive or negative. Positive reviews are labeled 1, while negative reviews are labeled 0.



The IMDB dataset is a good choice for training neural networks in text classification and tone analysis tasks, as it contains balanced data with a large number of examples for each class and also displays real user reviews of movies (Figure 9).



The MAMGD optimization method shows a good and high convergence rate. A successful choice of hyperparameters allowed for fast convergence to the minimum while avoiding oscillations. This could also be influenced by the discrete derivative of the gradients, which accelerated the descent to the minimum of the target function (Table 9).




4.5. Reuters Dataset


The Reuters dataset is one of the most popular datasets for training neural networks in natural language processing. It consists of news articles that were collected by Reuters between 1987 and 1996.



The dataset contains a variety of news categories, such as politics, economics, sports, science, and others.



The overall structure of the Reuters dataset has several key features: 1. Size: The Reuters Dataset consists of more than 10,000 news articles. It includes enough variation in neural network training data to allow researchers and developers to conduct different experiments and testing. 2. Multiple classes: There are 46 different classes of news in the Reuters dataset. Each article belongs to one of these classes, allowing for a multi-class classification task (Figure 10).



As in the MNIST dataset, the optimizer initially lagged behind the other algorithms but later overtook RMSProp, probably due to the choice of hyperparameters (Table 10).




4.6. Boston Housing Price Dataset


Boston Housing Price is a dataset that contains information about housing prices in different neighborhoods of Boston, USA. It consists of various attributes, such as the average number of rooms in a house, percentage of the population with low social status, crime rate, etc.



This dataset is often used to train neural networks as it provides a good set of diverse attributes that can be used to predict real estate prices. Neural networks can be trained on this dataset to learn identification tasks.



It is important to understand the complex relationships between attributes and house prices. Using the Boston Housing Price dataset to train neural networks allows for the creation of a model that will be able to make real estate price predictions based on various factors. This can be useful for real estate agents, real estate market analysts, and other interested parties who want information about expected real estate prices in different Boston neighborhoods (Figure 11).



In this case, the MAMGD optimization method was very similar to the Adam algorithm, which was influenced by the small value of the exponential decay coefficient (Table 11).





5. Discussion


The proposed MAMGD algorithm is an interesting optimization approach that combines several new ideas in the field of gradient descent. However, its performance and applicability deserve further discussion.



First, the use of exponential decay for the coefficients   β 1   and   β 2   is a novel approach. It potentially allows for the algorithm to better adapt to changing optimization landscapes, especially in problems with non-stationary objective functions. However, reducing these coefficients may lead to unnecessary slowdown in speed at the end of training. Consequently, the choice of parameter k to control the decay rate becomes critical and may require careful tuning.



The inclusion of an estimate of the second derivative in the form of a term    (     g t  −  g  t − 1      θ t  −  θ  t − 1   + ϵ    )  2   is another novel approach to adapting the learning step. It is reminiscent of the idea behind Newton’s method but implemented in a more computationally efficient form. However, such second-order approximations can be unstable in high-dimensional parameter spaces typical of deep neural networks. This approach, too, requires additional research and experimentation.



In conclusion, it is worth noting that the proposed methods require further empirical verification and discussion of the results.




6. Conclusions


Despite significant progress in neural network optimization methods, the existing algorithms still face challenges, such as slow convergence and instability when training complex architectures. Our research aimed to overcome these limitations, potentially leading to more efficient and robust methods for training neural networks.



In this paper, we have analyzed existing neural network optimization methods, discussed their strengths and weaknesses, and presented a new optimization method based on exponential fading and the adaptive learning rate using a discrete derivative of second-order gradients.



Our experiments demonstrate that the proposed method has the potential to improve the learning process of neural networks, especially in problems requiring fast convergence and robustness to oscillations. However, the results also indicate that in some scenarios, the benefits of the new method may be limited compared to state-of-the-art optimizers.



This study raises the important question of whether current optimizers have reached the limit in improving the idea of gradient descent without increasing computational and memory costs. We hypothesize that future research could focus on exploring methods based on evolutionary algorithms or other approaches that can significantly increase the convergence rate and improve the accuracy of neural network training results.




7. Extensions


AdaExp


We apply exponential fading to Adam’s gradient-based optimization method and then we obtain the following algorithm: (Algorithm 7).



	Algorithm 7 AdaExp



	    g t  ←  ∇  θ  t − 1    f  (  θ  t − 1   )   

     β 1  ^  ←  β 1  e x p  ( − k t )   

     β 2  ^  ←  β 2  e x p  ( − k t )   

    m t  ←  β 1   m  t − 1   +  ( 1 −  β 1  )   g t   

    n t  ←  β 2   n  t − 1   +  ( 1 −  β 2  )   g t 2   

     m t  ^  ←    m t   1 −  β 1 t      

     n t  ^  ←    n t   1 −  β 2 t      

    θ t  ←  θ  t − 1   − η     m t  ^      n t  ^   + ϵ     
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Figure 1. Quadratic function of one variable minimization. 






Figure 1. Quadratic function of one variable minimization.
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Figure 2. Sphere function minimization. 






Figure 2. Sphere function minimization.
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Figure 3. Three-hump camel function minimization. 
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Figure 4. Matyas function minimization. 






Figure 4. Matyas function minimization.
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Figure 5. Booth function minimization. 






Figure 5. Booth function minimization.
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Figure 6. Himmelblau’s function minimization. 
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Figure 7. Neural network approximation. 






Figure 7. Neural network approximation.
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Figure 8. Training a neural network for digit classification on the MNIST dataset. 
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Figure 9. Training a neural network to classify reviews on the IMDB dataset. 
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Figure 10. Training a neural network to classify Reuters texts. 
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Figure 11. Training of the neural network for real estate price regression of the Boston Housing Price database. 
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Table 1. Quadratic function.






Table 1. Quadratic function.





	Epoch
	MAMGD Loss
	Adam Loss
	Adagrad Loss
	RMSprop Loss
	SGD Loss





	2
	1.959703
	1.690626
	1.775573
	0.963417
	0.921600



	4
	1.439806
	1.214850
	1.517669
	0.492081
	0.377487



	6
	0.999839
	0.823812
	1.333152
	0.254789
	0.154619



	8
	0.639871
	0.516539
	1.188714
	0.128099
	0.063332



	10
	0.359903
	0.289402
	1.070271
	0.061027
	0.025941



	12
	0.159935
	0.135676
	0.970315
	0.027027
	0.010625



	14
	0.039968
	0.045391
	0.884294
	0.010932
	0.004352



	16
	0.000000
	0.005672
	0.809204
	0.003968
	0.001783



	18
	0.000000
	0.001759
	0.742943
	0.001268
	0.000730



	20
	0.000000
	0.018631
	0.683974
	0.000350
	0.000299



	22
	0.000000
	0.042904
	0.631133
	0.000081
	0.000123



	24
	0.000000
	0.064453
	0.583516
	0.000015
	0.000050



	26
	0.000000
	0.077261
	0.540403
	0.000002
	0.000021



	28
	0.000000
	0.079330
	0.501213
	0.000000
	0.000008



	30
	0.000000
	0.071832
	0.465465
	0.000000
	0.000003










 





Table 2. Spherical function.






Table 2. Spherical function.





	Epoch
	MAMGD Loss
	Adam Loss
	Adagrad Loss
	RMSprop Loss
	SGD Loss





	2
	1.959738
	1.690627
	1.775573
	0.963417
	0.921600



	4
	1.439837
	1.214850
	1.517669
	0.492081
	0.377487



	6
	0.999864
	0.823812
	1.333151
	0.254789
	0.154619



	8
	0.639892
	0.516539
	1.188714
	0.128099
	0.063332



	10
	0.359919
	0.289402
	1.070271
	0.061027
	0.025941



	12
	0.159946
	0.135676
	0.970315
	0.027027
	0.010625



	14
	0.039973
	0.045391
	0.884294
	0.010932
	0.004352



	16
	0.000000
	0.005672
	0.809204
	0.003968
	0.001783



	18
	0.000000
	0.001759
	0.742942
	0.001268
	0.000730



	20
	0.000000
	0.018631
	0.683973
	0.000350
	0.000299



	22
	0.000000
	0.042904
	0.631133
	0.000081
	0.000123



	24
	0.000000
	0.064453
	0.583516
	0.000015
	0.000050



	26
	0.000000
	0.077261
	0.540403
	0.000002
	0.000021



	28
	0.000000
	0.079330
	0.501213
	0.000000
	0.000008



	30
	0.000000
	0.071832
	0.465465
	0.000000
	0.000003










 





Table 3. Three-hump camel function.






Table 3. Three-hump camel function.





	Epoch
	MAMGD Loss
	Adam Loss
	Adagrad Loss
	RMSprop Loss
	SGD Loss





	2
	0.919596
	0.640227
	0.689822
	0.218130
	0.304278



	4
	0.688145
	0.361751
	0.524967
	0.048839
	0.052731



	6
	0.428438
	0.165042
	0.413728
	0.015363
	0.007620



	8
	0.211503
	0.048304
	0.332594
	0.006501
	0.001813



	10
	0.070354
	0.003223
	0.270984
	0.002865
	0.000712



	12
	0.007512
	0.010078
	0.223012
	0.001171
	0.000338



	14
	0.001704
	0.039383
	0.185010
	0.000428
	0.000168



	16
	0.000314
	0.064289
	0.154523
	0.000138
	0.000084



	18
	0.000040
	0.071570
	0.129823
	0.000038
	0.000042



	20
	0.001036
	0.061574
	0.109653
	0.000009
	0.000021



	22
	0.000542
	0.042171
	0.093073
	0.000002
	0.000011



	24
	0.001124
	0.022718
	0.079367
	0.000000
	0.000005



	26
	0.000768
	0.009898
	0.067981
	0.000000
	0.000003



	28
	0.001377
	0.005689
	0.058478
	0.000000
	0.000001



	30
	0.000959
	0.007676
	0.050514
	0.000000
	0.000001










 





Table 4. Matyas function.






Table 4. Matyas function.





	Epoch
	MAMGD Loss
	Adam Loss
	Adagrad Loss
	RMSprop Loss
	SGD Loss





	2
	0.935771
	0.640684
	0.950924
	0.248995
	0.984096



	4
	0.738803
	0.364773
	0.904923
	0.074502
	0.968444



	6
	0.495462
	0.171620
	0.861725
	0.020852
	0.953042



	8
	0.270043
	0.055840
	0.821094
	0.005086
	0.937885



	10
	0.106671
	0.005821
	0.782821
	0.001035
	0.922968



	12
	0.020831
	0.003469
	0.746721
	0.000169
	0.908289



	14
	0.000015
	0.026615
	0.712628
	0.000021
	0.893844



	16
	0.006423
	0.054194
	0.680395
	0.000002
	0.879628



	18
	0.003157
	0.071680
	0.649889
	0.000000
	0.865638



	20
	0.000229
	0.073522
	0.620989
	0.000000
	0.851871



	22
	0.000168
	0.061779
	0.593588
	0.000000
	0.838322



	24
	0.000080
	0.042687
	0.567586
	0.000000
	0.824989



	26
	0.000106
	0.023210
	0.542893
	0.000000
	0.811868



	28
	0.000832
	0.008589
	0.519427
	0.000000
	0.798956



	30
	0.000208
	0.001156
	0.497113
	0.000000
	0.786249










 





Table 5. Booth function.






Table 5. Booth function.





	Epoch
	MAMGD Loss
	Adam Loss
	Adagrad Loss
	RMSprop Loss
	SGD Loss





	2
	2.323125
	1.940616
	2.023544
	1.212334
	1.024000



	4
	1.855067
	1.464750
	1.765136
	0.737108
	0.419431



	6
	1.394106
	1.073439
	1.580268
	0.493918
	0.171799



	8
	1.008421
	0.765555
	1.435507
	0.359272
	0.070369



	10
	0.701519
	0.537251
	1.316735
	0.282088
	0.028823



	12
	0.473483
	0.381518
	1.216434
	0.235819
	0.011806



	14
	0.324607
	0.288052
	1.130048
	0.205457
	0.004836



	16
	0.254285
	0.243642
	1.054571
	0.182560
	0.001981



	18
	0.153560
	0.233271
	0.987901
	0.162734
	0.000811



	20
	0.037101
	0.241822
	0.928501
	0.144036
	0.000332



	22
	0.000004
	0.256036
	0.875207
	0.125871
	0.000136



	24
	0.000409
	0.266110
	0.827116
	0.108274
	0.000056



	26
	0.000939
	0.266470
	0.783509
	0.091500
	0.000023



	28
	0.001095
	0.255578
	0.743802
	0.075836
	0.000009



	30
	0.001186
	0.235005
	0.707518
	0.061524
	0.000004



	32
	0.001243
	0.208157
	0.674258
	0.048746
	0.000002



	34
	0.001279
	0.179021
	0.643686
	0.037620
	0.000001



	36
	0.001303
	0.151169
	0.615514
	0.028194
	0.000000



	38
	0.001318
	0.127124
	0.589497
	0.020447
	0.000000



	40
	0.001329
	0.108111
	0.565423
	0.014292
	0.000000










 





Table 6. Himmelblau’s function.






Table 6. Himmelblau’s function.





	Epoch
	MAMGD Loss
	Adam Loss
	Adagrad Loss
	RMSprop Loss





	2
	0.901249
	0.640186
	0.689926
	0.224643



	4
	0.633748
	0.361631
	0.529265
	0.044212



	6
	0.366014
	0.164804
	0.420394
	0.006078



	8
	0.165643
	0.047671
	0.339941
	0.000583



	10
	0.045176
	0.002165
	0.277845
	0.000066



	12
	0.000891
	0.009526
	0.228666
	0.000017



	14
	0.000068
	0.039635
	0.189065
	0.000005



	16
	0.002296
	0.062283
	0.156812
	0.000001



	18
	0.000905
	0.063224
	0.130337
	0.000000



	20
	0.001584
	0.046405
	0.108481
	0.000000



	22
	0.001781
	0.024033
	0.090367
	0.000000



	24
	0.001766
	0.007052
	0.075311
	0.000000



	26
	0.001884
	0.000463
	0.062774
	0.000000



	28
	0.001978
	0.002933
	0.052320
	0.000000



	30
	0.002048
	0.009349
	0.043596
	0.000000










 





Table 7. Approximation using multilayer neural network.






Table 7. Approximation using multilayer neural network.





	Epoch
	MAMGD Loss
	Adam Loss
	Adagrad Loss
	RMSprop Loss
	SGD Loss





	1
	821.636841
	652.494873
	1762.779175
	655.232788
	160.947144



	2
	111.159012
	115.097504
	1577.810669
	112.074127
	85.439232



	3
	49.195004
	60.046024
	1445.563843
	55.858692
	72.121544



	4
	18.571014
	27.468365
	1329.008545
	24.525091
	52.972687



	5
	5.915591
	15.148467
	1219.975220
	11.512796
	46.084648



	6
	1.025126
	8.855510
	1117.438354
	4.281589
	42.493931



	7
	0.227894
	4.974255
	1021.298096
	1.498476
	37.489067



	8
	0.093988
	2.775730
	931.561707
	0.742871
	49.106506



	9
	0.060457
	1.615357
	848.579773
	0.524694
	32.434353



	10
	0.052484
	0.944320
	772.376770
	0.473356
	32.483410



	11
	0.048284
	0.557275
	702.738586
	0.423530
	28.475237



	12
	0.063352
	0.338988
	639.490479
	0.383350
	31.728319



	13
	0.056214
	0.207358
	582.402405
	0.352275
	22.955385



	14
	0.056104
	0.138861
	531.055969
	0.332885
	32.714817



	15
	0.058539
	0.100819
	485.154205
	0.327141
	24.102997










 





Table 8. MNIST dataset.






Table 8. MNIST dataset.





	Epoch
	MAMGD Loss
	Adam Loss
	RMSprop Loss





	1
	0.448672
	0.266809
	0.263463



	2
	0.124826
	0.107094
	0.105576



	3
	0.077700
	0.069585
	0.070089



	4
	0.052628
	0.049328
	0.050346



	5
	0.037809
	0.037673
	0.037978



	6
	0.026434
	0.028731
	0.028972



	7
	0.020605
	0.020112
	0.021667



	8
	0.015816
	0.015615
	0.016610



	9
	0.011611
	0.012404
	0.012298



	10
	0.008266
	0.010504
	0.008964










 





Table 9. IMDB dataset.






Table 9. IMDB dataset.





	Epoch
	MAMGD Loss
	Adam Loss
	Adagrad Loss
	RMSprop Loss





	1
	0.637524
	0.587573
	0.691539
	0.571567



	2
	0.373726
	0.363699
	0.689856
	0.359916



	3
	0.232306
	0.250259
	0.688095
	0.265192



	4
	0.167434
	0.193303
	0.686177
	0.214027



	5
	0.127229
	0.152671
	0.684051
	0.178158



	6
	0.098317
	0.123702
	0.681721
	0.156204



	7
	0.075212
	0.100980
	0.679159
	0.133551



	8
	0.057454
	0.082415
	0.676337
	0.116825



	9
	0.043390
	0.066716
	0.673241
	0.104766



	10
	0.032139
	0.054332
	0.669879
	0.087954



	11
	0.023305
	0.044377
	0.666331
	0.078029



	12
	0.016889
	0.034820
	0.662608
	0.067212



	13
	0.012188
	0.027816
	0.658768
	0.058585



	14
	0.008631
	0.022097
	0.654841
	0.048537



	15
	0.005894
	0.016978
	0.650807
	0.044989



	16
	0.004280
	0.013270
	0.646712
	0.034727



	17
	0.002633
	0.010459
	0.642588
	0.030603



	18
	0.001816
	0.008271
	0.638408
	0.025305



	19
	0.001069
	0.006590
	0.634208
	0.023882



	20
	0.000751
	0.005273
	0.630040
	0.018804










 





Table 10. Reuters dataset.






Table 10. Reuters dataset.





	Epoch
	MAMGD Loss
	Adam Loss
	RMSprop Loss





	1
	3.785023
	3.380734
	2.784578



	2
	3.470449
	2.057770
	1.560803



	3
	2.726303
	1.371544
	1.194215



	4
	1.900168
	1.046967
	0.962105



	5
	1.369266
	0.833554
	0.794977



	6
	1.062885
	0.662638
	0.655288



	7
	0.845602
	0.522731
	0.545252



	8
	0.665268
	0.413226
	0.458509



	9
	0.516712
	0.328357
	0.386447



	10
	0.402084
	0.264667
	0.329770



	11
	0.316678
	0.219969
	0.282453



	12
	0.255255
	0.186874
	0.249277



	13
	0.209545
	0.165941
	0.222823



	14
	0.177048
	0.149283
	0.197969



	15
	0.154396
	0.138011
	0.187647



	16
	0.140863
	0.125612
	0.164271



	17
	0.124534
	0.120747
	0.157349



	18
	0.122545
	0.109029
	0.147332



	19
	0.109503
	0.106501
	0.139231



	20
	0.107755
	0.104526
	0.132018










 





Table 11. Boston Housing Price dataset.






Table 11. Boston Housing Price dataset.





	Epoch
	MAMGD Loss
	Adam Loss
	RMSprop Loss





	1
	350.594757
	140.978012
	157.523834



	2
	33.531769
	19.073381
	25.266592



	3
	20.512051
	14.994828
	18.173952



	4
	16.396505
	12.534935
	15.347956



	5
	12.359325
	11.147352
	13.817107



	6
	12.293142
	10.832203
	12.820888



	7
	12.098958
	10.008436
	11.574941



	8
	10.613210
	10.020133
	11.678750



	9
	10.721079
	9.662991
	11.273701



	10
	9.970358
	8.856193
	10.683825



	11
	9.463201
	8.380616
	10.177731



	12
	9.269162
	8.364103
	10.316528



	13
	8.898938
	8.032142
	9.776771



	14
	8.586391
	8.830625
	9.423545



	15
	8.228765
	7.930937
	9.180243



	16
	8.287912
	7.887546
	9.455106



	17
	8.110354
	7.714012
	8.865941



	18
	7.180910
	8.458524
	8.996699



	19
	7.370471
	7.891291
	8.734899



	20
	7.320936
	7.440734
	8.690137
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