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Abstract: Energy plays a major role in wireless sensor networks (WSNs), and measurements
demonstrate that transmission consumes more energy than processing. Hence, organizing
the transmission process and managing energy usage throughout the network are the main
goals for maximizing the network’s lifetime. This paper proposes an algorithm called
RLDCSSA-CDG, which is processed through the 3F phases: foundation, formation, and
forwarding phases. Firstly, the network architecture is founded, and the cluster heads (CHs)
are determined in the foundation phase. Secondly, sensor nodes are dynamically gathered
into clusters for better communication in the formation phase. Finally, the transmitting
process will be adequately organized based on an adaptive wake-up/sleep scheduling
algorithm to transmit the data at the “right time” in the forwarding phase. The MATLAB
platform was utilized to conduct simulation studies to validate the proposed RLDCSSA-
CDG’s effectiveness. Compared to a very recent work called RLSSA and RLDCA for
CDG, the proposed RLDCSSA-CDG reduces total data transmissions by 22.7% and 63.3%
and energy consumption by 8.93% and 38.8%, respectively. It also achieves the lowest
latency compared to the two contrastive algorithms. Furthermore, the proposed algorithm
increases the whole network lifetime by 77.3% and promotes data recovery accuracy by
91.1% relative to the compared algorithms.

Keywords: efficient energy; sparse-CDG; sleep scheduling; clustering; reinforcement
learning; duty cycling; wireless sensor networks; energy harvesting

1. Introduction
Wireless sensor networks (WSNs) are systems made up of numerous small, distributed,

and low-energy sensor nodes (SNs). These nodes are typically spread across a designated
area to gather data from the target as shown in Figure 1, and then transmit them to the
sink node. The functionality of a sensor node is typically divided into four basic units:
processing, sensing, energy units, and transceiver. The processing unit is designed for
managing operations and processing data collected by the sensing unit. The sensing
unit observes and measures specific phenomena, such as temperature, humidity, motion,
or other environmental variables. It captures the data that are crucial for the intended
application. The energy unit provides the necessary power supply to the sensor node. The
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transceiver unit enables SNs to communicate with other sensor nodes within the network,
facilitating data exchange and coordination.

Unfortunately, most of the energy consumption in nodes occurs during the data
transmission process. Hence, with the limited energy capabilities of sensor nodes, the
efficient use of energy is a vital component of the WSN architecture, as shown in Figure 2.
WSNs have expanded their applications to include surveillance, intruder detection, remote
environmental monitoring, healthcare, industrial processes, space exploration, and agricul-
ture. Today, WSNs function in dense environments and complex real-time applications.
However, they face challenges such as limited energy, short lifespans, and poor channel
bandwidth [1].
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Fortunately, data compression innovation has the potential to reduce the severity of
transmission issues. Data compression decreases the volume of transmitted data, aiding in
reducing the usage of energy in sensor nodes and prolonging the lifespan of WSNs. How-
ever, traditional methods such as source and in-network coding tend to be computationally
intensive and require prior global network information, rendering them impractical for
WSNs. Many existing data-gathering schemes fail to utilize correlations in the sensed
data, resulting in the delivery of a larger number of original packets. As illustrated in
Figure 3A, nodes closer to the sink typically relay numerous packets from more distant
nodes. For example, node #5 may transmit 11 packets, while each leaf node only passes 1.
This imbalance in energy usage can quickly cause network breakdown.

Compressive sensing (CS) offers an innovative method for data aggregation in WSNs.
The CS approach promises to cut network traffic without changing the data correlation
structure. This approach sends compressed data over the network rather than the original
data. The CS approach allows for the recovery of original sensor data readings at the sink,
where recovering N sensor readings in the sink requires just M constant measurements
(M≪ N). Due to the constant M, two conflicting effects may arise: data redundancy and
data insufficiency. Both of these issues can diminish network transmission efficiency and
compromise data recovery accuracy.

Therefore, compressive sensing (CS) has been developed into compressive data gather-
ing (CDG), which offers an alternative technique for data collection in WSNs. It is regarded
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as one of the most effective techniques for collecting sensed data on its way to the sink in
WSNs. Additionally, it has low computational complexity and does not require prior or
global information, making it ideal for resource-constrained WSNs. Plain-CDG [4], illus-
trated in Figure 3B, is the most ancient fundamental data-gathering approach that employs
compressive sensing (CS) and network coding (NC) theory [5]. During each data-gathering
epoch, each node sends a fixed number of packets, denoted as M. The Aggregation node
is responsible for collecting and aggregating data from parent nodes before forwarding it
towards the root node for further processing.

The authors of [6] proposed a technique based on Plain-CDG termed Hybrid-CDG,
which is depicted in Figure 3C and aims to reduce the number of delivery packets. In
the Hybrid-CDG scheme, nodes with degrees equal to or less than M employ Non-CDG
to relay their measurements, while those with higher degrees generate M measurement
packets with Plain-CDG. This method considerably minimizes redundancy; for example,
leaf node #1 sends three packets in Plain-CDG but only one in Hybrid-CDG.

Figure 3D illustrates more efficient data collection systems that make use of random
sparse measurements. Initially, M projection nodes are selected at random to collect M
measurements; then, each projection node generates its sparse vector Φi and requests
all nodes to submit their contributions. By acquiring all segments of a measurement
(y = φi1x1 + φi2x2 +· · ·+ φi11x11), where xj is the value obtained from node #j and φij is its
coefficient, the projection node delivers the final result to the sink node via the shortest
routing channel. These sparse measurement-based CDG [7] schemes are more efficient than
previous dense schemes because each measurement involves only a few nodes, allowing the
rest to remain idle or in sleep mode to conserve energy. Therefore, sparse-CDG integrates
sleep scheduling [8] to enhance energy conservation.
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Figure 3. Non-CDG and typical CDG schemes [9]. Most of the existing wake-up/sleep scheduling
studies for CDG are designed as centralized optimization problems, necessitating extra control for
message exchanges and leading to uneven energy consumption between nodes and reduced WSN
lifespans [10,11]. Additionally, most of the published CDG clustering techniques and routing methods
are static and are unable to adapt to variations in the WSN’s environment [12].

Therefore, a reinforcement learning-based dynamic clustering sleep scheduling algo-
rithm (RLDCSSA-CDG) for compressive data gathering in WSNs is proposed to address
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these issues. Reinforcement learning (RL) [13] allows the learning agent to adapt to en-
vironmental changes, making it a suitable intelligent algorithm for resource-constrained
WSNs. The proposed RLDCSSA-CDG will be applied to the network through the 3F phases:
foundation, formation, and forwarding phases.

Firstly, the network will be divided into clusters in a foundation phase. Each cluster is
controlled by a unique cluster head (CH), which is promoted based on residual energy and
distance to the sink node. Secondly, sensor nodes dynamically join clusters using the Upper
Confidence Bound (UCB) [14] algorithm to enhance network performance and improve
communication. Finally, after joining is formed, only a part of the nodes are selected to
wake up just at the “right time” to sense data from the surrounding area by applying the
sparse-CDG technique. Nodes that are not selected to participate in sparse-CDG can switch
into sleep mode, which leads to a sleep scheduling algorithm.

The “right time” to wake up is at the nominal arrival time of the next periodic packet
minus some safety margin to avoid packet loss because of waking up too late. On the
other hand, the “right time” to go back to sleep mode (in case the expected packet does not
arrive) is at the nominal arrival time of the next periodic packet plus some safety margin
to avoid packet loss because of sleeping too early. The size of this safety margin directly
determines the duty cycle (fraction of time in which nodes wake up) of the traffic periods. It
has a direct influence on the forwarders’ energy consumption as well as their packet losses.
Therefore, this paper proposed a dynamic clustering technique based on an adaptive sleep
scheduling algorithm to extend WSN lifetime and enhance energy efficiency, unlike most
existing studies that use a static clustering based on the duty cycling technique, which
cannot adapt to the variation in the WSN and incurs a tradeoff between packet delivery
delay and energy saving. The main contributions of this work are summarized as follows:

• Dynamically clustering for WSN nodes is achieved by using the lightweight Upper Con-
fidence Bound (UCB) algorithm, which improves adaptation in the WSN environment.

• Selecting the cluster head (CH) is carried out using a distributed method that considers
the residual energy and distance among nodes rather than fixed CHs.

• Applying an adaptive wake-up/sleep scheduling algorithm by avoiding duty cycling
is used to eliminate the tradeoff between energy savings and packet delivery delays.

• Sampling uniformity is included in the reward function of the RLDCSSA-CDG to
evenly sample the sensed data for accurate reconstruction of the original data.

The rest of this paper is organized as follows: Section 2 offers a brief review of the
background and related works on clustering techniques and sleep scheduling algorithms.
Section 3 presents a detailed exploration of the proposed RLDCSSA-CDG algorithm in
WSNs. Section 4 summarizes the complete proposed algorithm, Section 5 showcases the
simulation results used to assess performance. Finally, Section 6 concludes the paper.

2. Related Work
A significant amount of literature focuses on improving the performance of CDG

technology. In [15], a multi-objective evolutionary algorithm was applied to calculate the
optimal number of CS measurements and determine the measurement matrix. In [16], a
gray wolf optimization technique was used to develop an optimal sensing matrix that
minimizes the mean square error of recovered data. Sleep scheduling and data compression
can further decrease energy consumption in WSNs.

Sleep scheduling is commonly employed to tackle data redundancy resulting from
densely deployed nodes. Its goal is to sustain WSN coverage and connectivity while mini-
mizing the number of active nodes. This approach often complements other technologies
to improve energy efficiency. For instance, ref. [17] presented a sleep scheduling strategy
for opportunistic routing in one-dimensional queue networks, where sleep intervals for
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nodes were determined based on the flow rate and remaining energy. Similarly, ref. [18]
focused on reducing energy consumption from idle listening during sleep scheduling by
organizing nodes into pairs, allowing them to alternate between active and sleep modes
based on the traffic rate and their remaining energy, but total data transmission and data
recovery accuracy are not considered.

Lastly, ref. [19] utilized deep reinforcement learning, adaptive learning automata, and
particle swarm optimization to select sleep and active nodes. An RL-based sleep scheduling
algorithm for CDG (RLSSA-CDG) was introduced in [20] to achieve a balanced energy
expenditure among nodes and extend the lifespan of WSNs. These studies confirmed that
various sleep scheduling methods effectively promote energy efficiency in WSNs. However,
they overlooked the challenges posed by high-dimensional data transmission. Combining
sleep scheduling with data compression can further reduce energy consumption in WSNs.
Numerous studies have aimed to improve CDG techniques, particularly through different
clustering technologies. Clustering is beneficial for traffic load balancing and enhancing
network energy efficiency, especially in large-scale WSNs.

Thein et al. [21] modified the probability for selecting cluster heads (CHs) based on each
node’s residual energy, enhancing network lifetime by 40–50% while considering fixed CH
values. In the Hybrid Clustering-based Data Collection Scheme (HCDCS) in [22], sensor
nodes are grouped based on data correlation, which reduced the number of necessary CS
measurements, but latency is not considered. In [23], a seed estimation algorithm created an
adaptive dynamic random seed to generate an optimal random measurement matrix with
minimal reconstruction error. References [24,25] designed clustering methods that improved
the CH selection criteria by considering the distance to the sink, residual energy, intra-to-inter
distance ratios, compression ratios, and node density. References [26,27] addressed load
balancing in clustering-based CDG by grouping nodes according to distribution density or
equal energy consumption.

In [28], a reinforcement learning-based dynamic clustering algorithm (RLDCA) was
introduced to reduce data transmissions and energy consumption in WSNs. The Minimum
Distance-based Clustering (MDC) method [29] was developed without CS and RL consid-
erations that affect the whole network lifetime. Most of the existing protocols highlighted
inefficiencies in clusters that are too small and proposed a technique for balancing cluster
sizes to optimize CDG utilization. In general, challenges in a clustering CDG involve
deciding the number of clusters, selecting cluster heads (CHs), forming clusters, and plan-
ning data transmission methods. The main goals focus on reducing data transmission,
improving energy efficiency, balancing traffic load, and ultimately extending the network’s
lifespan. Various studies in the literature may address one or more of these issues. Ad-
ditionally, many of these clustering methods are static and based on minimum distance,
making them less adaptable to fluctuations in sensing data or environmental conditions.
Table 1 summarizes the literature survey of related protocols for performance comparison.

To summarize, the proposed RLDCSSA-CDG is a dynamic clustering method inte-
grated into sleep scheduling based on the RL algorithm that offers improved adaptability,
which is more suitable for WSN time-varying. It is designed to perceive the residual energy
of nodes, achieving a balanced energy expenditure and prolonging the overall network
lifetime. In other words, energy is unnecessarily wasted if no packets are exchanged. The
goal of sleep/wake-up scheduling is to minimize this waste by optimizing the awake time
of sensors. The proposed algorithm looks at how to adjust the sleep and awake time ratio
in each cycle based on an adaptive wake-up/sleep scheduling.
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Table 1. Summarization of the related protocols.

Protocol Latency Data
Transmission Data Recovery Energy

Consumption
Network
Lifetime

RLDCSSA-CDG
(proposed protocol) Medium Low High Low High

RLSSA-CDG [20]
(Wang, X., H. Chen, and S.

Li, 2023)
Medium Medium Medium Low High

RLDCA [28]
(Wang, X., H. Chen, and J.M.

Barcelo-Ordinas, 2022)
Low Medium Medium Low Medium

HCDCS [22]
(Lin, C., et al.,2020) Low Medium Medium High Medium

MDC [29]
(Bai, T., et al., 2019) Low High Medium High Low

Sparse-CDG [30]
(H.F. Zheng, F. Yang, X.H. Tian,

X.Y. Gan, X.B. Wang, 2015)
Low High Low High Low

3. Proposed RLDCSSA for Compressive Data Gathering
Extending the lifetime of wireless sensor networks (WSNs) is a crucial challenge

due to limited energy resources. This paper introduces a reinforcement learning-based
dynamic clustering of sleep scheduling algorithm (RLDCSSA-CDG) for compressive data
gathering in WSNs, aimed at prolonging network lifetime. The RLDCSSA-CDG operates
in rounds, with each round divided into three main phases: foundation, formation, and
forwarding phases as shown in Figure 4. Firstly, the WSN architecture is designed in
the foundation phase and the cluster heads (CHs) nodes will be determined. Secondly,
the formation phase performs dynamic clustering based on the Upper Confidence Bound
(UCB) algorithm. Finally, an adaptive sleep scheduling algorithm will be applied to the
sensor nodes to improve network lifespan. In the next subsections, each phase will be
discussed in more detail.
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3.1. Foundation Phase

Consider N static sensor nodes, represented by the set N = {s1, s2, s3,· · · , sN}, deployed
randomly and uniformly in a two-dimensional area Z. These battery-powered nodes are
non-rechargeable and continuously monitor physical phenomena such as temperature,
humidity, and pressure. All nodes remain static and periodically collect ambient data.
Among various methods to reduce energy consumption in WSNs, clustering is a well-
recognized technique. This technique allows for efficient energy use and helps to prevent
collisions. Sensors are organized into clusters, each with one cluster head (CH) responsible
for data aggregation.

The proposed algorithm operates in rounds, with the CH changing each round based
on an election probability, ensuring that all nodes in the cluster have an equal chance of
being selected as the CH. The clustering design incorporates factors such as residual energy
and distance to the sink in the criteria for selecting the cluster head (CH). The equiprobable
CH election process can result in the selection of a CH with low residual energy, which
may deplete faster than one with higher energy levels.

To tackle this issue, the residual energy of each node is incorporated into the CH
election probability equation, ensuring that nodes with greater energy have a higher chance
of being selected as the CH. In the first round, clusters and CHs are established using the
standard LEACH algorithm [31]. After data transfer, each node consumes varying amounts
of energy, making the network heterogeneous. Consequently, in subsequent rounds, the
CH is elected using a modified threshold equation based on residual energy, as shown in
Equation (1):

T(n) =

{ P
1−P(r mod 1

P )
× Eresidual

Einitial
Kopt f or all n
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where P denotes the desired proportion of cluster heads (CHs), r represents the number of
rounds, and G includes the nodes not selected as CHs in the last 1/p rounds. Eresidual is the
remaining energy level of the node, and Einitial is the initial energy level. The distance to the
sink is a key factor in CH selection, as it influences the data transmission distance; shorter
distances are preferred for CHs. This parameter is integrated into the threshold formula as
outlined. The optimal number of clusters, kopt, can be expressed as in Equation (2):

Kopt=
√

n/2π

√
E f s

Eampd4(2m− 1)E0 −mEDA
M (2)

where M represents the network diameter, and d denotes the distance between the sending
and receiving nodes. E0 is the initial energy provided to each node, Efs is the energy
dissipation in the free space model, Eamp is the energy dissipation in the power amplifier,
and EDA is the energy used in data aggregation. Each sensor node generates a random
number γi uniformly distributed in the range [0, 1], as shown in Figure 5. If γi for the i-th
sensor node (SN) is less than threshold T(n) and no other CHs are within its communication
range, the SN elects itself as the CH for the current round.

Conversely, if other CHs are available, the one with the highest energy reserve is
chosen as the final CH, while the others remain regular SNs. Each CH selected based on
the T(n) threshold broadcasts a control message that includes its remaining energy. Upon
receiving this message, a CH can declare itself the final CH if it has more energy than the
others within its communication range. The collection of CHs is referred to as the action
set, denoted as A = {ch1,ch2,. . .,chp}.
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However, re-clustering consumes considerable energy in constrained sensor networks.
Therefore, SNs need to implement an efficient algorithm for CH selection based on energy
levels to improve network stability and lifespan. To minimize the need for re-clustering, we
propose an energy-threshold-based algorithm that delays CH selection, allowing the same
topology to be maintained for several rounds without the overhead of control exchanges.
CH selection is triggered only when a CH’s energy falls below a defined threshold, which is
set to ensure proper energy balancing among all SNs. This threshold, determined through
simulations, is set at 90% of the CH’s initial energy at the start of a round [32]. Thus,
each CH monitors its energy level, and if it drops below 90%, it initiates the new CH
election process.
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3.2. Formation Phase

Sensing data in the network varies over time, leading to developing a dynamic clus-
tering scheme incorporating reinforcement learning (RL) to improve network adaptability.
In this dynamic clustering framework, nodes reselect their clusters at the start of each
round. Each node functions as an independent RL agent, employing the RL algorithm
under uniform scheduling. During each round, node SNi decides to join the j-th cluster
and transmits its sensing data to the cluster head chj. In return, SNi receives a reward for
its action, which is stored in its memory and accumulated as a learning experience. This
constitutes an online learning scheme that does not require pre-existing training data.

Therefore, the RLDCSSA-CDG algorithm was proposed to create a dynamic clustering
algorithm for compressive data gathering (CDG) by using RL principles. The algorithm
utilizes the features of CDG to balance traffic load and extend the lifespan of the WSN.
It begins by using CDG to minimize data transmissions and then incorporates the RL
algorithm to improve the overall performance of CDG. According to compressive sensing
(CS) theory, the sensing data from cluster members (CMs) in the i-th cluster, denoted as
xi = [x1i, x2i, x3i· · · ,xLi i]

T, is sparse or compressible with a sparsity level of Ki. The data xi,
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which have a length of Li, can be compressed to yi using Mi measurements, as expressed in
Equation (3):

yi= ∅ixi= ∅iΨisi = Aisi (3)

where Φi is a Gauss random matrix generated by the CH, and Ψi is a Li × Li discrete
cosine transformation basis that converts a compressible signal into a sparse signal in
the transformation domain. The matrix Ai = ΦiΨi is known as the sensing matrix or
measurement matrix in CS. For Ai to satisfy the Restricted Isometry Property (RIP), it must
meet the conditions outlined in Equation (4):

Mi ≥ C . Ki . log
Li
Ki

(4)

where C is a constant and Ki denotes the sparsity of xi. If these conditions are satisfied,
xi can be recovered from Mi measurements in yi with a high probability close to 1. Typi-
cally, when Φi is a random matrix, Mi = 3Ki∼4Ki is sufficient for accurate recovery. The
dynamic number of compressive sensing (CS) measurements M is calculated based on
the intra-cluster data sparsity during each round of data gathering. This method ensures
both efficient data transmission and accurate data recovery. The proposed scheme takes
advantage of the data correlation among nodes; if the correlation among the original data
is strong, fewer CS measurements are required for accurate recovery.

In the RLDCSSA-CDG, each node selects a cluster with strong data correlation to join.
The level of data correlation can be quantified using the Pearson correlation coefficient, as
expressed in Equation (5):

ρxy =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2.∑n
i=1(yi − y)2

(5)

where ρxy represents the correlation coefficient between two data sets X = {x1,x2,. . .,xn}
and Y = {y1,y2,. . .,yn}, while x and y denote the mean values of x and y, respectively.
Data sparsity is closely related to the correlation within the data set. Thus, sensor nodes
exhibiting strong correlations in their sensing data are grouped into a cluster. This allows for
more compact compression of intra-cluster data, significantly reducing data transmissions
across the entire network. The objective function of the proposed RLDCSSA-CDG is to
minimize data transmissions in the WSN and prolong the network’s lifetime. This can be
formulated as follows in Equation (6):

min ∑rmax
r=1 ∑P

i=1(Li + Mi) (6)

where Li represents the intra-cluster data transmissions in the i-th cluster, Mi denotes
the data transmissions of the CH chi in the i-th cluster, p is the number of clusters in the
network, and rmax indicates the maximum number of running rounds during the WSN’s
lifetime. We utilize the classical energy consumption model from [33]. When sending a
data packet of l bit, the energy consumption ETx for a node encompasses the energy used
by processing circuits and transmitting amplifiers. This can be expressed as in Equation (7):

ETx(l, d)= ETx−elec(l)+ETx−amp(l, d)

=

{
l
(

Eelec + ε f sd2
)

d < d0

l
(
Eelec + εmpd4) d ≥ d0

ERx(l) = ERx−elec(l) = lEelec

d0 =
√

ε f s
εmp

(7)
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where Eelec = 50 nJ/bit is the energy consumed by the processing circuits to transmit or
receive a bit of data, d is the distance between the sender and receiver, and d0 is the distance
threshold for free space. When d < d0, the free space channel model is used, and the energy
consumed by the amplifier to send 1 bit of data is expressed as follows: Eamp = εfsd2, where
εfs = 10 pJ/bit/m2. When d ≥ d0, the multipath fading channel model will be applied and
the energy consumed by the amplifier to send a bit of data is given by Eamp = εmpd4, where
εmp = 0.0013 pJ/bit/m4.

Reinforcement learning (RL) mimics human behavior learned through interactions
with the environment. This allows sensors and sink nodes to observe and execute optimal
actions for improved network and application performance. The agent RL is not explicitly
instructed on which action to take; rather, it autonomously selects actions and receives
rewards based on its choices.

The agent’s goal is to maximize the total reward over time. A well-designed reward
scheme is crucial for guiding the agent’s behavior. The RL process involves the agent
observing the environment to obtain a state vector S, selecting an action from the action
set A, and then receiving a reward r based on a reward function R. To maximize the total
reward, a value function is used to estimate the average reward of each action in A.

However, this value function is often unknown and must be evaluated through
continuous trials. An agent can use the evaluated value function to choose the action with
the highest estimated value, but this estimate may not accurately reflect the true value.
Therefore, the agent must also explore actions that may not seem to have the highest value.
This balance between exploiting known actions and exploring new ones is known as the
exploration dilemma.

In this paper, the task assigned to the agents is to select a cluster to join, which is a
multi-choice problem effectively addressed by the Upper Confidence Bound (UCB) algo-
rithm [14]. The UCB algorithm provides a suitable balance for the exploitation dilemma in
RL. The lightweight UCB algorithm serves as a guideline for the agents in making decisions
regarding their actions. The strategy for action selection is based on Equations (8) and (9):

At =

(
argmax

a

) [
Qt(a) + c

√
ln t

Nt(a)

]
(8)

Qt(a) =
∑t−1

i=1 ri . I

∑t−1
i=1 I

, I =

{
1 when the selected action is “a”
0 otherwise

(9)

In Equation (8), At represents the action selected at time step t, and Qt(a) is the
evaluated value function for action a, as defined in Equation (9). Here, c > 0 is a constant that
controls the level of exploration, ln t denotes the natural logarithm of t, and Nt(a) indicates
how many times action a has been selected prior to time t. In Equation (9), ri represents the
corresponding reward at time i. In this context, the design of the corresponding components
state, state vector, action set, and reward function focuses on intra-cluster data correlation
and the distances between nodes and cluster heads (CHs).

The RLDCSSA-CDG is implemented in a distributed manner, with each sensor node
in the network acting as an independent RL agent. This distributed algorithm reduces
the complexity of the state and action vectors and minimizes communication overhead
between the sink and the sensor nodes. The agents interact with the same environment and
adhere to the same learning process, meaning they share the same state vector S, action set
A, and reward function R. These components are defined as follows:

• The state vector S represents an agent’s observations of the environment and is
essential for calculating rewards. In RLDCSSA-CDG, the state vector is defined as
S = [ρi, di], where ρi indicates the data correlation between the agent and the i-th
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cluster (calculated using Equation (5)), and di represents the distance from the agent
to the cluster head (CH) of the i-th cluster.

• The action set A consists of a total of p clusters based on the foundational state. At
the start of each round, each node selects a cluster to join. Thus, the action set A is
formulated as A = {ch1, ch2,· · · ,chp}, where chi is the cluster head of the i-th cluster.
When an agent takes action chi from A, it signifies that the node joins the i-th cluster
and transmits its sensing data to the cluster head chi.

• The reward function R incorporates two elements from the state vector S and is
defined as follows, where 0 < α < 1 is a constant that adjusts the emphasis on the two
elements in S. A higher value of α indicates that nodes will prioritize data correlation
more when selecting a cluster. Here, rc and rd are the rewards based on ρi and di

in S, respectively. To simplify the computational complexity for nodes, a linear and
relative reward function model is used. First, the p actions in action set A are sorted in
descending order of ρi and ascending order of di. Then, the normalized reward values
rc and rd are assigned to the p actions in A based on this order. The reward values for
rc range from 1 to −1, with the interval between two adjacent increments defined as
∆ = 2/(p− 1).

3.3. Forwarding Phase

Achieving a long node lifetime in wireless sensor networks (WSNs) is a significant
research concern due to the limited energy available to each node. One effective strategy for
prolonging node lifetime is the sleep scheduling algorithm, which enables nodes to switch
into a sleep state whenever possible. In the sleep state, certain hardware components (i.e.,
transceiver) are powered down to reduce energy consumption. Most existing algorithms
do not account for fluctuations in node residual energy, causing uneven energy expenditure
across nodes and ultimately shortening the network’s lifespan. The proposed algorithm
aims to balance energy expenditure among nodes, thereby extending the overall lifespan of
the network. The transitions between the sleep and active states of nodes can be modeled
as a finite Markov decision process (MDP) [34], framing this problem as a reinforcement
learning (RL) task. The primary objective of the RL algorithm is to find an optimal policy
that maximizes cumulative rewards over time. In this paper, we define the mean reward
of an action as its value, and the state-action value function Q(s, a) is used to evaluate
actions. An optimal policy π can be defined as the policy that yields the maximum value,
as expressed in Equation (10):

Q ∗ (s, a) = maxπQπ(s, a) (10)

where Q(s, a) represents the value of taking action a in state s. The best policy for en-
vironments with a known model can be determined by solving the Bellman optimality
equation [35]. The WSNs’ environments are often unknown or dynamic. Hence, we utilize
the model-free Q-learning algorithm, which learns directly from raw experience without
requiring a model of the environment’s dynamics. The Q-value function will be updated
based on previous estimates without needing to wait for the final outcome. This algo-
rithm is especially useful in environments where the dynamics are not fully understood.
The iteration equation for updating the Q-value in Q-learning is expressed as follows in
Equation (11).

Q(sk, ak) = (1− α)Q(sk, ak) + α[rk+1 + γmaxAQ(sk+1, ak+1)] (11)

where sk and sk+1 represent the states at time k and k + 1, respectively. The set of all possible
actions is denoted by A. The actions taken at time k and k + 1 are represented by ak and ak+1.
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The immediate reward received after taking action ak in state sk is denoted by rk+1. The
learning parameter, α, controls the speed of convergence; a higher α leads to faster learning
but can also cause instability. The discount factor, γ ∈ [0, 1], balances immediate and future
rewards. A value closer to 1 emphasizes future rewards, while a value closer to 0 focuses on
immediate rewards. The Q-learning model uses discrete, finite states to allow clear action
decisions based on a shared Q-table across the network. This Q-table serves as the “brain”
of the agent, storing estimated values for each action in every state. Each node maintains
one row of this Q-table. For illustration, the adaptive wake-up/sleep scheduling algorithm
operates within a single time slot through three integrated algorithms: Algorithms 1–3 as
shown in Figure 6.
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Algorithm 1 is initiated as illustrated in Figure 7. It begins at line 1 for the first timeslot.
Otherwise, it resumes from line 3. The learning rate controls how much new information
influences existing knowledge, with values from 0 to 1. A value of 0 means no learning; a
value of 1 means only the most recent information is considered. The discount factor, also
ranging from 0 to 1, determines the focus on future rewards; 0 focuses solely on immediate
rewards, while values close to 1 emphasize long-term rewards [14]. At the start of each
time slot, nodes (line 4) decide their operational mode by selecting an action based on
a probability distribution of available actions (e.g., transmit, listen, sleep). Initially, the
probability for each action is set equally (e.g., 1/3 for three actions). This distribution
updates based on previous outcomes. If the selected mode is “transmit,” nodes determine
when to send packets during the time slot, as described in Algorithm 2.

After transmission, nodes receive a payoff and transition to a new state. The Q-value
for the chosen action is updated based on the received payoff and the maximum Q-value
in the new state (line 7), combining old estimates with new rewards. In lines 8–10, if the
selected mode is not “sleep,” nodes estimate the probability distribution of their neighbors’
actions based on interactions in the current slot. This updates the policy π(s, a) for each
action [36]. In lines 11–14, if the node chooses “sleep,” the policy is updated based on
the average payoff, calculated from the Q-value and the probabilities of selecting each
action. The average payoff is computed by multiplying the Q-value of an action by its
probability. The probability of selecting an action is adjusted based on the difference
between the Q-value and the average payoff: if Q(s, a) > average payoff, the probability of
action a increases; otherwise, it decreases (line 13). In line 15, the probability distribution
π(s) is normalized so that ∑(a∈A) π(s, a) = 1, ensuring each π(s, a) remains within [0, 1], as
described in Algorithm 3. Finally, in line 16, the learning rate ξ is decayed over time to
ensure convergence. At the start of the next time slot, the algorithm loops back to line 3 of
Algorithm 1, continuing the learning and decision-making process [37].
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Unfortunately, When the duration of a time slot exceeds the time required to transmit
a packet, nodes need to strategize when to transmit within that slot. There are two main
options: First, if a time slot is long enough to accommodate m packets, it can be divided into
m sub-slots, with each sub-slot lasting as long as it takes to transmit one packet. Second,
nodes must select one of the available sub-slots for their transmissions. Two intuitive
strategies for choosing a sub-slot are Random Selection (RS) and Continuous Attempts
(CA). In Random Selection (RS), the node randomly chooses a sub-slot to transmit the
packet. However, this can lead to the inefficient use of time and energy, as the chosen
sub-slot may not be optimal for transmission. In Continuous Attempts (CA), the node starts
transmitting at the beginning of the time slot and continues until the packet is successfully
sent or the time slot ends. This method can waste considerable energy, especially if the node
keeps trying to transmit unsuccessfully in rapid succession. To mitigate these inefficiencies,
Algorithm 2 is designed to determine the optimal time for packet transmission within the
time slot.

In Algorithm 2, the node selects a sub-slot based on a probability distribution, x, over
the available sub-slots (line 3). After choosing a sub-slot, the node observes the resulting
payoff, p, for that choice (line 4), which reflects whether the transmission was successful
or not. The Q-value for each sub-slot is then updated using the observed payoff and
the current probability distribution x. This update helps the node learn by adjusting the
value of each sub-slot based on its performance. Next, the probability distribution x is
modified according to the updated Q-values of the sub-slots (line 5). This modification
uses the ϵ-greedy exploration strategy to balance exploration and exploitation. The best
sub-slot is chosen with a probability of 1 − ϵ + (ϵ/m), while each of the remaining m−1
sub-slots is chosen with a probability of ϵ/m. The updated probability distribution is
normalized to ensure that the sum of the probabilities equals 1 (line 6). Combining ϵ-
greedy [38] exploration with Q-learning makes the decision-making process more efficient
and adaptive over time.
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Algorithm 1: Sleep/Wake-up Scheduling of a Node
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              a ∈ A, update the node policy 𝜋(𝑠, 𝑎);  
         else 
              calculate the average payoff  
              𝑃ത(𝑠) ← ∑ 𝜋(𝑠, 𝑎)௔∈஺ 𝑄(𝑠, 𝑎); 
              For each action 𝑎 ∈ 𝐴 do 
                   𝜋(𝑠, 𝑎) ← 𝜋(𝑠, 𝑎) + δ(Q(s,a) − 𝑃ത(𝑠)); 
          𝜋(𝑠) ← Normalize(𝜋(𝑠)); /*Algorithm 3*/ 

          ξ ← ௞௞ାଵ . ξ; 

          s ← s' 
    Until the process is terminated; 

 
Algorithm 2: Node Determines When to Transmit a Packet in a Time Slot 
Let ξ and ∈ be the learning rates;  
For each sub-slot in the current time slot, initialize  
Q-value to 0 and the probability for selecting each  

sub-slot is initialized to 𝑥௜ = ଵ௠, where 1 ≤ 𝑖 ≤ 𝑚 and m  

is the number of sub-slots; 
Select a sub-slot in current time slot based on the 
probability distribution over sub-slots 𝑥= ⟨𝑥ଵ, … ,𝑥௠⟩; 

To ensure that a probability distribution is valid, we use proportion-based mapping.
This method is crucial for preserving the integrity of learned knowledge while normalizing
probabilities. Proportion-based mapping adjusts any invalid probability so that it falls
within the range [0, 1]. The goal is to keep the normalized probabilities as close as possible to
the original unnormalized ones. The normalization process is handled by a function called
Normalize(), which is outlined in pseudocode in Algorithm 3. By using proportion-based
mapping for normalization, this algorithm ensures valid probability distributions and
enhances the nodes’ ability to adapt. This leads to better decision-making for sleep/wake
cycles, making these nodes smarter and more responsive than traditional methods.
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Algorithm 2: Node Determines When to Transmit a Packet in a Time Slot

Let ξ and ∈ be the learning rates;
For each sub-slot in the current time slot, initialize
Q-value to 0 and the probability for selecting each
sub-slot is initialized to xi =

1
m , where 1 ≤ i ≤ m and m

is the number of sub-slots;
Select a sub-slot in current time slot based on the
probability distribution over sub-slots x= ⟨x1, . . . , xm⟩;
Observe payoff P and update Q-value for each sub-slot,

Qi ← Qi + xi.ξ .

(
P− ∑

1≤i≤m
xiQi) ;

Update xi for each sub-slot,

xi=

{
(1− ∈) + (∈ /m), i f Qi is the highest

∈ /m, otherwise
x← Normalize(x);

Algorithm 3: Normalize()

Suppose that in state s, there are m available actions, i.e.,
a1,a2,. . .am;
Let d = min1≤k≤m π(s, ak), mapping center c0 = 0.5 and
mapping lower bound ∆ = 0.0001;
if d < ∆ then
ρ = c0−∆

c0−d ;
for k = 1 to m do
π(s, ak)← c0 − ρ . (c0 − π(s, ak) ;
for k = 1 to m do
r ← ∑

1≤K≤m
π(s, ak) ;

π(s, ak)←
π(s,ak)

r ;
return π(s);

Finally, the CHs perform CDG and transmit the sensed data to the sink node in the
forwarding phase as shown in Figure 8. After all measurements are processed, the sink
verifies the integrity of the received data and broadcasts the START message for the next
round. This data reconstruction can be formulated as a convex optimization problem,
represented in Equation (12):

minN

θϵR
∥ θ∥ li subject to y = ΦX = ΦΨθ (12)

where θ is a sparse vector representing the transformation of the compressive data set X
under an orthogonal sparse basis ψ. If X is a sparse vector, then ψ is the identity matrix.
Therefore, the proposed RLDCSSA-CDG is an efficient algorithm designed for efficiency in
a resource-limited environment, balancing performance with computational feasibility.
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4. The RLDCSSA-CDG Algorithm Summarization
The overall RLDCSSA-CDG algorithm is summarized in this section. The proposed

algorithm is processed through 3F phases: foundation, formation, and forwarding phases.
The proposed algorithm is illustrated as described in Figure 9. Firstly, the network architec-
ture will be designed, and the cluster heads (CHs) will be selected in the foundation phase
as depicted in Figure 5. Then, sensor nodes join the clusters dynamically in the formation
phase based on the UBC algorithm. The dynamic clustering technique operates in rounds,
with the maximum iteration number denoted as rmax. Key components include the initial
action set A, the reward table R, and the Action Selection Value (ASV) table At. Each round
begins with a START message from the sink. Since agents have no prior experience in
the initial round, the reward and ASV tables for all actions are initialized to zero. Each
agent randomly selects an action from the action set A and implements the RL strategy.
In subsequent rounds, the agent identifies the optimal action based on the experiences
recorded in the reward and ASV table. Then, the rewards are calculated, and the ASV table
is updated.

In other words, computation resources in the proposed RLDCSSA-CDG are primarily
consumed by the following operations: action selection involves p comparison operations
based on Equation (8), where agents evaluate the potential actions to determine the best
choice; the reward computation for rc requires sorting p values, leading to a computational
overhead of O(p log p); and the complexity for computing Qt(a) in Equation (9) is O(p).
After receiving all measurements, the sink generates the measurement matrix based on the
vector path to recover the original data. Subsequently, it broadcasts the START message
for the next round. Generally, this online learning algorithm is designed for efficiency in a
resource-limited environment, balancing performance with computational feasibility.
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Figure 9. Flowchart of the proposed RLDCSSA-CDG.

5. Experimental Results and Analysis
In this section, we describe the simulation experiments designed to assess the perfor-

mance of the proposed RLDCSSA-CDG algorithm. The simulations are performed using
MATLAB and use the following parameters: A total of 512 sensor nodes are evenly and
randomly distributed within a monitoring area of 2000 m × 1000 m, referred to as area Z.
The sink is located at the center of this area, divided into clusters, supervised by a cluster



Technologies 2025, 13, 25 18 of 25

head (CH). The communication radius for CHs is set at 280 m, while sensor nodes have a
communication radius of 140 m. Each sensing data packet has a length of 500 bits.

Detailed parameters related to the energy consumption model and the Q-learning
algorithm are provided in Table 2. We will compare the performance of the RLDCSSA-CDG
algorithm against two other algorithms: reinforcement learning-based dynamic clustering
algorithm (RLDCA) for CDG [28] and reinforcement learning-based sleep scheduling
algorithm (RLSSA-CDG) for CDG [20].

Table 2. Simulation environment values.

Parameter Value

Monitoring area Z 2000 m × 1000 m
The number of nodes N = 512
Node’s initial energy E0 = 0.5 J

Nodes’ communication radius RN = 140 m
CHs’ communication radius RCH = 280 m

Length of a data packet 500 bits
Threshold distance in free space d0 = 88 m

Energy used for (transmit) 81 mw
Energy used for (listen) 30 mw
Energy used for (sleep) 0.003 mw

Time-to-live (TTL) 15
Discount rate γ = 0.65

The proposed algorithm does not use a duty cycle, so we set the time slot to 8 ms and
the full sleep/wake-up interval to 1 s. We employ learning rates to update our learned
knowledge. In contrast, algorithms that do not use reinforcement learning do not require
updates and thus do not need learning rates. Each simulation case is run 200 times, with
each run lasting 5000 s. At the start of each time slot, each node generates a packet based on
a predefined probability called the packet generation probability. This influences the state
of each node, which is determined by the number of packets in its buffer. Packet expiry
time follows an exponential distribution. The average packet size is 100 bytes, with the
actual size following a normal distribution with a variance of 10.

This setup allows for the thorough testing of the RLDCSSA-CDG algorithm’s per-
formance against established benchmarks, ensuring a comprehensive evaluation of its
effectiveness in a dynamic wireless sensor network environment. The simulation experi-
ments are designed to evaluate the performance of the proposed RLDCSSA-CDG algorithm,
focusing on various packet generation probabilities and key performance metrics, which
are ξ, δ, ζ, ϵ set as 0.2, 0.4, 0.6, and 0.8, respectively. These probabilities help to assess
the performance of the algorithms under different conditions regarding the number of
transmitted packets. The performance of the proposed algorithm is evaluated using six
quantitative metrics: average energy consumption, total data transmission, data recovery
accuracy, average delivery latency, and network lifetime longevity.

5.1. Average Energy Consumption

Energy efficiency is a primary objective in various WSN technologies. Implementing
sleep scheduling allows nodes to enter energy-saving sleep modes, thereby reducing overall
energy expenditure. The average energy consumption is determined by dividing the total
energy used by the number of nodes in the network during a simulation run. Figure 10
illustrates that the simulation results confirm the effectiveness of the proposed algorithm.
Both RLDCSSA-CDG and RLSSA, which incorporate reinforcement learning (RL) with a
sleep scheduling algorithm, demonstrate significantly lower energy expenditures compared
to the RLDCA for CDG, which does not utilize a sleep scheduling algorithm. The advantage
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of the RL becomes evident around the 220th round, indicating that the RL agent needs
time to accumulate experiences and learn the optimal actions. In the final round of the
simulation, the proposed RLDCSSA-CDG achieves a reduction in accumulated energy
consumption of 8.93% compared to RLSSA-CDG and 38.8% compared to RLDCA for CDG.
These results highlight the effectiveness of the RLDCSSA-CDG algorithm in enhancing
energy efficiency in WSNs. By integrating sleep scheduling with reinforcement learning,
the algorithm not only minimizes energy consumption but also enhances the overall
sustainability of the network.
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5.2. Total Data Transmission

Each packet sent from the source to the destination includes a parameter known
as time-to-live (TTL). The TTL is decreased by 1 each time a packet is transmitted from
a sender to a receiver, regardless of whether the transmission is successful. If the TTL
reaches 0 before the packet reaches its destination, the delivery is considered a failure.
Figure 11 illustrates the total data transmissions in the wireless sensor network (WSN) for
the three algorithms: RLDCSSA-CDG, RLSSA-CDG, and RLDCA for CDG. The results
indicate that the proposed RLDCSSA-CDG achieves fewer total data transmissions than the
other two algorithms. By the end of the 500th round, RLDCSSA-CDG reduced total data
transmissions by 22.7% compared to RLSSA-CDG and 63.3% compared to RLDCA for CDG.
This notable reduction in total data transmissions is even more significant than the decrease
in energy consumption. This disparity can be attributed to two factors: consumption in
WSNs is closely related to the distance between nodes, which can increase energy usage,
and the RLDCSSA-CDG algorithm employs an on-demand transmission strategy. This
means that data transmission occurs only after the sender establishes communication
with the receiver, leading to a higher likelihood of successful packet delivery. The results
confirm the advantages of the RLDCSSA-CDG algorithm, particularly in reducing total
data transmissions while maintaining efficient energy consumption. By optimizing the
transmission process, the algorithm enhances the overall performance of the WSN.
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5.3. Data Recovery Accuracy

The sink reconstructs the original data X from the received CS measurements. The
mean square error (MSE) is used to evaluate the data recovery accuracy. It is calculated
using Equation (13):

MSE =
∥X̂− X∥2

2

∥X∥2
2

(13)

where X̂ is the recovery of the original data. If the MSE of the recovered data is no more than
10−2, data reconstruction is deemed successful. The accumulated MSE after 100 rounds
indicates that RLDCSSA-CDG has a lower MSE than the other two algorithms as shown
in Figure 12, with average values of MSERLDCSSA-CDG = 0.0005, MSERLDCA = 0.001, and
MSERLSSA = 0.002. This indicates a 91.1% improvement in data recovery accuracy for
RLDCSSA-CDG compared to the other algorithms.
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5.4. Reinforcement Learning Rewards

The average reward received by the agent in the RLDCSSA-CDG algorithm increases
steadily with each learning round, indicating that the algorithm is convergent. This conver-
gence suggests that the agent effectively learns from its experiences over time, optimizing
its decision-making process. The parameter c in Equation (8) plays a crucial role in control-
ling the degree of exploration within the reinforcement learning framework. It determines
how much the agent prioritizes exploring new actions versus exploiting known actions.
Figure 13 illustrates the relationship between different values of c and the average reward
achieved by the agent:

• When c = 1, the agent attains the maximum average reward, indicating that this value
optimally balances exploration and exploitation.

• Values of c that are either lower or higher than 1 may lead to suboptimal performance,
either by under-exploring or over-exploring.
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Based on these observations, careful tuning of the exploration parameter c is essen-
tial for enhancing the performance of the RLDCSSA-CDG algorithm in managing data
transmission and energy consumption in wireless sensor networks.

5.5. Average Delivery Latency

In Figure 14, with the increase in network scale, the average delivery latency rises.
This is because when the network scale increases, based on the routing approach used
in this simulation, on average, each packet has to be transmitted with more steps to its
destination. Thus, the average delivery latency will undoubtedly increase. Specifically, it
can be found that RLDCA achieves the highest latency (80 ms in the 100-node network,
185 ms in the 250-node network, and 302 ms in the 400-node network). This is because in
RLDCA, whenever a sender intends to transmit a packet, it has to request their neighbors’
information from the receiver and wait for the response from the receiver. This process will
continue until the packet reaches the destination or the TTL of the packet reaches 0, so each
packet will suffer a large latency during the transmission process. RLSSA and RLDCSSA-
CDG achieve nearly the same latency, while the latency in RLDCA is slightly about 15%,
which is lower than that in RLSSA and RLDCSSA-CDG. This can be explained by the
fact that both RLSSA and RLDCSSA-CDG do not require nodes to periodically exchange
information, so the time used for periodic information exchange can be saved. However, in
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RLSSA, nodes have to request their neighbors’ information for future wake-up prediction.
The proposed RLDCSSA-CDG achieves the lowest latency (95 ms in the 100-node network,
110 ms in the 250-node network, and 165 ms in the 400-node network). Therefore, the
proposed method improves the latency because it does not require periodic information
exchange, and unlike RLDCA, it also does not require nodes to request their neighbors’
information for prediction, so the corresponding time is saved.
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5.6. Network Lifetime Longevity

While minimizing energy consumption is crucial, it does not necessarily equate to
maximizing the longevity of WSNs. The lifetime of a WSN is defined by its continuous
operational duration, and when a node runs out of energy, it is considered to have “died.”
The FND metric is commonly used to assess the lifetime of WSNs, indicating when the
first node exhausts its energy. This metric reflects the overall health of the network and
its resilience. A well-balanced energy consumption among nodes is vital to prevent pre-
mature energy depletion in several nodes, which can significantly affect the FND. This
load balancing is a key consideration in the design of the RLDCSSA-CDG algorithm. The
simulation results demonstrate the effectiveness of the RLDCSSA-CDG in prolonging the
lifespan of WSNs: FNDRLDCSSA-CDG = 451, FNDRLSSA = 287, and FNDRLDCA = 61. These
results indicate that the rate at which nodes deplete their energy is significantly slower
in the RLDCSSA-CDG compared to the other algorithms. The proposed RLDCSSA-CDG
algorithm extends the WSN’s lifetime by 77.3% relative to the compared algorithms, as
illustrated in Figure 15. This longevity is attributed to the algorithm’s ability to balance
energy consumption effectively, thereby maintaining more nodes in operational status for
a longer duration. Overall, the RLDCSSA-CDG algorithm not only emphasizes energy
efficiency but also significantly enhances the operational lifespan of WSNs. By focusing on
load balancing and effective energy management, the algorithm ensures a more sustainable
and resilient network.
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Figure 15. Network lifetime longevity scenarios for RLDCSSA-CDG, RLSSA, and RLDCA.

6. Conclusions
This paper introduced a reinforcement learning-based dynamic clustering of sleep

scheduling algorithm (RLDCSSA-CDG) for compressive data gathering in WSNs. The
carefully designed RL algorithm guides these agents in dynamically selecting clusters with
strong data correlation and appropriate distances. This dynamic scheme is well suited for
adapting to time-varying data within the network. Additionally, the paper presented an
adaptive sleep scheduling algorithm to manage the wake-up process of forwarder nodes,
allowing them to wake up just at the “right time” to receive incoming packets, forward
them, and quickly return to sleep mode. The selection of active nodes was modeled as a
Markov decision process (MDP), and a Q-learning algorithm was employed to find the
optimal decision strategy. Unlike traditional duty cycling, this algorithm divides the time
axis into several time slots, allowing each node to autonomously decide when to sleep,
listen, or transmit, thereby eliminating the need for direct communication. Simulation
results validate the effectiveness of the proposed algorithm by comparing it with the RLSSA
and RLDCA algorithms. The proposed RLDCSSA-CDG reduces total data transmissions
by 22.7% and 63.3% and energy consumption by 8.93% and 38.8%, respectively, and the
proposed method achieves the lowest latency compared to the two contrastive algorithms.
Furthermore, the proposed algorithm increases the whole network lifetime by 77.3% and
promotes data recovery accuracy by 91.1% relative to the compared algorithms. As a
result, the proposed RLDCSSA-CDG is a lightweight algorithm that can be implemented
in resource-constrained WSNs. Additionally, due to clustering and distributed learning
properties, the proposed RLDCSSA-CDG may be simply expanded to large-scale WSNs.

Author Contributions: Conceptualization, A.N.E.-S. and I.F.M.; methodology, A.N.E.-S.; software,
A.N.E.-S.; validation, A.N.E.-S., I.F.M. and E.H.A.; formal analysis, A.N.E.-S.; investigation, A.N.E.-S.;
resources, A.N.E.-S.; data curation, A.N.E.-S.; writing—original draft preparation, A.N.E.-S. and
I.F.M.; writing—review and editing, A.N.E.-S., I.F.M. and M.A.M.; visualization, A.N.E.-S., I.F.M. and
M.A.M.; supervision, I.F.M. and M.A.M.; project administration, A.N.E.-S. and I.F.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data may be available upon request.



Technologies 2025, 13, 25 24 of 25

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Saleh, S.A.S.; Mabrouk, T.F.; Tarabishi, R.A. An improved energy-efficient head election protocol for clustering techniques of

wireless sensor network (June 2020). Egypt. Inform. J. 2021, 22, 439–445. [CrossRef]
2. Negra, R.; Jemili, I.; Belghith, A.J.P.C.S. Wireless body area networks: Applications and technologies. Procedia Comput. Sci. 2016,

83, 1274–1281. [CrossRef]
3. Zahhad, M.A.; Farrag, M.; Ali, A. A Comparative Study of Energy Consumption Sources for Wireless Sensor Networks. Int. J.

Grid Distrib. Comput. 2015, 8, 65–76. [CrossRef]
4. Luo, C.; Wu, F.; Sun, J.; Chen, C.W. Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the

15th Annual International Conference on Mobile Computing and Networking, Beijing, China, 20–25 September 2009; pp. 145–156.
5. Prabha, M.; Darly, S.S.; Rabi, B.J. A novel approach of hierarchical compressive sensing in wireless sensor network using block

tri-diagonal matrix clustering. Int. J. Grid Distrib. Comput. 2021, 168, 54–64.
6. Xiang, L.; Luo, J.; Rosenberg, C. Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE/ACM

Trans. Netw. 2012, 21, 1722–1735. [CrossRef]
7. Abdulzahra, A.M.K.; Al-Qurabat, A.K.M.; Abdulzahra, S.A. Optimizing energy consumption in WSN-based IoT using unequal

clustering and sleep scheduling methods. Internet Things 2023, 22, 100765. [CrossRef]
8. Lin, C.-C.; Peng, Y.-C.; Chang, L.-W.; Chen, Z.-Y. Joint deployment and sleep scheduling of the Internet of things. Wirel. Netw.

2022, 28, 2471–2483. [CrossRef]
9. Yin, J.; Yang, Y.; Wang, L. An Adaptive Data Gathering Scheme for Multi-Hop Wireless Sensor Networks Based on Compressed

Sensing and Network Coding. Sensors 2016, 16, 462. [CrossRef] [PubMed]
10. Chen, W.; Wassell, I.J. Optimized node selection for compressive sleeping wireless sensor networks. IEEE Trans. Veh. Technol.

2015, 65, 827–836. [CrossRef]
11. Chen, W.; Wassell, I.J. Cost-aware activity scheduling for compressive sleeping wireless sensor networks. IEEE Trans. Signal

Process. 2016, 64, 2314–2323. [CrossRef]
12. Aziz, A.; Singh, K.; Osamy, W.; Khedr, A.M. Effective algorithm for optimizing compressive sensing in IoT and periodic

monitoring applications. J. Netw. Comput. Appl. 2019, 126, 12–28. [CrossRef]
13. Al-Tous, H.; Barhumi, I. Reinforcement learning framework for delay sensitive energy harvesting wireless sensor networks. IEEE

Sens. J. 2020, 21, 7103–7113. [CrossRef]
14. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
15. Al Mazaideh, M.; Levendovszky, J. A multi-hop routing algorithm for WSNs based on compressive sensing and multiple objective

genetic algorithm. J. Commun. Netw. 2021, 23, 138–147. [CrossRef]
16. Aziz, A.; Osamy, W.; Khedr, A.M.; El-Sawy, A.A.; Singh, K. Grey Wolf based compressive sensing scheme for data gathering in

IoT based heterogeneous WSNs. Wirel. Netw. 2020, 26, 3395–3418. [CrossRef]
17. Mhatre, K.P.; Khot, U.P. Energy efficient opportunistic routing with sleep scheduling in wireless sensor networks. Wirel. Pers.

Commun. 2020, 112, 1243–1263. [CrossRef]
18. Shagari, N.M.; Idris, M.Y.I.; Bin Salleh, R.; Ahmedy, I.; Murtaza, G.; Shehadeh, H.A. Heterogeneous energy and traffic aware

sleep-awake cluster-based routing protocol for wireless sensor network. IEEE Access 2020, 8, 12232–12252. [CrossRef]
19. Rawat, P.; Chauhan, S. Particle swarm optimization based sleep scheduling and clustering protocol in wireless sensor network.

Peer Peer Netw. Appl. 2022, 15, 1417–1436. [CrossRef]
20. Wang, X.; Chen, H.; Li, S. A reinforcement learning-based sleep scheduling algorithm for compressive data gathering in wireless

sensor networks. EURASIP J. Wirel. Commun. Netw. 2023, 2023, 28. [CrossRef]
21. Thein, M.C.M.; Thein, T. An energy efficient cluster-head selection for wireless sensor networks. In Proceedings of the 2010

International Conference on Intelligent Systems, Modelling and Simulation, Liverpool, UK, 27–29 January 2010; pp. 287–291.
22. Lin, C.; Han, G.; Qi, X.; Du, J.; Xu, T.; Martinez-Garcia, M. Energy-optimal data collection for unmanned aerial vehicle-aided

industrial wireless sensor network-based agricultural monitoring system: A clustering compressed sampling approach. IEEE
Trans. Ind. Inform. 2020, 17, 4411–4420. [CrossRef]

23. Aziz, A.; Singh, K.; Osamy, W.; Khedr, A.M. An efficient compressive sensing routing scheme for internet of things based wireless
sensor networks. Wirel. Pers. Commun. 2020, 114, 1905–1925. [CrossRef]

24. Osamy, W.; Khedr, A.M.; Aziz, A.; El-Sawy, A.A. Cluster-tree routing based entropy scheme for data gathering in wireless sensor
networks. IEEE Access 2018, 6, 77372–77387. [CrossRef]

25. Manchanda, R.; Sharma, K. Energy efficient compression sensing-based clustering framework for IoT-based heterogeneous WSN.
Telecommun. Syst. 2020, 74, 311–330. [CrossRef]

26. Qiao, J.; Zhang, X. Compressive data gathering based on even clustering for wireless sensor networks. IEEE Access 2018, 6,
24391–24410. [CrossRef]

https://doi.org/10.1016/j.eij.2021.01.003
https://doi.org/10.1016/j.procs.2016.04.266
https://doi.org/10.14257/ijgdc.2015.8.3.07
https://doi.org/10.1109/TNET.2012.2229716
https://doi.org/10.1016/j.iot.2023.100765
https://doi.org/10.1007/s11276-022-02981-3
https://doi.org/10.3390/s16040462
https://www.ncbi.nlm.nih.gov/pubmed/27043574
https://doi.org/10.1109/TVT.2015.2400635
https://doi.org/10.1109/TSP.2016.2521608
https://doi.org/10.1016/j.jnca.2018.10.013
https://doi.org/10.1109/JSEN.2020.3044049
https://doi.org/10.23919/JCN.2021.000003
https://doi.org/10.1007/s11276-020-02265-8
https://doi.org/10.1007/s11277-020-07100-z
https://doi.org/10.1109/ACCESS.2020.2965206
https://doi.org/10.1007/s12083-022-01307-6
https://doi.org/10.1186/s13638-023-02237-4
https://doi.org/10.1109/TII.2020.3027840
https://doi.org/10.1007/s11277-020-07454-4
https://doi.org/10.1109/ACCESS.2018.2882639
https://doi.org/10.1007/s11235-020-00652-2
https://doi.org/10.1109/ACCESS.2018.2832626


Technologies 2025, 13, 25 25 of 25

27. Wang, Q.; Lin, D.; Yang, P.; Zhang, Z. An energy-efficient compressive sensing-based clustering routing protocol for WSNs. IEEE
Sens. J. 2019, 19, 3950–3960. [CrossRef]

28. Wang, X.; Chen, H.; Barcelo-Ordinas, J.M. A Reinforcement Learning-Based Dynamic Clustering Algorithm for Compressive
Data Gathering in Wireless Sensor Networks. Mob. Inf. Syst. 2022, 2022, 2736734. [CrossRef]

29. Bai, T.; Yuan, S.; Li, X.; Yin, X.; Zhou, J. Multi-density clustering based hierarchical path planning. In Proceedings of the 2019 2nd
International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 25–28 May 2019; pp. 176–182.

30. Komuraiah, B.; Anuradha, D. Efficient data gathering model with energy based routing for compressive sensing in multi-hop
heterogeneous wireless sensor networks. J. Theor. Appl. Inf. Technol. 2024, 102, 5454–5468.

31. Batra, P.K.; Kant, K. LEACH-MAC: A new cluster head selection algorithm for Wireless Sensor Networks. Wirel. Netw. 2016, 22,
49–60. [CrossRef]

32. Moussa, N.; Nurellari, E.; El Belrhiti El Alaoui, A. A novel energy-efficient and reliable ACO-based routing protocol for
WSN-enabled forest fires detection. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 11639–11655. [CrossRef]

33. Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor
networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [CrossRef]

34. Altman, E. Constrained Markov Decision Processes; Routledge: London, UK, 2021.
35. Meyn, S. The Projected Bellman Equation in Reinforcement Learning. IEEE Trans. Autom. Control 2024, 69, 8323–8337. [CrossRef]
36. Skaltsis, G.M.; Shin, H.-S.; Tsourdos, A. A survey of task allocation techniques in MAS. In Proceedings of the 2021 International

Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 488–497.
37. Bowling, M.; Veloso, M. Multiagent learning using a variable learning rate. Artif. Intell. 2002, 136, 215–250. [CrossRef]
38. Rodrigues Gomes, E.; Kowalczyk, R. Dynamic analysis of multiagent Q-learning with ε-greedy exploration. In Proceedings of the

26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 369–376.
39. Ozdemir, S.; Xiao, Y. Secure data aggregation in wireless sensor networks: A comprehensive overview. Comput. Netw. 2009, 53,

2022–2037. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSEN.2019.2893912
https://doi.org/10.1155/2022/2736734
https://doi.org/10.1007/s11276-015-0951-y
https://doi.org/10.1007/s12652-022-03727-x
https://doi.org/10.1109/TWC.2002.804190
https://doi.org/10.1109/TAC.2024.3409647
https://doi.org/10.1016/S0004-3702(02)00121-2
https://doi.org/10.1016/j.comnet.2009.02.023

	Introduction 
	Related Work 
	Proposed RLDCSSA for Compressive Data Gathering 
	Foundation Phase 
	Formation Phase 
	Forwarding Phase 

	The RLDCSSA-CDG Algorithm Summarization 
	Experimental Results and Analysis 
	Average Energy Consumption 
	Total Data Transmission 
	Data Recovery Accuracy 
	Reinforcement Learning Rewards 
	Average Delivery Latency 
	Network Lifetime Longevity 

	Conclusions 
	References

