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Abstract: The aim of this paper is to create image-processing Android apps to launch on
the Google Play Store. Three apps with different usages will be presented for different
situations. The first app is a night-vision app on an Android phone that uses OpenCV. The
second app is a tooth-brushing assistant application. The app is made for mobile phones
and uses advanced image-processing techniques to detect when the tooth is brushed
correctly or incorrectly. The main focus is on the direction of the toothbrush movement
because this is one of the key aspects of correctly brushing teeth. The direction of movement
of the brush is detected using movement vectors. The third app is a lane-detection app
on the smartphone. Lane detection is carried out using OpenCV and TensorFlow libraries.
The mobile app was implemented on the Android operating system. The app has a live
video feed of the surroundings. When in the area of view, there will be a road with a lane.
The system detects the lane and draws a green line over it.

Keywords: night vision; image motion analysis; lane detection; mobile applications; mobile
computing

1. Introduction
This paper focuses on creating for the Google Play Store a total of three image pro-

cessing applications. The three applications incorporate image-processing techniques
using OpenCV, which was compiled in the Android applications in order to do different
image-processing tasks.

1.1. Night-Vision App

The first app is a night vision app. The night vision app optimizes your night driving
by adding a unique night mode to your car’s navigation system. Modifies the brightness of
the screen and adjusts the color temperature to minimize eye strain and enhance visibility
on nocturnal drives. This application ensures a safe and comfortable trip, allowing drivers
to concentrate on the road without unwanted interference.

1.2. Tooth-Brushing Assistant App Using Image-Processing Techniques

The second app is a tooth brushing app. The tooth brush app transforms dental care
into an engaging and efficient process by instructing users on correct brushing techniques.
Through detailed tutorials and interactive elements, the app simplifies the maintenance
of oral health. It is ideal for people of any age seeking to achieve comprehensive dental
hygiene in a pleasant and instructive manner.
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1.3. Lane and Car-Detection App Using Deep-Learning Algorithms with TensorFlow

The third app is a lane-detection app with deep learning algorithms. The lane-detection
application enhances your driving experience by providing a virtual lane-assist feature.
It utilizes real-time feedback to help drivers maintain their lane and prevent possible
accidents. Developed to encourage safer driving practices, the lane-detection app is an
essential tool for both daily drives and extended trips.

2. Related Works
2.1. Night-Vision App

Night vision in the automotive industry uses a thermal camera that can increase driver
perception and distance of sight at night and in poor weather conditions, even in a situation
where the headlights cannot increase visibility anymore [1]. These systems are installed as
optional features in some expensive luxury cars [2]. The technology was first introduced in
2000 by Cadillac [3]. The technology is based on night-vision devices, which are enhanced
optical devices that can improve image, thermo-imagery, and illumination [4].

This paper shows how to implement a night-vision feature on a mobile phone running
Android OS [5]. With the help of mobile phone technology, many premium features of
the automotive industry (navigation, GPS (Global Positioning System), HUD (Head-Up
Display), night vision, and traffic-sign recognition) can be implemented for a low amount
of money [6]. This affirmation is based on the fact that almost everyone has at least one
mobile phone and that many people have an old, unused mobile phone that can be used
for a certain embedded application [7].

By having a smartphone with many sensors and cameras, many insertion applications
can be created, which can act as cheap versions of the premium features of premium
vehicles [8]. Sometimes, the smartphone implementation can be used when the automotive
implementation is not present in our car. Also, on mobile phones, for example, navigation
apps can be better than on cars, which can have real-time traffic, danger, pit road, police
location, or traffic-sign warnings. This is due to the fact that mobile phones have permanent
active connectivity to the Internet, while cars do not, and there are a few people who buy
a phone SIM (Subscriber Identity Module) card specially for the car to have an active
connection to the Internet via 4G or 5G networks. This can only be possible when eSIM
cards are built into cars in the manufacturing process.

To create a mobile phone application that can act as a vehicle night-vision system, the
OpenCV library can be used. Even though mobile phones do not have thermal cameras,
only if they are attached separately, using OpenCV can make an app that can mimic the
night-vision feature for a luxury car. OpenCV has become advanced and has a good
implementation for mobile platforms such as Android or iOS.

This paper presents the implementation of night-vision cameras for cars on Android
using OpenCV.

The night system is implemented in expensive cars. If someone wants this feature
on a cheaper car, it can be done with only a mobile phone and this app. No IR camera is
needed. The entire night-vision system is made only with image-processing techniques
using OpenCV. This is the novelty of the app. No other hardware is required, only a mobile
phone. It works with any Android phone which has a rear camera. No special optics or
lighting condition is needed because that is the goal of the app to make the surroundings
visible in low lightning conditions. Other related published methods require an external IR
camera, but the current method uses only the mobile phone’s camera.

The night-vision application aims to improve visibility in low-light situations using
smartphones. It uses image-processing techniques to modify brightness, contrast, and other
settings to mimic night vision functions.
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When comparing this application with ongoing scientific research in night vision
technology, several significant differences become apparent.

The application uses digital image-processing methods on smartphone hardware,
which is restricted by the quality of the camera sensor and does not have true infrared
(IR) capabilities.

By contrast, contemporary night-vision technology often uses IR sensors, thermal
imaging, or specialized low-light sensors. These technologies allow for the detection of
heat signatures or light outside the visible spectrum, capabilities beyond what smartphone
cameras can provide.

The application’s effectiveness is fundamentally constrained by the smartphone’s
camera and ambient light conditions. It can increase visibility in low light, but it cannot
function in complete darkness or in situations requiring thermal imaging.

Night-vision devices used in military, medical, or industrial fields offer far superior
accuracy. These devices can work in near-total darkness and deliver precise images due to
their advanced sensor technology.

This application is better suited for casual use cases, such as night photography or
basic visibility improvement in low-light environments.

Night-vision technology is used in research and professional applications for critical
tasks such as surveillance, wildlife monitoring, and medical diagnostics, where precision
and reliability are essential.

Although the night vision application provides some functionality for casual users
looking to enhance visibility in low light conditions, it is not good enough compared
to the advanced capabilities of specialized night-vision devices used in scientific and
professional settings.

Applications for night vision improve imaging in low-light environments utilizing
sophisticated computer vision methods. Used in intelligent smart security robots on the
Internet of Things, these applications incorporate event-based cameras alongside adaptive
preprocessing to facilitate the identification and observation of obstacles in real time. Their
primary aim is to increase visibility and decrease noise in dim conditions, making them
perfect for surveillance and security tasks at night [9,10].

2.2. Tooth-Brushing Assistant App Using Image-Processing Techniques

We brush our teeth every morning, before going to bed, and after meals [11]. Have
we ever wondered how we might not brush our teeth correctly? Not properly brushing
teeth can sometimes be worse than not brushing teeth at all [12]. We must not think that
brushing our teeth involves only teeth; we must also take care of our gums [13].

It is important to know the direction of tooth brushing movements, and it is also
important to know the duration of tooth brushing [14].

If we do not brush our teeth in the correct direction, it is not OK. The teeth must be
brushed with the up–down movement, not with the left-right movements, because if we
brush them with left–right movements, we move all the bacteria from the teeth into the
gum with the toothbrush [15]. If we brush the teeth with up–down movements, then we
remove the bacteria from the teeth when we reach the edge of it. The direction of brushing
is not the only thing that can affect the effect of cleaning. To correctly brush the teeth, it
was empirically tested that a two-minute duration is enough for good tooth brushing. In
fact, each half-arc should be brushed for 30 s. A half-arc is the left or right side of the upper
teeth or lover teeth. In our mouth, we have four arcs, so brushing each half arc for 30 s will
be a total of two minutes of tooth brushing.

It was found that quite a few adults brush their teeth correctly; we do not talk about
children learning brushing techniques [16].
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Today’s mobile-phone-driven society can help solve these problems to have better oral
hygiene and a better life [17].

Creating an app that helps brush your teeth can be a useful tool for adults and
children [18].

The tooth-brushing app can be used mainly by kids to learn to brush their teeth or by
dentists to show correct tooth brushing to patients. This app has the advantage that most
tooth-brushing applications require you to buy a specific (electric) toothbrush that connects
to the app via Bluetooth. This app works with any standard toothbrush and relies only on
image processing, with OpenCV, to recognize the movement direction of tooth brushing.
This is the novelty of the app.

The tooth-brushing app aims to help users improve their tooth brushing habits. It
includes features such as timers, reminders, and educational content to encourage proper
brushing techniques and oral care.

The app uses timers, reminders, and possibly gamification elements to motivate users
to brush their teeth for the two minutes suggested twice daily. These features are designed
to increase user engagement and adherence to good oral hygiene practices.

Research indicates that behavioral interventions, such as reminders and gamification,
can effectively improve oral hygiene behaviors, particularly in children. Studies have
shown that applications with interactive elements can increase motivation and consistency
in brushing, leading to better overall oral health outcomes.

Although the app offers tools to support better brushing habits, its success largely
depends on the adherence of the user and the precision of the brushing technique, which
the app cannot directly monitor or correct.

Recent studies suggest that while apps like the toothbrushing app can be advanta-
geous, they are most effective when paired with real-time feedback systems, such as smart
toothbrushes that provide immediate feedback on brushing technique (pressure, cover-
age, duration). This integration has been shown to significantly improve oral hygiene by
ensuring that users brush properly and thoroughly.

The app is likely to provide educational content to inform users about proper brushing
techniques and the importance of oral hygiene.

Educational interventions delivered through mobile apps have been proven to increase
knowledge about oral health, which is crucial for preventing dental problems. However,
research also highlights the need for content customization to address individual user
needs and preferences, which can further amplify the effectiveness of these apps.

The tooth-brushing app offers a useful tool to promote better brushing habits through
reminders, timers, and educational content. However, its effectiveness could be improved
by incorporating real-time feedback mechanisms and tailored educational content, as
recommended by recent scientific research. Although the app serves as a helpful addition
to oral hygiene practices, the incorporation of smart technology could markedly enhance
its impact on users’ oral health.

Tooth-brushing applications use computer-vision technology to improve dental hy-
giene by monitoring user movements and providing instant feedback. These applications
utilize facial recognition and augmented reality (AR) overlays to ensure full brushing
coverage. Using pose-estimation models, they guide users, thus improving dental care
habits and making the process more engaging, especially for children [9,10].

2.3. Lane- and Car-Detection App Using Deep-Learning Algorithms with TensorFlow

In today’s world, self-driving cars and lane-detection cars have started to emerge in
our lives faster than we can imagine [19].
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There is no need to talk about robots [20], which are only in the prototype state [21],
but we can talk about robots that are present in our daily life and seem to be natural [22].
Robots like this are drones, robot vacuum cleaners, mops, window cleaners, and, of course,
cars with some level of autonomous driving [23].

For autonomous driving, more sensors can be used [24], such as LiDARs or video
cameras [25].

Video cameras can be a good approach [26] due to the existence of the vast OpenCV
image-processing library [27].

One autonomous driving feature for cars is the detection of the lane [28]. For a car to
be able to drive autonomously [29], having the lane-detection function installed is a good
feature [30]. The lane-detection function can also help drivers keep the car on the road [31]
when tired after a long drive [32].

Lane detection can be performed with image-processing techniques [33], but in addi-
tion to this, much more is needed, such as a trained neural network, to correctly detect the
lane of the road and exclude false positives [34].

Lane detection and car detection are present in expensive cars. If a user wants this
feature on a cheaper car, it can be done with only a mobile phone and this app. All lane
detection and car detection are done with image processing, OpenCV, and the usage of a
trained neural network using TensorFlow. This is the novelty of the app.

The lane-detection application is created to identify lanes, mainly using the smart-
phone camera to help drivers remain within their lanes. It probably employs image-
processing algorithms to recognize and follow the road lane markings.

The application uses simple computer-vision techniques to detect lane lines from
the video feed captured by the smartphone camera. This might involve edge-detection
algorithms such as Canny edge detection [35], or the Hough transform [36] to identify
straight or curved lines representing lane boundaries.

Modern lane-detection systems, particularly those utilized in advanced driver-assist
systems (ADAS), use more advanced technologies. These include deep-learning models
such as Convolutional Neural Networks (CNNs), trained on extensive datasets to accurately
recognize and forecast lane positions under various conditions such as poor lighting or
road obstacles. These models also incorporate data from multiple sensors (e.g., LiDAR [37],
radar) to increase robustness.

The precision of lane detection depends on the quality of the smartphone camera and
the environmental conditions (e.g., lighting, visibility of the road markings). Since it relies
solely on the camera, its performance can be hindered by bad weather or if lane markings
are worn or blocked.

Current research indicates that high-accuracy lane detection requires a combination
of high-resolution cameras, sensor fusion, and advanced algorithms capable of handling
different road conditions. Systems like Tesla’s Autopilot [38] or Waymo’s self-driving
technology [39] use multiple sensors and redundancy to guarantee high reliability, which
is crucial for safety in autonomous driving.

Considering that the application operates on a smartphone, it is probably constrained
by the processing power of the device. Real-time lane detection might experience latency,
especially on older devices or during complex image-processing tasks. The app can run on
any standard Android phone. The minimal platform supported by OpenCV Java API is
Android 2.2 (Froyo or API 8). Presently, almost all Android devices run a newer Android
version than Android 2.2 Froyo. The latest Android version is Android 15, and all users are
encouraged to run the latest Android version, if possible. The idea is that the better the
phone hardware, the better will run the image processing on that mobile phone.
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Cutting-edge lane-detection systems are intended for real-time processing with mini-
mal delay. They employ dedicated hardware accelerators (such as GPUs or specialized AI
chips) to ensure that lane detection and response times adhere to the strict requirements of
high-speed driving.

This application might be appropriate for general driving assistance, providing an
extra layer of safety by alerting drivers when they drift out of their lane.

Conversely, lane-detection systems in research and industry are essential components
of fully autonomous vehicles, where they are integrated with other safety and navigation
systems to deliver comprehensive driving solutions.

The lane-detection application offers a valuable tool for basic lane detection on a
smartphone, suitable for casual driving assistance. However, compared to the sophisti-
cated systems developed in scientific research and used in the automotive industry, it is
not accurate, reliable, or capable of performing in real time. Advanced lane-detection
systems use more intricate algorithms and sensor integration, delivering significantly better
performance under a variety of driving conditions.

Applications for lane detection play an essential role in driving assistance systems.
They use deep-learning methodologies, such as convolutional neural networks (CNNs),
to identify road lanes in real time in diverse environmental scenarios. These applications
improve navigation safety by offering precise lane tracking and supporting technologies
for autonomous driving [9,10].

Table 1 shows a comparison of the state of the art in computer-vision mobile
apps [9,10].

Table 1. Summary table comparison of the state of the art in computer-vision mobile apps [9,10].

App Primary Application Key Strategies Advantages

Night Vision Surveillance in low-light
conditions

Adaptive preprocessing
combined with

event-based cameras

Enhanced clarity and
diminished noise

Tooth Brushing Observation of oral
hygiene

Face identification,
augmented reality, posture

estimation

Improved brushing
practices

Lane Detection Assistance with driving CNNs in deep learning Real-time lane tracking
with precision

3. Problem Formulation
3.1. Night-Vision App

Driving at night frequently requires managing the intense glare of screens and bright
displays, which can cause eye strain and reduce driving concentration. Numerous naviga-
tion apps currently do not have adaptive night mode capabilities, which are necessary to
provide a safer and more comfortable experience during night travel.

The project involved developing a night vision app for Android smartphones
using OpenCV.

Smartphones do not come with thermal cameras unless they are added as external
peripherals.

Due to the sophisticated image processing and filtering methods in OpenCV, it is
feasible to achieve results similar to those produced by night-vision systems in high-
end vehicles.

The outcome would be nearly identical, but the cost would be significantly lower,
bordering on negligible.
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3.2. Tooth-Brushing Assistant App Using Image-Processing Techniques

Several people fail to brush their teeth properly, resulting in inadequate oral hygiene
and preventable dental issues such as cavities and periodontal disease. There is an absence
of captivating and easy-to-use resources to instruct individuals on proper brushing methods
and to make the experience more enjoyable.

The project involved developing a mobile app to assist individuals in brushing their
teeth properly.

This involved identifying the toothbrush’s motion direction and implementing a
brushing timer.

To detect the brushing direction, image processing with OpenCV should be employed.
Moreover, a brushing timer feature must be integrated. The timer aids users in knowing
the remaining brushing time, ensuring they brush for at least two min.

3.3. Lane and Car-Detection App Using Deep-Learning Algorithms with TensorFlow

Unintentional lane changes and lane drifting are major factors in road accidents.
Drivers frequently do not have access to real-time tools that offer prompt lane assistance
and guidance, which can aid in maintaining safer driving practices and avoiding crashes.

The objective was to develop a lane-detection application. The decision to build the
app for mobile phones was made to enhance its portability and simplicity of use in vehicles.

Android was selected as the operating system due to its status as the most extensively
used mobile platform, featuring integrated image-processing libraries.

4. Problem Solving
4.1. Night-Vision App

An app was created that has a night-vision function using only OpenCV image-
processing techniques.

This app can be used as a night-vision app for cars, but it can also be used as an app
that is useful for searching for a lost object at night when light torches cannot help.

In automotive usage, it can be used to avoid collisions with pedestrians or animals.
The smartphone must be mounted on the windshield with a cell phone stand for

vehicles. It must be ensured that the back camera of the smartphone faces the road ahead.
An old smartphone can be used with the night-vision app.
The application enjoys the benefit of showing just the street in night vision, with no

different signs, which can sometimes be too much. Ideally, this application will help drivers
avoid accidents with humans or animals crossing the road.

It is a good habit to use a car phone charger, as the screen of the smartphone is always
on and can rapidly deplete the battery of the smartphone.

The night-vision app does not use near-infrared cameras used for ADAS in the auto-
motive industry, but it can be quite effective when we do not have this premium feature in
our car. The night-vision app is just an enhancement algorithm, but it can be used when
someone does not have the night-vision feature in their car. The novelty lies in the fact that
there is no such app as this in the Google Play Store.

Figure 1 shows the architecture diagram of the night-vision app.
Equations (1)–(4) were used to create the night-vision app.
Using x and y as spatial coordinates, let us represent the input image as I(x, y).
The function Enhance(I(x, y)) can be used to model the image-enhancement process,

where the visibility of the input image is improved.

Enhanced_Image(x, y) = Enhance(I(x, y)) (1)
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App Launch

User Interface Initialization

Core Features Activation Sensor Data Access

Optimize for Night Driving

User Interaction Management

Display Output to User

Figure 1. The architecture diagram of the night-vision app.

To see better at night, night vision (NV) frequently involves increasing low light levels.
This amplification procedure is shown below.

NV(I(x, y)) = k · I(x, y) (2)

where NV is the night-vision function and the constant k stands for the amplification factor.
Combining the effect of night vision with image enhancement:

Enhanced_NV(x, y) = Enhance(NV(I(x, y))) (3)

This formula depicts the improved image after the night-vision effect was included.
Figure 2 shows the real image and the enhanced software image made with the

mobile-phone app.
To further increase visibility, thresholding can be added to the improved image. We

shall use T to represent the threshold value.

Thresholded_Image(x, y) =

Enhanced_NV(x, y), if Enhanced_NV(x, y) > T

0, otherwise
(4)

To further improve visibility, the pixel values below a threshold T are set to zero using
a thresholding procedure represented by this formula.

The following images were tested in really low visibility to see that the night-vision
app works. Some of them might be blurry, but compared to the low-visibility conditions,
they can be used to see some objects at night.
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Figure 2. The image viewed by the mobile-phone app overlaid on the real image with poor visibility.

Figure 3 shows the actual screenshot from the mobile app while looking at a street
at night.

Figure 3. A screenshot that was viewing the poor-visibility street at night from the previous figure.

Figure 4 shows the Android night-vision app.
The test was carried out under harsh conditions to test the app to the maximum. It

was night and it was snowing, so there was close to no visibility, but the app can still see
well at night and in poor weather conditions. It can be seen that at night, due to snowy
weather, visibility is low, if not close to zero. In addition, the windshield shows a blurred
image due to the moisture obtained by the melted snow that fell on the warm window.
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Figure 4. A screenshot made with the mobile-phone app, which was viewing the street at night.

Even in these conditions, the software tries to make the images show well in these
poor lighting and weather conditions. In the real image, only the first car that is the closest
can be seen, but no buildings or other cars are seen in the background.

In the enhanced mobile-phone app, almost everything looks like daylight. Only a
small noise is overlaid on the image viewed.

The software enhancement steps are the following: convert the image to grayscale,
make a histogram equalization, and then make an adaptive gamma correction using a
lookup table.

In case the weather is better and the only problem is that there are low lighting
conditions, the app works even better, and everything can be seen more clearly.

The clarity of the viewed image can be seen, which was made at night when it was
snowing. Not only the buildings in the background but also the people walking on the
street can be seen.

It is clear how well the filtering was carried out. In some night-vision apps, when in
the viewed image there is a light source, due to histogram equalization, the image will be
overlaid by a white spot. In the current mobile-phone app, there is a light source, but the
white spot is reduced to a minimum.

4.2. Tooth-Brushing Assistant App Using Image-Processing Techniques

The app was implemented for the Android operating system for mobile phones.
Android is the most widely distributed operating system for mobile phones.
The mobile-phone implementation is the most convenient because almost everyone

owns a mobile phone, and users are excited to use mobile-phone apps for different tasks.
Mobile phones make our lives easier.

Figure 5 shows the architecture diagram of the tooth-brushing app.
There is an advantage in using the mobile-phone environment because it has specially

built OpenCV image-processing libraries for mobile operating systems (Android and iOS).
The implementation of this paper will present an Android app built for Android. The only
thing a mobile phone needs is a front camera, which is present in almost all modern phones.
Mobile phones were chosen because tablets are also good for use while brushing teeth, but
the application will also work quite well on tablets.
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App Launch

User Interface Initialization

User Profile Setup Settings Input

Brushing Guide Activation

Interactive Animations

Feedback and Statistics

Figure 5. The architecture diagram of the tooth-brushing app.

To detect the direction of movement in brushing, two consecutive frames are used.
The pixels in two consecutive frames are united.

To ease the system, not all pixels are united, but only certain ones. Initially, there is a
grid. In addition, only pixels from the grid are united. The grid can be made with larger
or smaller resolutions, but there is no need to unite all the pixels for movement detection.
If there is no movement, the movement vector will be a dot; if there is movement, the
movement vector will show the direction of the movement. After this, all it must be done is
to detect if the direction is up–down or left–right. This can be detected easily by analyzing
the coordinates of the points of moment vectors. After this, a decision can be made if the
movement of the toothbrush is incorrect (left–right) or correct (up–down).

All that needs to be done is to overlay a timer on the image, allowing the user to know
the duration of the brushing.

The pause of the stop buttons must be added to control the brushing timer.
The relative motion of the front camera does not influence the quality of detection

of tooth brushing. The novelty lies in the fact that the app uses movement vectors to
detect toothbrush movements and in the fact that there is no such app like this on the
Google Play Store.

The following formulas were used for the toothbrush app.
The movement of a characteristic between consecutive frames is represented by the

displacement vector represented in Equation (5).

v⃗ = (dx, dy) (5)

The horizontal and vertical displacements are denoted by dx and dy, respectively, in
this instance.
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The velocity vector shows how quickly a feature’s position changes over time, repre-
sented in Equation (6).

v⃗ = (
dx
dt

,
dy
dt

) (6)

The horizontal and vertical components of the velocity are indicated, respectively, by
dx
dt and dy

dt .
The apparent motion of objects in an image due to the relative motion of the observer

and the scene is represented by the optical flow represented in Equation 7.

F⃗ = (u, v) (7)

The horizontal and vertical components of optical flow are denoted by u and v,
respectively, in this instance.

Motion estimate is a technique used to facilitate tasks such as object tracking and
video reduction by estimating the movement of objects between frames represented in
Equation (8).

M⃗ = (dx, dy, dt) (8)

In this case, the temporal displacement is represented by dt, and the spatial displace-
ment is represented by dx and dy.

The motion of the entire image as a result of the scene or the motion of the camera is
represented by global motion vectors represented in Equation (9).

G⃗ = (tx, ty) (9)

In this case, the translational motion in the horizontal and vertical directions is denoted
by tx and ty, respectively.

Figure 6 shows the initial screen of the app. It can be seen that the timer can count
down from two minutes to allow the user to wash their teeth for two minutes. The play and
stop buttons, which can start or stop the timer and detect the direction of tooth brushing,
can also be seen. The information button is also available, which will show a small hint on
how to use the app.

Figure 7 shows that the tooth-brushing app is started after pressing the play button.
The timer starts to count down, and the direction detection is also started. The movement
vectors of the app can be seen, which are drawn over the live image feed. The pixels of two
consecutive frames are united with the movement vectors. If there is no movement, the
vector will be shown as a dot, and if there is movement, then the direction of the movement
will be shown as a line, with the movement vectors, by uniting the initial and current
positions of the moving pixel. If the vector is vertical, then there is vertical movement
(up–down) of the toothbrush, which is correct. If the vector is horizontal (left–right), then
there is a horizontal movement of the toothbrush, which is incorrect. The standard tooth-
brushing technique on many dentists’ websites is with small up–down circular movements,
not big left–right linear movements, and this is what the app tests with image processing.
However, in the actual brushing process, such as the Bass brushing technique, horizontal
brushing is required when cleaning the occlusal surfaces of teeth. The movement vectors
are shown on the whole image, not only on the teeth. The movement vectors do not
have to be drawn only on the teeth; they show the direction of the toothbrush movement,
mainly left–right or up–down; the correct movement is up–down, and this is what the app
recognizes. In the image, the pause and stop buttons can also be seen. The stop button
will reset the timer to two minutes. The pause button will stop brushing your teeth, and
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the timer will not be reset. The pause button stops the detection of the movement of
the toothbrush.

When the tooth brushing is paused, the movement vector is not drawn in the live
video feed captured during tooth brushing.

Figure 8 shows the help screen of the tooth-brushing app. There is information on
how to use the app and how to brush your teeth correctly. The teeth must be brushed with
up–down movements, not left–right movements, for at least two minutes.

Figure 6. Initial screen of the tooth-brushing app.

Figure 7. Tooth-brushing app with movement vectors.
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Figure 8. Help screen of the tooth-brushing app.

4.3. Lane and Car-Detection App Using Deep-Learning Algorithms with TensorFlow

The lane-detection app uses a TensorFlow database-trained neural network to recog-
nize road lanes and cars. There is no such app on the Google Play Store.

The following formulas were used in order to implement lane detection.
The first relationship used is presented in Equation (10).

Acc =
∑ clip Cclip

∑ clip Sclip
(10)

where Acc is the precision, in clip Cclip are the number of estimated lane points that are
properly cared for, and Sclip are the number of ground-truth points.

Figure 9 shows the architecture diagram of the lane-detection app.

The F1 (Precision and Recall function) can also be computed as follows using Equation (11).

F1 =
2 · Precision · Recall
Precision + Recall

(11)

where precision is presented in Equation (12).

Precision =
TP

TP + FP
(12)

The Recall is presented in Equation (13).

Recall =
TP

TP + FN
(13)

where TP is the total points, FP is the false positives, and FN is the false negatives [40].
To detect lanes in photos using TensorFlow, a neural network model must first be

trained to predict lanes. It will be given a mathematical illustration of a Convolutional
Neural Network (CNN) architecture using TensorFlow for lane detection.

Z[l] = Conv_2D(A[l−1]) (14)

Equation (14) is the result of applying a convolutional layer l to the activation A[l−1]

of the previous layer. The input image is subjected to a convolutional filter through the
Conv_2D operation.
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A[l] = ReLU(Z[l]) (15)

Equation (15) is the activation A[l] of layer l, where the convolutional layer output Z[l]

is subjected element-wise to the rectified linear unit (ReLU) activation function.

A[l] = MaxPooling_2D(Z[l]) (16)

Equation (16) is the result of applying a max pooling layer to the output Z[l] of the pre-
ceding layer, representing the output A[l]. Max pooling preserves significant characteristics
while reducing the spatial dimensions of the feature maps.

Z[l] = W[l] · A[l−1] + b[l] (17)

Equation (17) is a representation of the output of the fully connected layer Z[l], where
b[l] is the bias vector, A[l−1] is the activation of the layer before it and W[l] are the weights.

ŷ = Softmax(Z[L]) (18)

Equation (18) addresses the result ŷ of the last layer of the network, where the Softmax
function is applied to the result Z[L] of the last completely associated layer. The Softmax
function yields a likelihood distribution over the classes (for example, the presence of
lane markings).

App Launch

User Interface Initialization

Access to Camera and Sensors

Lane Detection Algorithm Alert System Activation

Data Processing and Analysis

Real-Time Feedback to User

Figure 9. The architecture diagram of the lane-detection app.

These mathematical expressions offer a high-level summary of a common CNN ar-
chitecture for lane detection based on TensorFlow. In practice, this involves defining the
architecture, assembling the model, training it using annotated image data, and assessing
its output.
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Next, loss function and error plots used in training and testing the neural network
will be presented.

Mean Squared Error (MSE) loss calculates the mean of the squared differences between
the predicted values and the actual values as shown in Equation (19).

LMSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (19)

where:

• n represents the total count of samples,
• yi is the actual value,
• ŷi denotes the predicted value.

The MSE loss plot is presented in Figure 10.

−3 −2 −1 0 1 2 3
0

2

4

6

8

y − ŷ

Lo
ss

MSE Loss

Figure 10. MSE loss.

Cross-Entropy Loss is frequently applied to classification problems. It quantifies
the disparity between two probability distributions, the true labels, and the predicted
probabilities.

The cross-entropy loss for binary classification is outlined in Equation (20).

LBCE = − 1
n

n

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (20)

where:

• n denotes the total sample count,
• yi represents the binary true label,
• ŷi is the estimated likelihood of belonging to the positive class.

The binary cross-entropy loss plot is presented in Figure 11.
In multi-class classification, the following section introduces the categorical cross-

entropy loss as shown in Equation (21).

LCCE = − 1
n

n

∑
i=1

k

∑
j=1

yij log(ŷij) (21)

where:

• n represents the total number of samples,
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• k denotes the count of classes,
• yij is a binary indicator (0 or 1) indicating whether the class label j correctly classifies

sample i,
• ŷij is the forecasted likelihood that sample i belongs to class j.

0.2 0.4 0.6 0.8 1
0

1

2

3

4

ŷ

Lo
ss

Binary Cross-Entropy Loss (y = 1)

Figure 11. Binary cross-entropy loss.

The multi-class classification, the categorical cross-entropy loss plot, is presented in
Figure 12.

0.5

0.2 0.4 0.6 0.8

10

20

ŷ1

ŷ2

Loss

Cross-Entropy Loss

Figure 12. Multi-class classification cross-entropy loss.

Function: The cross-entropy loss for an actual label y = [1, 0, 0] and predicted proba-
bilities ŷ = [ŷ1, ŷ2, ŷ3] (where ŷ3 = 1 − ŷ1 − ŷ2) is given by Equation (22).

LCE = −log(ŷ1) (22)

Graph: We display the cross-entropy loss for ŷ1 and ŷ2, with ŷ3 determined implicitly.
The hinge loss plot is presented in Figure 13.
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Figure 13. Hinge loss.

Function: The hinge loss is graphed as a function of y · ŷ. The hinge loss becomes zero
when y · ŷ ≥ 1 and grows linearly if it is less than that.

We visualize within the interval −2 ≤ y · ŷ ≤ 2.
Hinge loss is commonly employed to train classifiers, such as support vector machines

(SVMs), as shown in Equation (23).

LHinge =
1
n

n

∑
i=1

max(0, 1 − yi ŷi) (23)

where:

• n represents the total count of samples,
• yi denotes the actual label, which can be either −1 or 1,
• ŷi is the estimated label.

The Kullback–Leibler (KL) divergence quantifies the dissimilarity between a given
probability distribution P and another reference probability distribution Q as shown in
Equation (24).

LKL =
n

∑
i=1

P(xi) log
P(xi)

Q(xi)
(24)

where:

• P(xi) represents the actual probability distribution,
• Q(xi) is the estimated probability distribution.

The Kullback–Leibler (KL) divergence plot is presented in Figure 14.
Definition: The Kullback–Leibler (KL) divergence for two Bernoulli distributions with

success probabilities p and q is expressed as shown in Equation (25).

DKL(P ∥ Q) = p log
p
q
+ (1 − p) log

1 − p
1 − q

(25)

Constant p: For this plot, p is set to a constant value of 0.5.
Variable q: The value of q is adjusted from 0.01 to 0.99 to circumvent the undefined

points at 0 and 1.
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Figure 14. Kullback–Leibler (KL) divergence.

Mean Absolute Error (MAE) loss calculates the mean of the absolute deviations
between forecasted and true values as shown in Equation (26).

LMAE =
1
n

n

∑
i=1

|yi − ŷi| (26)

where:

• n represents the count of samples,
• yi represents the actual value,
• ŷi is the value that is forecasted.

The MAE loss plot is presented in Figure 15.
Huber loss is more robust to outliers in data compared to Mean Squared Error (MSE).

It merges the benefits of MSE and MAE by behaving quadratically for small errors and
linearly for large errors, as shown in Equation (27).

Lδ(y, ŷ) =

 1
2 (y − ŷ)2 for |y − ŷ| ≤ δ

δ|y − ŷ| − 1
2 δ2 otherwise

(27)

where:

• y represents the actual value,
• ŷ denotes the value that is forecasted,
• δ is the cutoff point where the loss changes from quadratic to linear.

The Huber loss plot is presented in Figure 16.
Below, some performance metrics for the lane-detection app using TensorFlow are

presented.
Figure 17 shows the Confusion Matrix of the algorithm used for detecting lanes.
Figure 18 shows validation dataset F1 score.
Figure 19 shows the number of training epochs and their associated accuracy levels.
Figure 20 shows the precision of the lane-detection system.
Figure 21 shows the evaluation of the model using the Dice score.
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Figure 15. MAE loss.
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Figure 16. Huber loss.

Figure 22 shows a neural network simulation app, which is interesting for understand-
ing how a neural network in TensorFlow is trained.

As seen in the neural network training app, the result was different every time the simulation
was run, but the final result tended to be similar. Sometimes, it could not reach the desired result,
but after a while, it would succeed. Sometimes, it was necessary to change some parameters in
order to obtain the desired result, so the task when training the neural network is to configure
the parameters in a way that the desired result will be reached the soonest as possible.

It was discovered that if the learning rate was set at a high value, then the system could
reach the desired value many times faster, but there were many times when the system could
not reach the desired value at all, so it is better to keep a medium learning rate, which could
almost always reach the desired value, even if it takes a longer time.

It was also discovered that the ratio of training to test data did not influence the results
too much. In this situation, there is not too much difference. Even if the feature numbers or the
number of neurons were increased, there was not too much influence, but the system worked
slower.
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Figure 17. Confusion Matrix of the algorithm used for detecting lanes.
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Figure 18. Validation dataset F1 score.
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Figure 19. Number of training epochs and their associated accuracy levels.
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Figure 20. Precision of the lane-detection system.
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Figure 21. Evaluation of the model using the Dice score.

Figure 22. Trained neural network using TensorFlow [41].

It could also be seen that if the nose value was high, it was difficult for the system to
obtain the desired values.

It was slow to show that if the batch size increased, the results were similar, but the
time to obtain the desired results was longer.
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It can be said that it is good to find the parameters to obtain the desired results almost
at the same time.

Figure 23 shows that lane detection on curvy roads is carried out by the Android
mobile-phone app.

Figure 24 shows the lane detection on a straight road made by the mobile-phone app
on Android.

It can be seen that in both situations, the application works well, and the lane is
detected. It can be seen that both mobile and side lanes on the road are detected.

These lines can guide a driver to stay on the road with the car, or it may even be
possible to drive a self-driving car with this algorithm.

The software is configurable; the user can make changes, such as changing the color
or the guidelines, which are overlaid in the live video feed. To do this, the user must click
on the small gear button; this way, it will enable him to change the color of the guidelines,
which detects the road lanes.

There can also be toggled whether one or both lanes are hidden and when only to
have warnings for drivers to avoid being distracted by the app while driving.

The lane-detection app actually has two functionalities, which can be toggled using
the gear button form the upper right corner. One functionality is the lane detection, and
the other functionality is the car detection. The lane-detection app works better on empty
country roads (Figures 23 and 24), while in congested traffic, the car-detection part of the
app can be used, according to Figure 25.

The app can also be configured to detect cars on the road, also by tapping the gear
icon (Figure 25).

The lane and car detection may seem opposite to each other, but both have some
similarities. Both use image-recognition techniques using the OpenCV image-processing
library on the Android operating system. Both use deep-learning algorithms, and the
neural network is trained using TensorFlow.

The difference between the two parts of the app is that lane detection is used mainly
in a low-traffic environment when we are going on an empty road, and we want to help
keep the car on the road after a long drive when the driver is usually tired.

The car-detection part is used mainly in a high-traffic environment, when we want to
detect other cars and obstacles, to avoid crashing into other cars, and also after a long drive
when the driver is tired.

Both parts of the app can be used for a self-driving car app, where the self-driving car
should avoid obstacles and keep the car on the road. If the app also includes traffic light
and sign detection, it would be a complete self-driving car app.

Figure 23. Lane detection on a curved road made by the mobile-phone app.
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Figure 24. Lane detection on a straight road made by the mobile-phone app.

Figure 25. Car detection made by the mobile-phone app.

4.4. Results

The apps were posted on the Google Play Store, and some real user reviews and
ratings will be presented next.

The apps are quite new, and many of them have no ratings or reviews on Google Play,
like the tooth-brushing app, which has no ratings or reviews.

The night-vision app has a few reviews. Below are quoted a few of them:

• “Best app for night time”
• “Program error”
• “Doesn’t work”
• “Thank you for this AMAZING APP every other night-vision app was fake but thanks

to you i can use it now, btw add colors”
• “Needs some light like how it gives a clear vision etc behind the tv”
• “ok close up but not good for distance”
• “Looked behind me TV really shows all. Needs some light but be sweet to check the

engine etc.”

The average rating for the night-vision app is 3.
The lane-detection app has no reviews, but the average rating is 3.429.
These ratings are not the best, but if we search for more famous apps made by Google

LLC, like the Blogger app, which has a rating of 3.7, and the Google Classroom app, which
has a rating of 2.5, than the ratings of the presented apps it is not so bad. Many times,
mobile app users are ruthless when they make reviews.
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5. Discussions
5.1. Night-Vision App

This article presented a night-vision app for vehicles. The app can be easily used in any
car to avoid collisions with animals or pedestrians crossing the road. The app is actually an
image enhancer that can be used at night when there is poor visibility or bad weather.

Many expensive cars already have these features installed. This phone app is an
alternative to having this premium feature in the car, with almost zero investment, based
on the fact that almost everyone owns at least one smartphone.

If the user owns more smartphones, one old smartphone can be placed in the car to be
used as a night-vision camera only.

The night-vision app is a valuable tool crafted for drivers who travel at night, seeking
a more optimized smartphone experience within their vehicles. It eases the accessibility of
key features and lessens distractions during nighttime journeys.

The app features a user interface tailored to lower eye strain in dim lighting, utilizing
dark themes and minimizing glare. By prioritizing simplicity, it cuts down on unnecessary
on-screen items, enabling drivers to concentrate on driving. It works with most modern
smartphones and promotes safe navigation and smartphone handling by offering straight-
forward options and decreasing the likelihood of distractions. It allows drivers to reach
essential functions without juggling between multiple applications.

5.2. Tooth-Brushing Assistant App Using Image-Processing Techniques

As presented, a tooth-brushing app was created for the Android mobile-phone en-
vironment. The Android mobile-phone environment was chosen because it is the most
widespread mobile-phone operating system.

The tooth-brushing app detected the correct tooth-brushing movements (up–down)
using movement vectors, which were implemented using the OpenCV image-processing
library.

The tooth-brushing app is a cutting-edge dental-hygiene application intended to
enhance users’ tooth-brushing behaviors. Suitable for all age groups, it assists users in
adhering to correct methods and durations for superior oral care.

It features a detailed brushing guide accompanied by a timer to guarantee adequate
coverage for all mouth regions. The app displays movement vectors to teach users effective
brushing methods and dental-health approaches. It ensures proper tooth brushing, there-
fore decreasing the chances of cavities, gum issues, and plaque accumulation. Its appeal
extends to both adults and children, promoting improved oral health habits for the entire
family.

5.3. Lane- and Car-Detection App Using Deep-Learning Algorithms with TensorFlow

As presented, an app was created that could detect road lanes.
The uses OpenCV image-processing algorithm and TensorFlow are used to train the

neural network for lane detection.
The app could configure the color of the overlaid line, which detects the road lane.

The system can also be configured to hide one or both detected road lanes and to only issue
warnings in the car that comes off the other side of the road. This way, the driver can focus
on the road and not become distracted by the app.

The lane-detection application serves as a smart driving assistant aimed at enhancing
road safety by assisting drivers in maintaining their lane position. It is particularly useful
for extended journeys or when driving through unfamiliar areas, thus augmenting both
ease and safety while driving.
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Leveraging sophisticated algorithms, the app detects lane markings and offers real-
time navigation assistance. It functions independently of continuous Internet connectivity,
ensuring dependability even in remote locations. The risk of lane drifting, particularly
due to fatigue or distractions, is significantly reduced. With dependable lane tracking, it
boosts driver confidence when facing challenging conditions. Its user-friendly interface
and uncomplicated functionality make it accessible to drivers of varying experience levels.

6. Conclusions
6.1. Night-Vision App

For the night-vision application, more image-enhancement functions were used from
the OpenCV image-processing library. The innovation of this app is that it was made a night-
vision app, even though the mobile phone does not have an infrared night-vision camera.
The limitations are that it can obtain a better night-vision image with an external infrared
night-vision camera than with a standard mobile-phone camera and image-processing
techniques. The practical significance of the app is that it can be used quite well at night to
see things in the dark.

The app was made only for the Android platform. Further enhancements could be to
implement the app for the iOS platform, too. A good future study could be to implement
the app for external thermal cameras, too. In this way, the warm bodies of humans and
animals can be even better detected.

6.2. Tooth-Brushing Assistant App Using Image-Processing Techniques

For the tooth-brushing app, further enhancements can be made by adding a sensor to
the toothbrush to detect the force the toothbrush applies to the teeth and gums. To protect
the gums, it is not good to apply a large force to them during tooth brushing. When a
strong force is applied to the gums, these can be harmed. The innovation of this app is that
there are not many apps on the Google Play Store that actually can tell if a user brushes
their teeth correctly just using image processing. Many apps connect to an external electric
toothbrush via Bluetooth and check the direction of the tooth-brushing movement using an
accelerometer. The innovation of this app is that it can work with any manual toothbrush.
The limitations are that image processing can often present false negatives, usually when
using toothpaste, which makes a lot of foam. The practical significance of the app is that
it can be used quite well with any common toothbrush. There is no need to acquire an
additional expensive electric toothbrush.

Another enhancement can be made to implement the app on the iOS operating system,
too, to cover the other part of the mobile market.

6.3. Lane and Car-Detection App Using Deep-Learning Algorithms with TensorFlow

The lane-detection app can also be a starting point for autonomous cars. The innova-
tion is that this app can detect lanes of cars with the usage of a mobile phone. There is no
need to have this expensive feature that mostly premium cars have. The limitations are
that the system uses only one camera from the mobile phone, so if it is accidentally covered,
then the system cannot detect lanes or cars. The system is external, so it has no feedback to
make the steering wheel vibrate when lanes are not followed or apply the brakes of the car
to avoid an accident when using the car-detection algorithm. The practical significance of
the app is that a cheap mobile phone can be used to achieve a premium feature.

Future enhancements can also be implemented to implement the app on the iOS
operating system, i.e., to cover the rest of the mobile-phone users.

Another enhancement can also be adding traffic light and sign detection to build a
complete self-driving car application.
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Abbreviations
The following symbols and abbreviations are used in this manuscript:

GPS Global Positioning System
HUD Head-Up Display
SIM Subscriber Identity Module
4G, 5G fourth, fifth generation of broadband cellular network technology
eSIM embedded-SIM (Subscriber Identity Module)
OpenCV Open Computer-Vision Library
ADAS advanced driver-assistance systems
CNNs Convolutional Neural Networks
LiDAR Light Detection And Ranging or Laser imaging, Detection, And Ranging
GPUs Graphics Processing Units
iOS iPhone Operating System
IR Infra Red
IoT Internet of Things
AR Augmented Reality
x, y spatial coordinates
I(x, y) input image
NV Night Vision
k amplification factor constant
T threshold value
v⃗ velocity vector
dx
dt , dy

dt horizontal and vertical components of velocity
F⃗ optical flow
u, v horizontal and vertical components of optical flow
M⃗ movement of objects
dx, dy spatial displacement
dt temporal displacement
G⃗ global motion
tx, ty translational motion in the horizontal and vertical directions
Acc accuracy
Cclip number of estimated lane points that are correctly managed
Sclip number of truth ground points
F1 Precision and Recall function
TP Total Points
FP False Positives
FN False Negatives
Z[l] convolutional layer’s output
Conv_2D convolutional filter
A[l−1] activation of the preceding layer
A[l] activation of layer l
l convolutional layer
ReLU Rectified Linear Unit
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W [l] weights
b[l] bias vector
ŷ network’s last layer
MSE Mean Squared Error
n total count of samples
yi actual value, binary true label, either −1 or 1
ŷi predicted value, the estimated likelihood of belonging to the positive class
k count of classes
yij binary indicator (0 or 1) indicating whether the class label j correctly classifies sample i
ŷij forecasted likelihood that sample i belongs to class j
SVMs support vector machines
KL Kullback–Leibler
P(xi) actual probability distribution
Q(xi) estimated probability distribution
MAE Mean Absolute Error
δ cutoff point where the loss changes from quadratic to linear
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