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Abstract: Intelligent systems developed under the Internet of Things (IoT) paradigm offer
solutions for various social and productive scenarios. Voice assistants (VAs), as part of
IoT-based systems, facilitate task execution in a simple and automated manner, from
entertainment to critical activities. Lithium batteries often power these devices. However,
their energy consumption can be high due to the need to remain in continuous listening
mode and the time it takes to search for and deliver responses from the Internet. This
work proposes the implementation of a VA through Artificial Intelligence (AI) training
and using cache memory to minimize response time and reduce energy consumption.
First, the difference in energy consumption between VAs in active and passive states
is experimentally verified. Subsequently, a communication architecture and a model
representing the behavior of VAs are presented, from which a metric is developed to
evaluate the energy consumption of these devices. The cache-enabled prototype shows
a reduction in response time and energy expenditure (comparing the results of cloud-
based VA and cache-based VA), several times lower according to the developed metric,
demonstrating the effectiveness of the proposed system. This development could be a
viable solution for areas with limited power sources, low coverage, and mobility situations
that affect internet connectivity.

Keywords: voice assistant; metric; artificial intelligence; energy saving; cache; intelligent
systems

1. Introduction
The Internet of Things (IoT) presents a model that moves towards a world integrating

the physical with the virtual through the programming and interconnection of objects to
solve various problems [1]. Several technologies, such as fog computing, Wireless Sensor
Networks (WSN), data mining, context awareness, real-time analytics, virtual reality, and
augmented reality, are integrated into IoT, offering solutions across various sectors in
industry and at home. Central to these developments is the concept of Artificial Intelligence
of Things (AIoT), which enables the processing of large volumes of data generated by IoT
systems, enhancing and optimizing these environments [2].

Technologies 2025, 13, 19 https://doi.org/10.3390/technologies13010019

https://doi.org/10.3390/technologies13010019
https://doi.org/10.3390/technologies13010019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-7452-8540
https://orcid.org/0000-0002-3043-7161
https://orcid.org/0000-0002-5536-7147
https://doi.org/10.3390/technologies13010019
https://www.mdpi.com/article/10.3390/technologies13010019?type=check_update&version=2


Technologies 2025, 13, 19 2 of 21

To implement an IoT solution, a control system that interconnects sensors and actu-
ators is required [3]. These interconnections can be established through various options,
ranging from wired solutions to low-power wireless technologies such as Near Field
Communications (NFC) [4], Zigbee, Bluetooth, or WiFi.

Among the most common devices that serve as sensors and actuators in this ecosystem
are Voice Assistants (VAs). These devices, equipped with microphones, speakers, and
software capable of receiving audio commands, interpreting them, searching for a response,
or executing an action, are integral to user control and interaction systems within IoT.
VAs take advantage of the complementarity of all these systems, enabling AI-mediated
emotional perception of users [5], making them a focal point for new technological advances
and developments in device and network domains [6].

In the past decade, AI integration into mobile devices has begun [7] and, since the end
of 2022, there has been a proliferation of new AI-based developments and applications,
leading people to rely on information technologies for their daily activities increasingly.
One of the main ways to interact with these systems is through VAs. As a result, VAs have
become ubiquitous, integrated into mobile devices, computers, and standalone VA devices,
making their operation a significant factor in energy resource consumption, whether the VA
represents an application using device hardware or functions as an independent hardware
device. In either case, the operation of VAs depends on constant Internet connectivity,
leading to significant energy consumption due to their passive or active listening states
and the processes required to connect to the Internet to process and respond to requests.
Adopting new AI-based developments and applications, which have intensified VA usage,
makes their energy consumption and response times critical factors.

Conventional VAs rely on an Internet connection to function, which can be problematic
in situations or geographical areas where communication is affected by low coverage or
unstable connections due to mobility or high network traffic congestion. In these cases,
immediate access to information would be highly beneficial, which could be achieved
using cache memory. Moreover, repetitive queries to VAs about data that do not frequently
change, such as user information, locations, values, and prices, often occur. For instance,
when a user asks a VA about a country’s territorial size, the VA must access the Internet ev-
ery time the user requests this information, unnecessarily increasing resource consumption.

This research analyzes the parameters influencing VAs’ energy consumption and
response times in this context. A VA prototype incorporating cache memory supported
by artificial intelligence is proposed to improve energy savings, response times, user
experience (UX) [8], and operability in environments with limited or unstable connec-
tivity. Additionally, this solution could reduce data exposure to numerous security
threats in networks [9–11], by minimizing the constant transmission of information over
external networks.

This proposal can expand the use of VAs to a wide range of remote spaces that require
greater operational autonomy or the possibility of offline operation, which could be highly
useful in the situations above and for low-income populations with limited Internet access.
Reducing the response time for queries made through VAs could significantly impact critical
processes and user experience (UX) improvement. In the case of mass adoption, there could
be a reduction in the eco-environmental impact, as global annual energy consumption
could decrease in theory by the order of Megawatts (MW) or Gigawatts (GW).

In the proposed implementation, several aspects of VA operation need to be considered.
An initial aspect is that these require the process of speech-to-text translation using the
STT (Speech To Text) protocol. This process can take place either within the local device
or on servers located in the cloud provided by the Internet Service Provider (ISP). Thus,
traffic in these VAs is captured as plain text in order to identify the queries issued and
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the potential storage in the cache within the prototype, allowing subsequent responses to
be served from the cache or encapsulated and sent through the channel to the cloud to
obtain the response from that point. This alternative of using cache storage has been widely
suggested due to its ability to relieve traffic load with the ISP and minimize access latency,
as seen in other increasingly popular applications like live peer-to-peer (P2P) streaming or
machine-to-machine (M2M) communications [12].

Kurz (2022) mentions that text processing by VAs can present error rates [8]. For
this reason, in this study, a parallel process is proposed when capturing traffic in text
format, consisting of sending the query to an AI scheme such as GPT-4 via an API, enabling
the interpretation of content using natural language processing (NLP) techniques. The
results obtained from this source would be used to feed a cache database complementarily.
On the other hand, this type of development is implemented using lightweight and low-
cost hardware, leading to the use of light techniques and protocols that allow for energy
consumption optimization. In the state of the art, four lines of research on AVs were
highlighted, which are presented in Figure 1.
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Regarding speech recognition processes, ref. [13] presents three tools for Automatic
Speech Recognition (ASR) and text translation locally, avoiding the need for an Internet
connection. These tools are implemented on Raspberry Pi (Raspberry Pi Foundation, UK)
using Python, including validation with a word error rate (WER). The results show Vosk
as one of the most reliable applications, which is why it is the tool used in this work.
Additionally, Giraldo’s work presents a complete mixed-signal chip system capable of
directly interacting with an analog microphone, performing keyword detection (KWS)
and Speaker Verification (SV) through algorithmic optimization and integrated single-chip
design [14]. Although this proposal is interesting, it is not oriented toward cache storage.

Jiawen Li et al. designed and implemented an AIoT system to assist visually impaired
individuals, which consists of a smart cane for monitoring various variables and glasses
for text and object recognition. This system provides substantial help to people with
this disability as it transmits captured information through a VA [15]. While this work
bears some relation to the proposal presented here, it is not aimed at optimizing energy
consumption, given the number of sensors and elements needed for its operation. A
couple of communication platforms created for home automation systems are presented
in [16,17], which can operate offline and automatically perform various tasks in a household.
However, these solutions need certain functionalities as they do not incorporate cache
storage. Furthermore, ref. [18] proposes a communication interface using ASR, applied to a
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local network without Internet access. This research differs from ours as it is focused on
automating home processes rather than responding to user queries.

Regarding energy-saving techniques, the focus is on optimizing the operational algo-
rithms of devices and the routing they use for traffic transmission. In this regard, Wireless
Multimedia Networks (WMN) have been developed due to the growing availability of
low-cost hardware and the wide range of wireless device applications. Energy resources are
limited in battery-powered wireless devices, leading to significant threats to the Quality of
Service (QoS) for WMN. For these reasons, energy-efficient routing techniques are necessary
to manage WMN’s dynamic topology, which relies on a vital resource like energy [19] or
the incorporation of media access control protocols as proposed in [20]. While minimizing
and reducing hardware components contributes to energy savings, additional solutions can
be implemented, especially for systems where changes to the equipment are not possible
but can be made at the software level, as proposed in this study. Interesting contribu-
tions regarding minimizing energy consumption in smart spaces are made in studies such
as [21–23], although these are not directly aimed at VAs.

Zhu and Luo propose a content caching method based on file value and corresponding
algorithms. This method uses Markov Chains to predict a mobile user’s trajectory during
the next storage time interval and cache replacement. The algorithms are designed to
minimize content access latency [24]. This proposal aligns with the present research;
however, our project focuses on optimizing consumption by minimizing connection times.
In [25], “Neurosurgeon” was developed, a scheduler that automatically divides Deep
Neural Network (DNN) computation between mobile devices and cloud data centers by
characterizing the type of traffic to define where processing is more efficient (device or
cloud). This scheduler adapts to various DNN architectures, intelligently dividing the
computation to achieve the best latency or mobile energy usage. It demonstrated an average
improvement in latency of 3.1×, a reduction in mobile energy consumption of 59.5%, and a
1.5× improvement in data center performance.

In [26], a new static analysis approach, “Energy-Aware Timing Analysis of Inter-
mittent Programs (ETAP)”, is presented, estimating the behavior of intermittently used
programs affected by factors such as environmental energy, the energy consumption of
target hardware, capacitor size, input space, and program structure. Considering the effects
of power outages, ETAP symbolically executes a given program to generate time probability
distributions for each function’s execution, estimating consumption but not proposing
solutions for energy savings. In [27], an Efficient Supervised Machine Learning Network
for Non-Intrusive Load Monitoring (ENSML) is presented for smart energy consumption
measurement of devices in a household. With 99.9% accuracy, this technique would be very
suitable for determining actual consumption values associated with VAs, allowing compar-
isons, and determining the amount of energy saved using the cache memory proposed in
this work.

Regarding cache management, ref. [28] presents a decentralized service migration
algorithm that integrates the analysis and selection of service placement decisions and
edge base stations to minimize service migration overhead. The need for dynamic content
updates and database size is considered in a framework for implementing caching in the
front-end and back-end. Due to high resource consumption, this would not be the best
solution for VAs with limited memory and processing resources. In [29,30], proposals by
Lanyu Xu are highlighted with his CHA caching framework, which offers faster action
execution in homes with IoT systems and improves resource efficiency, and the memory
reduction solution presented by Mikhail, which uses a Large Language Model (LLM).
However, it neither caches user queries nor provides an energy consumption metric.
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Latency of Voice (Vo) communication over Internet Protocol (IP) must be considered for
analyzing the performance of VAs in the Cloud. In [31], the authors presented a theoretical
review of the implementation of VoIP analyzing Session Initiation Protocol (SIP) proxies as
well as CODECs and presented the usual values of latency and jitter. In [32], the authors
presented a position paper that also reviewed the importance of CODECs using Digital
Signal Processing (DSP) and proxies but did not present any experimental results. The
authors of [33] presented the performance of video streaming in a Data Center by analyzing
(a) Traffic received at the destination node, (b) Traffic sent from the destination node, and
(c) Packet Point to Point Delay. All the above papers recognize that latency is an important
issue in delivering voice in IP, but none of them presented experimental results in which
they observed the influence of proxies (caches) in energy saving as we did. Moreover, we
did not consider the influence of CODEC on energy saving in our experimental results.

Another commonly used technique is Acoustic Echo Cancellation (AEC), which elim-
inates echo in the voice signal [34]. The Echo can be caused by transmitting the signal
through different channels, such as a phone line or data network. In general, Noise Reduc-
tion (NR) is applied to eliminate such effects in the voice signal, resulting in lower energy
consumption to process a clean signal. To implement this type of proxy, audio and video
tools such as Squid, Varnish, or Nginx are used, which allow audio and video streams to be
cached. However, it is essential to note that implementing these applications may require
greater processing power in the server hosting the proxy. While the solution in this study
shares similarities with the presented applications, it is carried out in the local memory of
VAs, handling plain text data and adding more speed to the process.

Alternatively, caching could be performed using a cloud service provider, such as AWS
Storage Gateway Volume in cache mode with SQL Server [35]. This allows recently accessed
data or a full-volume copy to be stored locally in cache memory so that applications can
benefit from quick access to the data. This solution requires a cloud service for deployment,
which could become complex and robust, making it less attractive to VA users described in
this work.

Regarding mathematical models for energy consumption, several metrics exist to
measure energy consumption in different systems. In [36], a systematic literature review
found 41 energy consumption metrics, which are reliable, although they are purely ori-
ented toward software systems, not considering device hardware. Some metrics relate
to standby energy consumption, energy consumption during active use, and usage time,
which measures how long the device is used during a given period; another is “energy
efficiency”, which calculates how much energy is consumed per unit of performance or
task completed. Geoffry and Kelvin compare three modeling techniques for electrical
consumption: linear regression, neural networks, and decision trees [37]. These models are
predictive, a characteristic not represented in this work.

The model presented in this study does not correspond to predictive models like those
mentioned in the previous paragraph, nor does it depend solely on the software running
on the devices; the model and metrics presented in this work derive primarily from an
experimental process supported by a series of functional tests, where measurements and
calculations are performed based on temporal variables from each phase of the process,
ultimately reflecting a value for VA energy consumption.

It is important to note that the precision of these models may vary depending on
training data, the complexity of the usage scenario, the device manufacturer, and the
quality of the wireless network. Additionally, the precise measurement of VA consumption
can be a challenge due to the complexity of the technology and the need to consider multiple
factors in the energy calculation. On the other hand, a combination of different models may
be required to provide accurate energy consumption predictions in varied situations.
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Table 1 abstracts the characteristics of the studies related to this work, identifying
those that explored each research line associated with this project.

Table 1. Comparison of topics addressed in related research studies.

Paper (Cite) Energy Saving VA/Speech Cache
Management

Metric
Development

Setiawan et al., 2022 [13]
√

Giraldo et al., 2020 [14]
√ √

J. Errobidart., 2017 [16]
√

Irugalbandara et al., 2023 [17]
√ √

S K Satyanarayana, L Nirmala D. . ., 2022 [19]
√

Li et al., 2021 [22]
√ √

Kang et al., 2017 [25]
√ √

Erata et al., 2023 [26]
√ √

Hadi et al., 2022 [27]
√ √ √

Abolhassani et al., 2022 [28]
√ √

Ergasheva et al., 2020 [36]
√ √

Tso et al., 2007 [37]
√ √

Xu et al., 2020 [29]
√ √ √

Rovnyagin et al., 2024 [30]
√ √ √

This work
√ √ √ √

Thus, the main contributions of this work are as follows:

• Presentation of a connection architecture and a prototype that enables energy savings
in VAs through the implementation of cache memory supported by AI, achieving
experimental results, demonstrating savings and an additional level of security;

• Development of a metric to determine the energy consumption of VAs when user
responses are obtained from local network cache memory;

• Comparison of consumption between passive and active states for two types of VAs;
• Proposal of a mathematical model of the process performed by VAs, from which a

metric was developed to compare VA energy consumption;
• Energy-saving solution for using VAs in remote locations with limited electrical re-

sources and low Internet connectivity;
• The proposal minimizes the response time for queries made to VAs, improving UX.

The article’s structure is as follows: Initially, a description of the methodology and
materials used in the work is presented, as well as the mathematical model and prototype
implementation. Subsequently, the results obtained are presented and analyzed, and finally,
the discussion and conclusions of this work are shown.

2. Materials and Methods
This section presents in the first part, an analysis of the energy consumption of VAs

in their passive state, i.e., when the device is turned on but not using voice functions,
and in their active state, i.e., when voice functions are being executed. In the second part,
a connection architecture is proposed using a cache device. The third part focuses on
creating a model that describes the consumption metric of these assistants. Finally, the
implementation of a VA to evaluate its energy efficiency and performance is presented.
Each of these phases is described below.
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2.1. Comparison of Energy Consumption of Voice Assistants Between Active and Passive States

To verify the behavior of devices using VAs regarding their energy consumption, tests
were conducted to gather relevant data on battery consumption when the devices execute
functions that respond to voice commands. The tests were performed in two different
scenarios. In the first scenario, the devices had the VAs in active mode (or On state),
utilizing the VAs’ functions. In the second scenario, the VAs were in passive mode (Off
state), meaning the devices were not using the assistant’s functions. The main objective
of these tests is to compare the results obtained between the two states and calculate an
average of energy consumption in each situation.

Considering that there are numerous VAs [38], including both speaker-type devices
like Google Home or Amazon Echo and virtual assistants integrated into mobile devices
such as Google Assistant (GA), Apple’s Siri, or Microsoft’s Copilot, some with AI ca-
pabilities, the two most commonly used voice assistants in mobile and desktop devices
were selected: GA and Copilot, which also function on Android and Windows operating
systems [39,40]. Basic tests were conducted using these assistants, implementing consump-
tion measurement software to identify significant differences that can be crucial for resource
optimization in various processes. Table 2 presents the characteristics of the devices used.

Table 2. Characteristics of devices with VAs.

Characteristics Mobile Phone Laptop

Device Celular Xiaomi, Redmi Note 12S
(Xiaomi Communications Co, Ltd., Beijing, China)

Laptop Asus, VivoBook M509DA
(ASUSTeK Computer Inc., Taipei, Taiwan)

Processor Octa Core 2.2 Ghz—MediaTek Helio G96
(MediaTek Inc., Hsinchu, Taiwan)

Octa core de 2.1 Ghz, AMD—Ryzen5
(Advanced Micro Devices, Inc.,

Santa Clara, CA, USA)

Memory RAM: 12 GB RAM: 12 GB

Operating system Android 14 Windows 11 pro-64 bits

In these tests, the energy consumption of these two VAs was measured over 60 min,
During this period, 120 queries were conducted, and the battery level was measured every
minute. From these results, the arithmetic mean of battery consumption was calculated.
Figure 2 shows the average percentage of battery consumption with standard deviations of
0.033% and 0.007% for Copilot in active and passive states, respectively, and 0.021% and
0.004% for GA in active and passive states, respectively.

From the results obtained, similar discharge behaviors between each test are evident,
with a significant graphical difference between passive and active states, showing that
devices exhibit higher energy consumption while running the VA compared to when this
function is idle. Mobile device tests showed that the battery percentage consumed over
60 min was 8% in the active state and 4% in the passive state, which means that, in the
active state, the battery duration is approximately half compared to the operating time
in the passive state. Similarly, the difference was 43.5% between the two states on the
laptop. The above corroborates a direct relationship between the use of VA functions and
the device’s energy consumption.

Concerning this, measuring the discharge time of VAs starting at 100% battery until it
reaches 0% shows that battery life, both on the laptop and mobile, lasts on average twice
as long in the passive state as in the active state. Regarding the consumption of these
devices, several power measurements were conducted on the equipment in operation,
where values similar to the nominal were obtained. In total, 40 VA queries were conducted
and measured using a digital power meter (watts), brand Suraielec (Zhengzhou Suraielec
Network Tech Co, Zhengzhou, China), with a resolution of 0.1 W. The average power
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obtained was 4.8 W on the mobile and 6.5 W on the laptop, with a standard deviation of
0.013 W and 0.021 W, respectively.
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Figure 2. Percentage of battery consumption of VAs in active or passive state.

Although it is typical for VAs to discharge faster in the active state than in the passive
state, such a high difference exists, and consequently, a VA user’s device battery lasts half
the usual time. This work proposes an energy-saving approach for VA-type devices based
on these preliminary results.

2.2. Network Connection Architecture with Cache Storage

It is necessary to capture the traffic in plain text and then either respond from the
cache or encapsulate it to pass through the channel to the cloud and obtain a response from
a remote point to identify the queries made by VAs and store them in the cache. This part
of the work proposes a network architecture, Figure 3, which includes several components
and functions described below.

1. The first part of the process includes the VA, which must have a microphone, speaker,
and communication protocol. This generates the initial data flow (user queries) sent
through the network;

2. The second part consists of the cache memory, which stores queries and responses.
This can be a local memory, an internal network database, or a cache proxy at the
network perimeter. An algorithm then checks if the query is in the cache;

3. The third part involves external network elements, such as cloud servers, routers, and con-
nections with AI systems, where queries not found in the cache will be processed. These
responses will be returned to the end user, leaving a copy of the query in local memory.

Thus, this device should respond to future queries, ensuring greater speed in the
process and energy savings by not requiring a constant connection to the cloud. It is
important to note that the time an object will remain in the cache depends on the specific
configuration. Therefore, the Time-To-Live (TTL) of cached objects must be carefully
considered to ensure that outdated or incorrect responses are not stored. This point will
be addressed in future work. In Section 2.4 of this work, the VA is implemented, and in
Section 3 experimental results are presented.
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2.3. Mathematical Model and Evaluation Metric

Mathematical analysis and calculations are performed to characterize the energy
consumption and processing times of the VA in the ON state. The consumption can be
presented in two scenarios:

1. When the VA operates offline, retrieve the response directly from the local cache or
edge devices, but without connecting to the Internet;

2. When the VA seeks the response by connecting to the Internet, make the respective
query to cloud databases or through AI.

In both cases, the initial consumption parameters are the same, including WiFi or
Ethernet connection, memory usage, CPU cycles, and activation of voice recognition
processes. However, for the second scenario, the consumption required by the connection
to the mobile network or external ISP network must be considered.

Accordingly, VAs consume energy during the connection process and when processing
queries. This situation can be modeled using the power required in each process:

P(t) =



Pl , t0 < t ≤ tl

Pq, tl < t ≤ tq

Pc, tq < t ≤ tc

Pi, tc < t ≤ ti

Pa. ti < t ≤ ta

(1)

where
P(t), is the power function at every time;
Pl(t), is the power of the VA in listening mode;
Pq(t), is the power consumed during the processing of the query;
Pc(t), is the power of the VA while performing a search in the cache memory;
Pi(t), is the power of the VA while retrieving the response from the Internet;
Pa(t), is the power required to deliver the response to the user.
Here, the energy consumption can be represented by the following integral:

C =
∫ ta

t0

P(t)dt (2)
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In this model, the energy consumption related to processing while the VA is perform-
ing other connection processes is disregarded. Considering the previous function, the
consumption can be defined as follows for both the case where the response is obtained lo-
cally from the cache (Local), CL, and when the assistant must query in the cloud (External),
CE, for example, through an AI:

CL =

[∫
∆tl

Pldt +
∫

∆tq
Pqdt +

∫
∆tc

Pcdt +
∫

∆ta
Padt

]
(3)

CE =

[∫
∆tl

Pldt +
∫

∆tq
Pqdt +

∫
∆tc

Pcdt +
∫

∆ti

Pidt +
∫

∆ta
Padt

]
(4)

If average power values are assumed for each section of the process, Equation (2) is
equivalent to the following:

C = ∑
j

Pj∆tj. (5)

However, for the local case j = l, q, c, a and for the external case j = l, q, c, i, a which
means that the following will always hold:

CL = ∑
j

Pj∆tj = Pl∆tl + Pq∆tq + Pc∆tc + Pa∆ta and (6)

CE = ∑
j

Pj∆tj = Pl∆tl + Pq∆tq + Pc∆tc + Pi∆ti + Pa∆ta (7)

Considering that in practice the power and time associated with the response process
Pa are embedded in the consumption calculated for the processes defined in this work
as Local (on cache) and External (on the Internet), respectively, this parameter will be
omitted in the following equations. Graphically, the power consumption for the query
and response process from the cache memory and the AI on the Internet, as described in
Equations (6) and (7), is presented in Figure 4.
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If the energy consumption while the VA is listening is not of interest for the comparison,
i.e., the energy consumption before a query is being detected and answered, then the term



Technologies 2025, 13, 19 11 of 21

Pl∆tl can be excluded from further consideration. Hence, the energy of interest required in
a response process by the VA could be graphically represented as shown in Figure 5.
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The low level indicates the VA’s consumption while processing the user’s query, and
the high level occurs in two moments: one when the VA is searching in the cache and the
other when querying the Internet.

Next, the effect of multiple devices within the same network asking the same question
Qj at different times T1, T2, . . ., Tn close to each other, is considered. Based on this situation,
the following question arises:

Would battery and time be saved if the router or the VA cached the response obtained
at time T1 to handle other queries from other users at later times (Tn > Tn−1 > . . . > T1)?

To resolve Qj, the VA needs to search locally or access only the router that has cached
the response from the previous query made at time Tj. In this way,

∀ Tj > T1 ∧ ∆ti = 0 (8)

⇒ CL < CE (9)

Then, we define a consumption metric MC as a comparison between the energy
consumption for processing an inquiry (C) and the nominal consumption of the VA as if it
were responding from the Internet (CNi ), that would be the maximum processing time, and
so, maximum consumption. This consumption is the product of nominal power (PN) times
the required time required in the external connection:

MC = 1 − C
CNi (10)

MC = 1 −
∑j Pj∆tj

PN
(
∆tq + ∆tc + ∆ti

) (11)

This metric is normalized, meaning, 0 < MC ≤ 1 where MC = 1 in the listening state,
i.e., when ∆tq = ∆tc = ∆ti = 0 y MC ≈ 0 when the process consumes excessive energy in
the other stages, i.e., ∑j Pj∆tj → PN

(
∆tq + ∆tc + ∆ti

)
.
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Optimization Mathematical Model

The mathematical automation model for consumption optimization depends on
finding the minimum power and time required for the process. It means minimizing
Equation (5) for consumption C:

min[C] = min
[
∑j

Pj∆tj

]
(12)

If the part of consumption associated with the query and cache processes are combined
into one part called ∆Cc and the processes involving Internet connection are combined into
a part called ∆Ci, then the total consumption C would be given by the following:

C = ∆Cc + ∆Ci (13)

Given the previous parametrization, the goal is to minimize the consumption of the
VAs, which in turn depends on the time it takes to perform a query and obtain a response.
To optimize this time, it is proposed to minimize or reduce the consumption time for the
Internet connection to zero by obtaining responses directly from the cache server. Therefore,
if a query is made only locally, then

∆Ci = Pi∆ti = 0 (14)

Thus CL is the consumption for the query up to the cache device. Hence, we can define
CL as follows:

CL = Pc∆tc (15)

Considering that both consumption and time are always zero or positive,

Pi∆ti ≥ 0 (16)

Then,
CL ≤ C (17)

It follows that if the device does not need to query the Internet, the consumption will
always be less than or equal to that of querying over the Internet. Thus, a metric MCc for
queries within the internal network is proposed, eliminating the power consumption of the
connection and response from the Internet, which can be expressed from Equation (11) (the
initial metric) by removing the external connection consumption:

Summarized, it would be

MCL = 1 −
Pq∆tq + Pc∆tc

PN
(
∆tq + ∆tc + ∆ti

) (18)

For greater accuracy in the optimization process, the following parameters will be
considered, each having a determined value:

• Standard or version supported by the WiFi network devices Institute of Electrical and
Electronics Engineers (IEEE). 802.11;

• Processing capacity of the devices (VA and WiFi Router);
• Algorithm for cache storage and response to users.

2.4. Implementation of a Voice Assistant with Cache Storage

In this experimental phase, a device capable of utilizing natural language recognition
and processing techniques was created, providing a highly energy-efficient and much faster



Technologies 2025, 13, 19 13 of 21

VA compared to conventional VAs. It is essential to clarify that the tests conducted in this
work are independent of those used for the system’s design and creation.

Implementation of a VA on Raspberry Pi Using Python

One of the processes required by VAs is synthesizing voice traffic into text. This
requires proprietary or standard protocols to perform this task, either on the local device or
the ISP cloud servers. To implement a VA system that allows receiving queries, obtaining
responses from an AI system in the cloud, and storing this information in a cache to return
it to the user later, a state-of-the-art device with sufficient hardware capabilities was used
for the proper functioning of a VA and the implementation of local cache. In this case, a
Raspberry Pi 4 with 4 GB of RAM and a 1.5 GHz processor was used, programmed with
Python version 3.11 and an omnidirectional USB 2.0 microphone with 1 dB sensitivity.

For this experimental phase, the following configurations and implementations were
carried out:

Implementation of an STT system using Vosk (vosk-model-es-0.42) [13]: this tool
allows a pre-trained model to recognize multiple languages, interpret voice with its different
tones, and convert it into text.

Interaction with a Natural Language Processing (NLP) system [41]: TensorFlow Text
library was used to create a model for interpreting user queries. Since humans can ask the
same thing in various ways in natural language, an AI, which is capable of calculating the
similarity between two texts in percentage, was necessary. This helps determine if a query
associated with a response had been previously made. If so, the response is retrieved from
the cache. The AI can validate if two requests are equivalent using a probabilistic method
based on the cosine function, which defines a similarity value. If the defined threshold is
met, the AI compares it with stored responses using the same cosine function to find the
appropriate answer for the user.

Use of Generative AI (cloud service) [42]: the text converted from voice represents a
question/query. If it is not in the cache, a Generative AI resolves it. OpenAI (gpt-4) was
chosen for its reliability, high recognition, and usability in the current world.

Storage of questions and answers in a cache: pairs of questions and their answers are
stored in memory, and a file with this information is created, allowing it to be preserved
over time.

Translation of text responses to speech (TTS) (pyttsx3) [43]: the response delivered to
the user is synthesized into speech using the text-to-speech system.

3. Results
After implementing the VA system, various tests were conducted. The most repre-

sentative test involved launching a query, searching the Internet for it, and storing the
response in a cache. Subsequently, the same or a similar question was posed. The algorithm
determines the similarity with the information stored in the cache and verifies if it is the
same query. Depending on this, the response is delivered to the user either from cache
or by searching the Internet. Additionally, the algorithm calculates the time elapsed in
each part of the process performed, achieving millisecond-level accuracy. Figure 6 shows a
screenshot of the prototype displaying the time results obtained with the algorithm during
a test. This test demonstrates the difference in response times between cloud-based AI and
responses retrieved from the local cache.

In this exercise, for the tests (queries to the VAs), a bank of questions was created,
classified into 5 categories: Weather (Q1), Places (Q2), History (Q3), Mathematics (Q4), and
Characters (Q5).
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Figure 6. Direct image from the prototype display showing a test of elapsed times for cloud and local
cache queries. The blue boxes highlight the performing times.

These queries showed that response times and energy consumption might depend on
the type of topic or the size of the query itself. However, the relationship and differences
between the results from the cache and those from the cloud remained consistent; in other
words, response times were always higher when an internet connection was required.
Table 3 presents 10 questions per defined category, each with their respective results in
terms of measured time and power. The system’s power consumption does not vary
significantly across different queries or categories, with the average measured operating
power of the virtual assistant remaining around 3.15 W.

Subsequently, the averages for each category are calculated and presented in Table 4.
In this case, query time, cache time, and cloud time are distinguished for each query. The
standard deviation of response times for cache queries is 0.24 s, and for cloud tests, it is 1.95 s.

Figure 7 illustrates the average times measured for each stage of the process, the time
the VA takes to pose a question, the time to retrieve a response from the cache, and finally,
the time required to obtain a response from the cloud.
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Table 3. Comparison of response times from cache and cloud per category.

Category Test
Time [s] Power

Cache Cloud [W]

Weather

1 0.048 7.903

3.15

2 0.031 8.717
3 0.013 6.850
4 0.070 7.994
5 0.011 8.556
6 0.098 5.980
7 0.049 7.911
8 0.052 8.087
9 0.120 7.949
10 0.018 8.890

Places

1 0.061 2.762

3.21

2 0.028 4.838
3 0.014 2.918
4 0.027 3.606
5 0.006 4.784
6 0.018 3.870
7 0.045 2.097
8 0.040 3.501
9 0.086 4.569
10 0.029 2.990

Hystory

1 0.011 3.789

3.13

2 0.019 4.881
3 0.053 5.059
4 0.030 4.941
5 0.041 5.058
6 0.004 3.902
7 0.057 6.784
8 0.016 4.197
9 0.025 5.629
10 0.044 3.479

Math

1 0.012 5.780

3.15

2 0.053 7.018
3 0.045 6.192
4 0.026 6.118
5 0.043 6.197
6 0.020 5.601
7 0.047 5.866
8 0.034 6.514
9 0.049 7.303
10 0.036 6.734

Characters

1 0.553 2.797

3.09

2 0.642 3.025
3 0.721 2.122
4 0.517 3.288
5 0.740 3.121
6 0.597 2.614
7 0.608 3.580
8 0.396 4.319
9 0.679 2.743
10 0.705 3.316
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Table 4. Comparison of response times from cache and cloud.

Question
Number

Response
from

Question
Processing

Time (Pq) [s]

Cache Time
(Pc) [s]

Cloud Time
(Pi) [s]

Total Query
Response
Time [s]

Q1 Cloud 0.016 1.621 6.250 7.887
Cache 0.006 0.045 0.051

Q2 Cloud 0.022 0.031 3.539 3.592
Cache 0.006 0.029 0.035

Q3 Cloud 0.012 0.046 4.714 4.772
Cache 0.006 0.024 0.030

Q4 Cloud 0.009 0.029 6.294 6.332
Cache 0.009 0.027 0.036

Q5 Cloud 0.016 0.036 3.040 3.092
Cache 0.006 0.610 0.616

As seen in Table 4, the response times for each test in cache and from the Internet are
different. Furthermore, when analyzing the total time of the tests with responses from
the cache compared to the total time from the cloud, a significant difference is identified:
0.768 s vs. 25.675 s. This leads to a substantial difference in energy consumption, which will
ultimately be reflected in monetary costs. Thus, based on the response times obtained from
each part of the process and considering the power measured during the query tests using
the digital meter, which averaged 3.15 W, and the nominal power, meaning the maximum
power consumed by the Raspberry Pi, which would be 4 W, the energy consumption of the
VA in its ON state was calculated.

E[jules] = P[W]× t[seconds] (19)

Different results were obtained in terms of energy consumption for both local and
remote (Internet) queries. Additionally, these times were used to predict the initial VAs
(GA and Copilot) for which the experimentally measured power was 3.8 W and 5.5 W for
each device, and the power at maximum load was 4.8 W and 6.5 W, respectively. With these
data, the energy consumption levels for such VAs are presented in Table 5. The energy is
shown in joules for both the Raspberry Pi and the initial VAs.

Table 5. Energy consumption on prototype vs. expected energy consumption on initials VAs.

Test
Joules (Energy

Consumption) Raspberry Pi
Joules (Energy

Consumption) VA1
Joules (Energy

Consumption) VA2

Cache Cloud Cache Cloud Cache Cloud

Q1 0.16 24.84 0.19 29.97 0.28 43.37

Q2 0.11 11.53 0.13 13.64 0.19 19.75

Q3 0.094 14.93 0.11 18.13 0.16 26.24

Q4 0.11 19.93 0.13 24.06 0.19 34.82

Q5 1.9 9.55 2.34 11.74 3.38 17.00

Total 2.38 80.78 2.9 97.54 4.2 141.18

The calculations for the proposed prototype indicate a difference of 78.4 J in energy
consumption between cache-based and cloud-based queries. This means that a cache query
consumes only 2.95% of the energy required for a cloud-based query, clearly highlighting a
significant reduction in energy usage.
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Subsequently, the metrics of the proposed mathematical model were verified using
the average values measured in the prototype; Pp is defined as the average power used
in the query, cache, Internet, and response processes. These metrics yield the following
numerical results:

The metric for the energy consumption of queries performed in the cloud (External query):

MC = 1 − Pp(∆tq+∆tc+∆ti)
PN(∆tq+∆tc+∆ti)

MC = 0.21

(20)

The metric for the energy consumption of queries performed in the cache (Local query):

MCL = 1 − Pp(∆tq+∆tc)
PN(∆tq+∆tc+∆ti)

MCL = 0.99

(21)

This result shows that the difference between the consumption metrics for the cache
tests and the cloud tests is 0.78.

4. Discussion
In the previous studies reviewed and analyzed, key studies include Lanyu Xu’s CHA

cache storage framework, Mikhail’s memory reduction proposal, V.P. Sriram’s VA system,
and Boubakr Nour’s edge learning architecture for privacy enhancement [29,30,44,45].
These solutions focus on automated systems like home automation, where interconnected
devices respond to various events, commands, or voice orders. However, while the first
two studies implement a cache memory, they do not store data or responses obtained from
the cloud associated with the different user queries.

On the other hand, research on energy optimization through the implementation
of VAs primarily focuses on energy management in homes or some industrial settings.
Notable studies include those by Sarah et al., 2023, and M. U. Hadi, 2022 [27,46], and the
minimization of energy consumption in smart buildings through real-time data processing
presented by Amal Zouhri, 2024 [23]. Regarding energy measurement and optimization in
sensor networks or systems involving IoT devices, some notable studies include those by
Sibel Tombaz, 2014, and Bin Li et al., 2012 [21,22]. However, these studies do not involve
VAs in their applications.

Additionally, it is possible to affirm that the metrics found, such as those by
Ergasheva et al., 2020, and Tso et al., 2017 [36,37], are not aligned with the same conditions
associated with the system proposed in this work.

It is important to highlight that none of the studies listed in Table 1 comprehensively
address all the research areas identified in this study, such as energy savings, voice recog-
nition, cache memory management, and metric development. Additionally, we did not
find models that implement cache usage in VAs with a similar purpose to ours. Some
cited studies that consider cache usage [29,30] do so with different objectives, such as task
automation in homes or specific locations, memory management, or improving processing
efficiency. However, they do not focus on reducing energy consumption in VAs performing
any type of query to a local server or the cloud. In our case, we propose an approach that, to
the best of our knowledge, is novel, specifically aimed at optimizing energy consumption
through the use of cache for voice assistants. Since the evaluation objectives of these studies
differ from ours, making a direct comparison with these models would not be appropriate
or representative.
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In terms of consumption behavior for cloud queries, it can be determined that commu-
nication technology influences the energy consumption of VAs, as connection bandwidth
directly impacts the response time for queries, which, in turn, generates variations in
energy consumption. The tests conducted on our model were performed using a fiber
optic network with a 700 Mbps internet connection channel. The results of these tests are
presented in the measurement tables for cloud query times.

In this context, and considering related studies [47], if tests were performed using a
4 G mobile network with a bandwidth of 100 Mbps, nominal response times would be
approximately seven times slower. In contrast, using a 5 G network with a nominal capacity
of 10 Gbps, response times could be up to 14 times faster.

Based on the results obtained and in line with the proposal of this work, the primary
reason for the significant difference in the metrics is the use of cache memory, which
significantly reduces response times. Specifically, cloud responses are influenced by factors
such as the type of language model used [48] and the conditions of the cloud connection,
which directly affect response times and, consequently, the differences in metrics.

The results show that the time spent on cache operations is negligible or has minimal
impact compared to the time required to obtain a response from the cloud. This suggests
that this solution could be implemented in most systems without incurring significant
costs compared to systems without this optimization, and it could potentially help reduce
energy consumption. Additionally, the findings also indicate that in scenarios with poor
connectivity, mobility, or other adverse conditions, cache memory serves as an efficient and
valuable resource.

5. Conclusions
In this work, a prototype of a VA was designed and implemented. It was trained

with AI capable of performing natural language recognition and comparisons between
different user queries, storing them in cache memory for faster responses in future similar
queries. This system also adds a layer of security by keeping the information within a
private network.

The prototype successfully reduces energy consumption by an average of 2.95% of the
total energy when using the cache, as opposed to what is required for cloud-based queries.
Additionally, this implementation achieves significantly lower response times, on average
33 s faster than VAs that query the cloud, improving response times in critical processes
and enhancing user experience.

Another contribution of this work is a mathematical model based on the system’s own
attributes. This model allows representation of the elements and parts of the process that
VAs perform and their relationship with energy consumption when connected to the cloud
versus local connections.

The presented metric allows for determining the energy consumption of voice assis-
tants as a function of time. This was verified through mathematical calculations of power
and energy, along with experimental tests on the prototype created. The results showed a
high difference in metric (0.21 vs. 0.99) between queries to the cache memory and those
made to the cloud. The large-scale implementation of this solution could significantly
reduce the environmental impact by achieving considerable global energy savings.

The proposed solution has several potential applications, particularly in situations
where mobility affects communication, in remote or isolated areas with no signal coverage,
in populations without Internet access, in areas with high concentrations of people and
devices, and for scenarios where VAs are required to handle concurrent similar queries.
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This work opens up new lines of research, allowing for further exploration into energy-
saving techniques by implementing cache memory for encrypted information outside the
local device.
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