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Abstract: Semiconductors play a crucial role in a wide range of applications and are integral to
essential infrastructures. Manufacturers of these semiconductors must meet specific quality and
lifetime targets. To estimate the lifetime of semiconductors, accelerated stress tests are conducted.
This paper introduces a novel approach to modeling drift in discrete electrical parameters within
stress test devices. It incorporates a machine learning (ML) approach for arbitrary panel data sets of
electrical parameters from accelerated stress tests. The proposed model involves an expert-in-the-loop
MLOps decision process, allowing experts to choose between an interpretable model and a robust ML
algorithm for regularization and fine-tuning. The model addresses the issue of outliers influencing
statistical models by employing regularization techniques. This ensures that the model’s accuracy is
not compromised by outliers. The model uses interpretable statistically calculated limits for lifetime
drift and uncertainty as input data. It then predicts these limits for new lifetime stress test data of
electrical parameters from the same technology. The effectiveness of the model is demonstrated using
anonymized real data from Infineon technologies. The model’s output can help prioritize parameters
by the level of significance for indication of degradation over time, providing valuable insights
for the analysis and improvement of electrical devices. The combination of explainable statistical
algorithms and ML approaches enables the regularization of quality control limit calculations and
the detection of lifetime drift in stress test parameters. This information can be used to enhance
production quality by identifying significant parameters that indicate degradation and detecting
deviations in production processes.

Keywords: lifetime drift; machine learning; quality control; semiconductor industry; stress test

1. Introduction
1.1. Problem Definition

Semiconductor device reliability is crucial in an industry where strict quality standards
are the norm. One standard requirement, especially in automotive applications, is that
failure rates should not exceed one in a million, highlighting the importance of precise
lifetime quality prediction by the manufacturer. To achieve this, lifetime stress tests are
employed to simulate lifetime degradation and generate data on the lifetime drift of
electrical parameters. These parameters are deemed to be within specification if they do
not exceed certain predefined limits over their lifetime.

To ensure quality for customers, tighter limits than those specified in their product
sheets are introduced at the final test step before shipping. These tighter limits, known
as test limits, serve to ensure that the devices will remain within specification throughout
their lifetime. Deviations or outliers in stress test data that can be quantified via a statistical
model may also give indications of deviations in production processes and be utilized to
better the quality control feedback loop.

Several challenges come with calculating these test limits. Firstly, the parameters can
only be simulated via rapid stress testing, not real-time tests. Additionally, the parts are
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typically measured at different temperatures. The electrical parameters measured depend
on the type of device and the reason for lifetime drift investigation. The types of parameters
are typically specified by engineering or quality departments. This leads to potentially
thousands of different electrical parameters being measured per device.

The electrical parameters measured depend on the type of device and the reason for
lifetime drift investigation. The types of parameters are typically specified by engineering or
quality departments. This leads to potentially thousands of different electrical parameters
being measured per device. Such parameters may be continuous, for example, threshold
voltage, or discrete, such as the results of go/no-go tests, counts of bit-flips occurring
in a logic device or data that are only available with a certain measurement granularity.
In general, discrete electrical parameters are more difficult to handle mathematically than
continuous ones.

Although the behavior of parameters over different electrical parameters and tempera-
tures may be correlated, traditional methods still require fitting a model to each parameter
individually to remain suitable. Secondly, the models developed thus far are designed for
continuous electrical parameters only. In the case of discrete parameters, some theoretical as-
sumptions no longer hold, leading to numerical instabilities. Moreover, the non-uniqueness
of some solutions in standard approaches may result in different test limits for very similar
data. An illustration of this instability can be observed in Figure 1. This instability over
similar patterns of data may lead to different limit predictions for data that basically look
the same when using standard methods.

A more robust approach for regularizing lifetime drift limits is needed. Inclusion
of human supervision of such algorithms is also necessary, especially in the context of
quality control. In this paper, we investigate the potential of machine learning methods for
regularizing and streamlining statistical calculations of test limits for electrical parameter
lifetime drift. We further propose a method of keeping expert-in-the-loop checking of
results for plausibility and use the results from the machine learning approach to aid the
decision-making process for more optimal results.
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Figure 1. Three different outcomes emerge from clustering highly similar trajectory data. Different
clusters are indicated by different colors. Statistical models may yield divergent results on similar
data sets due to the non-deterministic nature of clustering algorithms. In this example, similar data
lead to widely different clustering.
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1.2. Relevance to the Field

Ensuring safety in automotive semiconductor manufacturing is a critical aspect, par-
ticularly in the context of autonomous vehicles. An emerging approach in this regard is
prognostics and health management, or predictive maintenance. The goal is to develop
statistical degradation models of semiconductor chips that can run online on edge devices
within vehicles. These models aim to predict potential part failures and trigger maintenance
actions autonomously, thereby converting potential issues into preventive maintenance
actions. However, this requires the allocation of resources for such calculations, either
on-board in micro-controllers within the vehicle or on cloud-based architectures that ne-
cessitate a functional connection and bandwidth. A proposed compromise is to have
the models run only when the vehicle is in downtime, such as when parked in a garage
overnight. This approach would lead to a more efficient use of resources, as the vehicle
could utilize the available calculation power during periods of inactivity. A common
assumption for a feasible indication of degradation is that the stress test data obtained
in the rapid stress test environment are representative of the lifetime degradation of the
parameter in the real-world field. More lightweight models may help in optimizing the
resources used in calculation for such applications. Furthermore, the same models used by
experts for setting statistical test limits based on lifetime drift data of electrical parameters
may be employed for online calculation as well.

1.3. Previous Work

The previous research has been conducted on setting tighter limits to control for life-
time drift in electrical parameters in semiconductor devices. The issue of guard banding
parameters is discussed in [1-5]. However, these works only consider the case of a one-time
measurement being taken in the presence of measurement granularity. The topic of guard
banding longitudinal data for lifetime quality based on a stress test has been expanded
upon in [6-9], where statistical methods are employed to calculate optimal guard bands
based on assumptions about the shape of the distributions of the parameters. In [6], the mul-
tivariate behavior is modeled using copulae based on skew-normal marginals, while in [9],
the multivariate behavior is captured via a mixture of multivariate Gaussian distributions.
In both cases, optimization is non-trivial and achieved via numerical calculations. These
numerical optimizations and the fitting of non-deterministic multivariate models may lead
to the same data being assigned slightly different guard bands with repeat calculations.

1.4. Contribution of the Paper

In this paper, we explore the potential of machine learning methods, specifically
random forest regression, for calculating robust estimates for test limits for electrical
parameters in semiconductor devices. This approach addresses both the issue of numerical
and algorithmic instability in standard statistical methods and can serve as an extension
to the classical methods in the case of online-monitoring due to the ability to fit a model
once and then use it for prediction, which is computationally faster than recalculating the
statistical model for each parameter. Furthermore, we evaluate the performance of random
forest regression on lifetime prediction for continuous data and discuss the application of
quantile random forest regression to incorporate expert knowledge into the model.

Moreover, the approach of training a random forest model on a data set of all the
parameters of a rapid stress test examination of an electrical device addresses the issues
of being robust to outliers in stress test data and capturing dependencies between corre-
lated parameter drift patterns. We also incorporate the differences between readout as
explicit features, as these are typically used as a basis to determine test limits by experts,
and investigate the effect on the performance of the models.

It is important to note that ensuring the accuracy regarding target probabilities in real
data is a challenging task. Typically, the sample data do not contain failed devices, and the
test limits are only rarely exceeded. Therefore, the results mainly depend on the theoretical
assumptions or construction of statistical or physical models. A machine learning approach
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can serve as an extension to the process of finding the best fit models. However, it should
not be used as the sole approach unless verified by further physical simulation.

2. Theoretical Framework
2.1. Electrical Parameter Drift

Rapid stress testing is a standard practice for simulating lifetime aging of semicon-
ductor devices. This involves exposing a sample of electrical devices to higher-than-usual
stress conditions, such as high heat (as in HTOL or high-temperature operating life tests)
or temperatures well below freezing point, sometimes in combination with high ambient
humidity (as in the THB or temperature humidity bias test). These tests are also mentioned
in industry standards, such as [10-12]. The parts are tested using specialized equipment,
and the electrical parameters are first measured as a baseline. Then, the parts are subjected
to stress tests, and at certain predetermined times, called readout times, the parameters
are measured again, and the device is put back into the stress test. This process is repeated
until the desired lifetime simulation length has been reached.

Using these data, product engineers then determine optimal test limits for the parame-
ters. Test limits serve to limit shipped parts to only those parts that are certain to guarantee
a specified quality target to the customer. For example, this may be 1 ppm, or one part per
million parts. From a semiconductor manufacturer’s standpoint, the area between specified
limits and test limits should be wide enough to guarantee quality yet also maximize the
shipped good parts. In this area, it is crucial to neither over- nor underestimate the optimal
test limit.

2.2. Statistical Discussion of Current Models

State-of-the-art methods for determining optimal quality limits, such as [6,8,9], typi-
cally focus on both statistical modeling and optimization of the guard band, or the area
between test limits and specified limits. The currently available methods only determine
test limits based on separate data-driven statistical models for each electrical parameter sep-
arately. While copula-based methods handle the issue of skewed multivariate distributions
of data points well, they are not suited to depict the effect of grouping of parameters within
a single electrical parameter test. Multivariate mixed methods were developed to deal
with both grouped data and outliers but rely on a non-deterministic clustering algorithm
and assumptions about the distribution of outliers, which still have a significant effect on
the resulting outcome. Both models do not consider correlation effects between separate
parameters or regularization effects to smooth the effect of outliers. Noisy data can be
considered separately using Gr&R testing and incorporated into the multivariate mixed
model. Machine learning models may provide a solution to a more regularized prediction
by fitting a single model on the data set using all parameters. This also solves the issues of
non-terminating fitting in statistical algorithms and may help smooth out the differences in
results that arise due to clustering very similar data in different ways.

3. Materials and Methods
3.1. Data Collection

For this paper, we consider a real-life sample of 1322 electrical parameters from an
industrial rapid stress test procedure. Furthermore, for each electrical test, we also consider
a smaller sample of m comparison parts (VGTs, from the German “Vergleichsteile”, lit.
“comparison parts”) to control for tester offset, as in [6,9]. The data each consist of a set of
110 devices that are measured at 4 readout times. The assumption is that a model should be
trained on data from similar device types or ideally data from the same device, if available,
in order to achieve the best results. The electrical parameters chosen represent a subset
of all the electrical parameters available within the data set. The goal was to obtain as
complete as possible a set of parameters to best represent the real data. The test limits were
modeled using the algorithm presented in [9].
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For a subset of parameters, the clustering algorithm did not terminate in some way
(approximately 5% of samples). We removed these parameters from the training and testing
data. Additionally, data sets that showed no change at all, i.e., just consisting of the same
value being measured at all times, were removed. In total, 1057 electrical parameters
containing continuous values, each containing trajectories of 110 devices, were chosen for
the training set, and 265 continuous electrical parameters were randomly chosen for the
validation set.

An example of trajectories of an anonymized real data set can be seen in Figure 2;
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Figure 2. An anonymized example showing a set of trajectories for an electrical parameter. Electrical
parameter values are on the y-axis, with time in hours on the x-axis. In this case, the electrical
parameter values remain relatively consistent across the four readings and show low variability.

3.2. Pre-Processing Steps

The data were corrected for tester offset using the method described in [6,9]. This
involves subtracting the drift from the unstressed reference devices from the drift of the
data points themselves. These data points were then used to fit a model for optimal test
limits as described in [9], including measurement error, if available. As the specified
limits and standard unit of measurement are different for each type of electrical parameter,
the parameters and specified limits were normalized such that the lower specified limit
lies at 0 and the upper specified limit lies at 1. In such a way, the test limits naturally fall
between 0 and 1 also and, at the same time, give the percentage of area they occupy of
the total allowable window for each parameter. This also serves the purpose of making
model training easier and to make input data comparable so meaningful learning can be
taking place. Otherwise, the model would train on the order of magnitude of the electrical
parameter, which we wish to avoid. We want to have the model only consider the data and
drift of the parameter itself.

Furthermore, we include the total differences between readout points as an extra
feature. This is implemented in order to give the model an easier time to quantify parame-
ter drift.

Finally, the data from all devices for each electrical parameter are flattened to a vector
and used for model training. The process is shown in Figure 3.
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Figure 3. A flowchart showing the data preparation pipeline used to generate training and validation

data. Feature engineering and train/test splitting plus pre-processing are included.

3.3. Comparing Different Models

For optimal model type selection, a set of different candidate models were consid-
ered. The parameters for all models were chosen via 10-fold cross validation [13] and the
comparison of models between each other was achieved via resampling.

* A generalized linear model [14] approach was fitted using the R function glmmnet.

¢ A gradient-boosting approach [15] was fitted using the R function gbm.

* A support vector machine [16] approach using radial basis functions was performed
using the R function svmRadial.

*  Finally, a random forest approach [17] was fitted using the fast R implementation ranger.

The target variable for model choice was the lower test limit as calculated by the
statistical model in [9]. The models were compared via mean square error, root mean
square error and R2-score.

In all relevant metrics, seen in Figures 4 and 5 and Tables 1-3, the random forest
implementation performed best. This is somewhat expected due to the unstructured nature
of the data. Random forests are well known to perform well on these high-dimensional
types of unstructured input data. Note that even in the best model, the inclusion of
differences between readout points as extra features provided a significant improvement
in RMSE. On a 13th Gen Intel(R) Core(TM) i5-1345U with 16 GB RAM, the training time
with hyper-parameter optimization and 10-fold cross validation for the respective models
are 1.24 min for the generalized linear model, 3.12 min for the gradient boosting model,
3.04 min for the support vector machine model and 9.12 min for the random forest model.

Table 1. Mean absolute error resampling confidence quantiles comparison between candidate models.
Lower is better. RF has the edge over the other candidate models.

MAE Min 1st Quantile Median Mean 3rd Quantile  Max
GLM 0.0276 0.0290 0.0300 0.0335 0.0330 0.0509
GBM 0.0164 0.0171 0.0185 0.0218 0.0262 0.0322
SVM 0.0109 0.0121 0.0145 0.0160 0.0154 0.0271
RF 0.0085 0.0093 0.0106 0.0131 0.0133 0.0243

Table 2. Root mean square error resampling confidence quantiles for different candidate models.
Lower is better. Of the chosen models, random forest shows the best results.

RMSE Min 1st Quantile Median Mean 3rd Quantile Max
GLM 0.0381 0.0397 0.0410 0.0682 0.0507 0.1796
GBM 0.0257 0.0276 0.0307 0.0581 0.0499 0.1620
SVM 0.0179 0.0209 0.0277 0.0515 0.0339 0.1636

RF 0.0152 0.0173 0.0214 0.0430 0.0329 0.1450
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Table 3. R-squared confidence quantiles for different candidate models. Higher is better. Again,
random forest shows the best results.

R? Min 1st Quantile Median Mean 3rd Quantile  Max
GLM 0.0012 0.0063 0.0739 0.1731 0.3369 0.5251
GBM 0.1650 0.2923 0.4399 0.4420 0.5941 0.6728
SVM 0.1729 0.5401 0.6462 0.5877 0.7281 0.8894

RF 0.2717 0.7830 0.8094 0.7391 0.8334 0.9002
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Figure 4. A comparison of MAE, RMSE and R? for the different candidate models. Lower is better for
MAE and RMSE; higher is better for RZ. The random forest model shows the best results on real data.
Standard Boxplot, black dot as Median, blue frame as Box
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Figure 5. A comparison of RMSE confidence intervals for the different models. Lower is better. Again,
random forest shows the best results.

3.4. Model Building

The model choice of a random forest from the options above is clear given the results
outlined in Section 3.3. Furthermore, it offers us the opportunity to use the fast imple-
mentation [18] of a quantile regression forest approach to even better control the level of
conservatism of our final estimation. This is especially important as in quality control
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applications, experts need to check the results and possibly choose a confidence level that
both manufacturer and customer agree on. In other words, quantile regression forests allow
for fitting an ensemble model to the data and then allow fine-tuning of the confidence levels
to include expert opinions. Fitting a quantile regression forest is implemented in the R
package ranger via including the parameters quantreg = TRUE and keep.inbag = TRUE to the
model fitting function. The hyper-parameters for the best fitting model were determined
individually for both upper and lower test limits using 10-fold cross validation. The results
for both limits agree on the optimal hyper-parameters: mtry = 770, min.node.size = 5 and
splitrule = extratrees. More information can be found in Figure 6.

Splitting Rule
variance ¢ ——— extratrees ¢ ———

0.051 r

RMSE (Cross-Validation)
1
T

0.049 r

0.048 o
T T T T T

0 200 400 600 800
#Randomly Selected Predictors

Figure 6. Plot of cross-validation results with varying parameters. Lower is better. The extratrees
splitrule wins out with increasing number of predictors.

3.5. Random Forests

Random forests were first introduced by Breitman [17] based on a previous work by
Ho [19]. Rabdin forests work as an ensemble method of decision tree models achieved
via bagging or bootstrapping of the results of individual decision trees. This works by
repeatedly sampling (B times, with replacement) from the training data, fitting decision
trees to the samples (with predictions f;) and averaging the results of predictions on unseen

data x’:
. 1 &8
s PR

Random forests are widely used in a variety of industrial applications. As an extension
to the classical regression random forest, quantile regression random forests were de-
veloped [20]. They have the additional benefit of allowing for a wider range of desired
uncertainty and quantification of that uncertainty in their prediction. The principal dif-
ference between classical random forests and quantile regression forests is that instead of
only keeping the information of the mean of all observations in each node, the quantile
regression forests keep the value of all observations in that node and assess the conditional
distribution based on this additional information [20]. For a good account on Random
Forest methodology and its use in prediction tasks, we refer to [21].
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4. Results
4.1. Model Evaluation

The results of the goodness-of-fit values for the quantile regression forest can be found
in Table 4.

Table 4. Goodness-of-fit measures for best fit of median of quantile regression forest.

Limit RMSE MAE
lower 0.0482 0.0138
upper 0.0237 0.0112

All in all, the quantile model with the best chosen hyper-parameters also outperforms
the comparison models. Furthermore, the quantile approach gives the engineer expert
a further hyper-parameter to tune to make statistically founded decisions about setting
optimal limits. The further introduction of the quantile parameter also may help tune the
model even better to more closely resemble the statistically calculated limits. This is helpful
as the machine learning model typically has a regularizing function, i.e., it does not predict
the extreme values with the same extremity as the statistical model. If the expert agrees that
the statistical calculation is overestimating the risk, the machine learning model proposal
may be chosen. Otherwise, the expert may tune the quantile parameter to obtain a more
conservative estimation that remains consistent with the rest of the parameter estimations.

4.2. Statistical Findings

To demonstrate the effect of choice of quantile for the quantile regression forest, we plot
the RSME of the model versus the chosen quantile output of the model in Figures 7 and 8.
It can be seen that in both cases of upper and lower test limit prediction, the model has
a less conservative output than the statistical model. In both cases, choosing to pick a
different quantile in the corresponding direction (lower for upper test limits and upwards
for lower test limits), leads to the random forest regression.

o
)
<
I
< o o
o
%
o ) o
g1 e
O [+]
(=]
)
e, o
[e)
o,
o
w8 EN °
[72] (=T =18 o
= o (=
r o °
o )
o o
o o
g : °
) o
< o
(+]
0O OOO
w g, o
o~
a 0000000‘)O <]
o °oO o0
'O, folere s v
) S0
T T T T
02 0.4 0.6 0.8
Quantile

Figure 7. Quantile forest regression predictions of lower test limit RMSE vs. quantiles. Lower is better.
Some improvement with better quantile choice is possible. The black line denotes the 0.5-quantile.
Dots are prediction results.
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Figure 8. Quantile forest regression predictions of upper test limit RMSE vs. quantiles. Lower is better.
The median prediction can again be improved via smart quantile choice. The black line denotes the
0.5-quantile. Dots are prediction results.

It is apparent that the proposed prediction is not the best fitting to the real data in
our case. The optimal value for RSME is only reached at quantile 0.57. This means that
the ML model has a tendency to perform less conservative as a default than the statistical
calculation. To better compare the results of the different quantile predictions, we have
plotted the predictions for both the statistical model and quantile regression forest in
Figures 9 and 10. We see that the shape of the distribution is similar, with further quantile
predictions being more conservative on average and lesser quantiles leading to smaller
lower test limits. In the case of our real data, the best fitting results to the statistical test
limits are a quantile of 0.32 for upper test limits and 0.58 for lower test limits. The predicted
0.05-0.95 quantiles and 0.1-0.9 quantiles, together with the actual values from the validation
set in black, can be found in Figures 11 and 12.
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Figure 9. Violin plots of the calculated statistical lower test limits (Stat. Predictions) and the quantiles
of the random forest regression. Higher means more conservative, and closer to the statistical
predictions is better. Visually, slightly above the median seems to capture the predictions best.
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Figure 10. Violin plots of the calculated statistical upper test limits (Stat. Predictions) and the
quantiles of the random forest regression. Lower means more conservative, and closer to the
statistical predictions is better. Visually, a quantile slightly below the median should capture the
predictions best.
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Figure 11. Visualizing regularization: quantile predictions of lower test limit vs. actual statistical
predictions on the validation set. The confidence bound tends to overlap the calculated limit.

The goodness-of-fit measures for the models with the best quantile hyper-parameter,
chosen as a minimum of the sum of root mean squared error and mean absolute error, can
be found in Table 5. In both cases, making the model deliberately slightly more conservative
finds more agreement with the statistical model used as training data. The results of the
mean values of the test limits can be found in Table 6. In both the case of upper and lower
limits, the results from the random forest suggest a less conservative prediction than the
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original statistical one. The best result from the quantile regression forest was chosen as the
optimal quantile parameter a* minimizing both MAE and RSME for each model separately.

o

or = argoin 1 (LT ) + LTl

where € is the prediction error with regard to the statistical test limits. For lower limits,
in our data set, the optimal quantile to replicate the statistical test limits was a*;y;., = 0.3.
For upper limits, ax*pper = 0.54.

confidence bounds upper test limit
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Figure 12. Visualizing regularization: Quantile predictions of upper test limit vs. actual statistical
predictions on validation set. The confidence bound tends to overlap the calculated limit.

Table 5. Goodness-of-fit measures for best fit of best quantile parameter in quantile regression forest.
The results outperform pure median predictions in Table 4.

Limit RMSE MAE
lower 0.0208 0.0100
upper 0.0218 0.0114

Table 6. Mean of predicted standardized test limits and validation set true mean for upper and lower
test limits. Closer to the edges of the interval [0, 1] means less conservative. On average, the proposed
model errs on the side of conservative predictions.

Limit RF Prediction Mean True Test Data Mean Best Prediction Mean
lower 0.0297 0.0345 0.0309
upper 0.9741 0.9687 0.9653

4.3. Computation Time

On a 13th Gen Intel(R) Core(TM) i5-1345U with 16 GB RAM, the model training of
the best random forest model takes 38.98 s. Hyper-parameter tuning to obtain the best
parameters for the model took 13.78 min. The data-set used was the anonymized data set
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with 1057 parameters measured in 110 devices each. As a comparison, the calculation of
statistical limits for ground truth took 31.52 min on the same data set

5. Discussion
5.1. Interpretation of Results

It has been shown that quantile random forest regression performs better than other
candidate models when trained on statistically calculated limits for lifetime drift in semi-
conductor devices. On average, the results from the random forest regression are less
conservative, i.e., less prone to test limits very far from the original specified limits. This
can be interpreted as a kind of regularizing of the original statistical problem away from
extreme solutions. Furthermore, the quantile parameter can be chosen in a way that the
results are even closer to the statistical test limits on average. This allows experts to have
a robust way of proposing or adjusting test limits for cases where the typical statistical
calculation leads to unrealistically extreme results. One possible decision process for an
expert-in-the-loop system is given in Figure A1l.

5.2. Model Limitations and Assumptions

As a purely data-driven model, the proposed model can be used to predict theoretically
any type of electrical parameter lifetime drift, e.g., threshold voltage in MOSFETs. However,
it is trained on a subset of the results from mathematically calculated limits. This means that
it is assumed that training data behavior is representative of the data to be predicted. If the
underlying production process changes, or a different type of device is to be investigated,
a retraining of the data has to be performed.

For a single product, the training time of a quantile forest regression model, as well as
the mathematical calculation of true underlying guard bands, is feasible to use in practice,
as shown in Section 4.3.

In quality control applications, the usage of machine learning to obtain results is often
a topic of contention. As the models learn only from past data and make generally no
assumptions on quality targets or probabilities, the question of how interpretable the results
are remains. In this case, the machine learning algorithm is used to train on statistically
calculated limits, which may be prone to some instabilities in order to regularize the results
and give experts an informed option to adjust test limits if needed. For this to work,
the training data have to be representative of the data to predict. Furthermore, if the test
data exhibit too many outliers or unrealistic results, the model itself will also learn these
results as a baseline. This may lead to a skew in the resulting proposed limits. Furthermore,
the model will, on average, predict the electrical parameter data skewed to the average
of the results of data in the past. Therefore, real outliers in data that may indicate true
degradation may be under-estimated. This is why it is important to use the machine
learning approach as an additional tool in the arsenal of an expert but not as the sole crutch
in the case of guaranteeing quality.

6. Conclusions
6.1. Summary of Key Findings

In the topic of setting test limits for lifetime drift behavior, often the target of very low
probabilities (e.g., 1 ppm) leads to problems in verifying models after building them. This
is due to the fact that the samples that are stressed are too few to empirically verify the
model. Therefore, all models for lifetime drift have to make assumptions of some kind. The
non-deterministic fitting of hyper-parameters in statistical models may lead to instability in
solutions for very similar data sets. We propose a method of an expert-in-the loop system
where training a quantile regression forest on the statistical results may lead to both a
regularization behavior and a possibility of modeling cases where the current methods
may become stuck in local optima or have numerical issues. The quantile regression forest
allows for fast, robust results that may then be adjusted by the expert by tuning the quantile
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parameter to be more or less like the statistical original results, depending on the plausibility
of the results according to expert opinion and physical properties of the process.

6.2. Future Work

In future work, more refined investigations of the topic are possible. One promising
avenue is the comparison of several state-of-the-art quantile regression forest implemen-
tations, such as LightGBM 4.3.0 [22] or catboost 1.2.3 [23]. Furthermore, currently, only
one sample at one temperature is being considered. In the future, the outcome of adding
the temperature parameter of the stress test data and predicting from one to up to three
samples that are typically taken may be considered. Last but not least, the performance
may be improved by smart feature engineering such as including additional features or
structuring the input data in some way that makes it easier for the random forest model
to take meaningful decisions. Furthermore, the issue of performance may be investigated
separately for different implementations and in comparison to classical statistical methods.
Depending on the outcome, a mixture of using the statistical model to generate enough
training data and then fitting the random forest model on the rest of the data may be
considered to optimize both accuracy and total calculation time.
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Abbreviations

The following abbreviations are used in this manuscript:

o quantile parameter.
ok optimal quantile parameter.
B number of bagging iterations.

f(x')  random forest prediction on unseen data.
GB gradient Boosting.

GLM  generalized linear Model.
LSL lower specification limit.
LTL lower test limit.

MAE  mean absolute error.
ppm parts per million.

RMSE  root mean square error.
RF random forest algorithm.
SVM  support vector machine.
USL upper specification limit.
UTL upper test limit.

VGT  comparison parts.
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Appendix A. Flowchart Decision Process

A possible expert-in-the-loop decision process using both statistical calculations of
limits and the proposed ML results utilizing quantile forest regression can be found in
Figure Al.

/ Collect stress test data /

l

Prepare and
clean data

|

Fit statistical
model to calcu-
late test limits

Fit quantile
forest regression

Add fea-
tures to data

Propose
new limits

|

Adjust model

Expert .
Xpert agrees ———

Expert agrees

no

Final test limits

Figure Al. A flowchart showing a possible expert-in-the-loop decision process for automatically

generating and proposing test limits.

Appendix B. Additional Data

Figures for model comparison for the target variable of upper test limits can be
found in Figure A2. The results agree with the findings in Figure 4 and are given for
completeness’ sake.

00 02 04 06 08 10
1 1 11 1 Il 1 1 11 1 Il 1 1
MAE RMSE Rsquared
GlMnet { ] B
GEM | 4 L [
SUM | 4 . 5..+ .
RF | 4 . L{

00 02 04 0868 08 10 0.0 1.0

Figure A2. A comparison of MAE, RMSE and R? for the different candidate models. Lower is better
for MAE and RMSE; higher is better for R2. Standard boxplot with black dot for median and blue

box for quartiles.
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