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Abstract: Ultrasound imaging is commonly used for medical triage in both civilian and
military emergency medicine sectors. One specific application is the eFAST, or the extended
focused assessment with sonography in trauma exam, where pneumothorax, hemothorax,
or abdominal hemorrhage injuries are identified. However, the diagnostic accuracy of an
eFAST exam depends on obtaining proper scans and making quick interpretation deci-
sions to evacuate casualties or administer necessary interventions. To improve ultrasound
interpretation, we developed AI models to identify key anatomical structures at eFAST
scan sites, simplifying image acquisition by assisting with proper probe placement. These
models plus image interpretation diagnostic models were paired with two real-time eFAST
implementations. The first implementation was a manual AI-driven ultrasound eFAST tool
that used guidance models to select correct frames prior to making any diagnostic predic-
tions. The second implementation was a robotic imaging platform capable of providing
semi-autonomous image acquisition combined with diagnostic image interpretation. We
highlight the use of both real-time approaches in a swine injury model and compare their
performance of this emergency medicine application. In conclusion, AI can be deployed
in real time to provide rapid triage decisions, lowering the skill threshold for ultrasound
imaging at or near the point of injury.

Keywords: artificial intelligence; emergency medicine; image interpretation; robotics;
triage; ultrasound imaging

1. Introduction
Medical imaging has remained a central function for injury assessment in healthcare

for decades and has become more widespread in recent years due to technology improve-
ments [1], especially in emergency situations where triaging and the quick treatment of
injuries can determine whether a life is saved or lost [2]. Ultrasound (US), in particular, is
effective in modern military and emergency medicine [3]. In addition to being relatively low
in cost and portable, it is useful for its ability in detecting free fluid, which is synonymous
with injury in the thoracic and abdominal cavities. This is effective because assessments can
be made while patients are being transported, or when they need to be examined swiftly in
the field [4]. For triage, having tools outside of a definitive healthcare setting is crucial for
administering different imaging procedures. This helps mitigate the devastating effect of
emergency situations, which are prone to high fatality rates when there is no immediate
access to definitive hospital care [5].
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One common and useful triage procedure is the extended focused assessment with
sonography for trauma, or eFAST exam [6]. The eFAST exam is a point-of-care method
of examination that non-invasively evaluates the thoracic and abdominal cavities for the
presence of free fluid or air in order to identify abdominal hemorrhage (AH), hemothorax
(HTX), and pneumothorax (PTX). This can allow for identifying the type of care needed
to treat a trauma patient and the urgency needed for the intervention. However, there
are several considerations that come with administering an eFAST exam. First, being
able to properly use US equipment can be technically challenging for less-experienced
personnel, as proper angles and positionings of the US transducer are required to identify
the regions where fluid and air are most often pooled in the abdominal and thoracic cavities.
Second, correctly identifying injury at the scan site is technically challenging, requiring
an interpretation of anatomical landmarks and the identification of variable volumes of
free fluid or air. Unfortunately, there is a projected shortage of medical providers that can
properly perform and interpret injury from a US exam, which will be especially detrimental
in mass casualty situations [7]. Therefore, despite the importance of an eFAST exam during
triage and its ability to reduce the amount of time it takes for patients to be delivered
to definitive care, there are assumptions and drawbacks to consider for effective eFAST
exam utilization.

The development of artificial intelligence (AI) has accelerated in several fields of tech-
nology, including the healthcare industry. In the medical imaging field, AI has been proven
to improve efforts in patient care and medical diagnoses of disease and abnormalities [8–10].
AI not only reduces the time it takes to diagnose these problems, but also gives supplemen-
tal insight to medical providers by finding and interpreting abnormalities that could have
otherwise been missed by a human eye unfamiliar with discerning nuanced features [8].
In addition, technological advancements have allowed for improved care administration
for trauma patients on the battlefield [11]. One example is the use of internet-based video
communication to receive real-time advice from medical professionals to properly treat
or address casualty patients. Closed-loop systems for fluid or drug administration utilize
fully automated medical administration approaches to stabilize patients that are being
transported to more definitive care [12–14]. Robotics have been pursued as well to improve
the treatment administration of surgical interventions through telerobotic platforms [15].

Considering the history of AI in healthcare and medical imaging, we propose that
the diagnostic capabilities used to detect and treat illnesses can be applied to the injury
interpretation function in the eFAST exam. Previous studies have developed AI models
with limited datasets for a FAST exam only, excluding thoracic image interpretation [16,17],
while others have utilized fully supervised feature creation approaches for detecting pleural
effusion in eFAST scan sites, a much more cumbersome automation approach [17]. There
are also studies that summarize the progress in ultrasound applications with AI, including
utilizing convolutional neural networks for diagnostic applications and a robotic arm for
assistance in casualty classification in pre-hospital settings [18]. We previously explored
the use of deep learning AI through the exploration and evaluation of a wide range of
trained binary classification diagnostic models to detect injury at eFAST scan sites in swine
subjects [19]. Having diagnostic models to interpret medical images only addresses part of
the challenge with performing eFAST exams. The other issue is adequate medical image
acquisition for discernable image capture so that AI models can interpret the presence of
injury. For this, AI and robotics can be applied to the eFAST exam, utilizing computer
vision AI to guide a robotic platform to the relevant scan points of the eFAST exam. We
have previously shown that a robotic imaging platform can traverse a wide range of eFAST
scan points, and assessed different US probe holder designs for this application [20].
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In this study, we explored the integrations and capabilities of automated eFAST
image acquisition and interpretation that our trained deep learning models allow for
in a real-time setting, such as model inferencing in live and euthanized swine. Two
image acquisition methods were evaluated. First, we evaluated a handheld AI-driven US
application that guides the user to the correct scan site using AI guidance models and then
runs AI diagnostic models. Second, we evaluated a robotic imaging platform equipped
with computer vision AI to detect scan sites, as well as AI guidance and diagnostics to
confirm proper image capture and make scan site diagnostic predictions. Each of these were
tested in real time in live or euthanized swine to highlight the potential for AI automated
eFAST examination. If eFAST US procedures can be fully automated, this life-saving triage
exam can be more widely deployed in pre-hospital and emergency medicine situations for
both civilian and military medicine.

2. Materials and Methods
2.1. Animal Procedures and Manual Ultrasound Image Capture

US scans were captured at eFAST scan sites using a swine model from three approved
animal research protocols. Research was conducted in compliance with the Animal Welfare
Act, the implementing Animal Welfare regulations, and the principles of the Guide for the
Care and Use for Laboratory Animals. The Institutional Animal Care and Use Committee
at the United States Army Institute of Surgical Research approved all research conducted
in this study. The facility where this research was conducted is fully accredited by the
AAALAC International. Live animal subjects were maintained under a surgical plane of
anesthesia and analgesia throughout the studies. For all studies, images were captured
immediately after instrumentation procedures and before laparotomy to remove the spleen
(Scan #1, Figure 1). Each animal study was focused on different shock-related injuries, and
splenectomies were performed to minimize the variability due to splenic contraction and
autotransfusion [21,22]. Since the spleen was removed in all protocols, no US scans were
captured in the left upper quadrant, or LUQ, scan site. After the subjects were euthanized,
two imaging rounds took place: before (Scan #2) and after inducing abdominal hemorrhage
(AH), pneumothorax (PTX), and hemothorax (HTX) injuries at the respective scan sites
(Scan #3, Figure 1).
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Figure 1. Overview of animal study procedures and image capture timepoints. Ultrasound images
were captured prior to splenectomy in live swine, as well as at two time points in euthanized swine
(before and after eFAST injury induction). Each scan landmark in the diagram lists how US images
were captured. The three approaches were manual US image capture, image capture using the RT
eFAST handheld application, and image capture using the robotic imaging platform.

For manual image capture, images in the thoracic region were captured using a linear
array probe (L15, Sonosite, Fujifilm, Bothwell, WA, USA), and at the abdominal scan
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sites a curvilinear array probe was used (C5, Sonosite, Fujifilm, Bothwell, WA, USA),
using a Sonosite PX (Fujifilm, Bothwell, WA, USA) US System. Images were captured
for two different AI training applications: guidance and diagnostic AI models. For the
diagnostic training dataset, thoracic US scans were captured as 10 s B-mode (brightness
mode) clips or as 5 M-mode (motion mode) images, captured at multiple intercostal spaces.
For guidance, 10 s B-mode clips were captured as a single swipe along all intercostal spaces
of the thorax bilaterally. The abdominal scans were obtained at two locations: the right
upper quadrant (RUQ), focusing on the kidney–liver interface, and the pelvic region (BLD),
focusing on the areas around the bladder. For guidance image capture, 10 s region scans
were captured in two motions: along the sagittal plane and along the medial plane. For
diagnostic image capture, additional 10 s scans were captured while rocking the probe with
the region of interest in view. All of these images were captured at the three experimental
timepoints previously stated, and the injuries were created following a previously described
methodology [19].

2.2. Data Processing

Ultrasound data from 36 pigs were exported from the US machine and sorted by
experimental phase, subject ID, and scan point for both major scan types: guidance (scans
along anatomical planes) and diagnostic (scans focused on organs, fluid accumulation sites),
as diagrammed in Figure 2. All ultrasound videos were split into frames, and individual
images were cropped and resized to 512 × 512 pixels using the Image Processing Toolbox
extension from MATLAB version R2023b (MathWorks, Natick, MA, USA). Images were
cropped to remove words and other artifacts on the US scans that the AI model may have
focused on during training. The US scans were reshaped to a 512 × 512 pixel size to create
a symmetrical image geometry at a high resolution to detect small injury features. We
have developed successful US AI models for similar applications using this image input
size [23]. For guidance frames, datastore file types were created containing random samples
of the data, with major anatomical features labeled with bounding boxes around them:
ribs for thoracic scans, the kidney for RUQ, and the bladder for BLD. Once the labels were
generated, images in which the feature was not obviously visible were removed from the
dataset. The bounding box labels were exported from MATLAB as four coordinates: x, y of
the top left corner, and x-length, y-length of the bounding box.
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For diagnostic scans, images captured during the pre-splenectomy and pre-injury
phases were preliminarily classified as negative for injury and the post-injury captures
as positive for injury. Then, a file tree of all items was generated, which allowed the
review of every entry. As part of data curation prior to training the AI models, all US
scans were reviewed for the presence of injury and assessed for overall image quality score,
injury severity (none, slight, positive), and the presence of motion artifacts (only applied to
thoracic scans). Image quality evaluated whether the US scans could be used to diagnose
an injury. A score of 1 corresponded to a poor image quality, with most frames captured
at an incorrect location; a score of 5 corresponded to a high image quality captured at a
proper eFAST scan point, where diagnostic status could be properly assessed. This was
performed by two scorers who agreed on image quality scores for the initial frames to help
standardize scoring and conferred to finalize data curation if disagreement occurred for any
image. When selecting data for training the AI models, those with a signal quality score
below 3 and thoracic scans with large motion artifacts were not included in the training
datasets. Scans labeled as “slight” injury were maintained in the dataset as positive for
injury. An overview of the AI model types used in this effort is shown in Figure 3.
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2.3. Guidance AI Models

Once the data were labeled, the guidance AI models were trained using the
YOLOv8 [24] object detection architecture, with separate models tailored specifically for
the detection of the kidneys (9449 labelled US images), bladder (7039 labelled US images),
or ribs (44,736 labelled US images). The training process utilized the YOLOv8-S pre-trained
model weights, default training parameters, and 100 epochs to provide ample opportunity
for the models to learn and refine their predictions. To ensure robust model validation, a
distinct dataset from subjects not used in training was reserved for the holdout testing of
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model performance. YOLOv8 was selected as the model architecture due to a variety of
advantages when compared with other state-of-the-art object detection models. Primarily,
this effort focused on the real-time application of object detection models with an eFAST-
focused purpose. This meant that speed of prediction time was of high importance, even at
the expense of slightly reduced accuracy. This narrowed the scope of possible models to
be used to ‘single-stage’ architectures, where the single-stage model undertakes a single
pass through of the image through the layers to determine the object location and class.
Models like Faster R-CNN, which can be more accurate, have a slower prediction time due
to the image being processed into proposed regions of interest before being classified for
objects. Moreover, when looking at single-stage models, YOLOv8 was amongst the fastest
in frames per second, even beating out the single-shot detector (SSD) model and having
only a slightly worse detection accuracy [25,26]. Ease of use was also a driving factor for
the use of YOLOv8 in this environment. The Python library ultralytics [27] provides an
API to allow for the seamless integration of YOLO models into existing software.

For each guidance model trained, predictions were compared against the ground
truth labels for the respective image, and Intersection-Over-Union (IOU) scores were
calculated for each image. IOU is a common metric for evaluating object detection models,
calculated by dividing the area in which the predicted mask and ground truth mask overlap
(intersection) by the total area covered by both masks (union). An IOU threshold of 0.5
is widely accepted in object detection applications as a standard for evaluating model
performance, with scores at or above this threshold being acceptable [28]. For kidney and
bladder predictions, one object was expected for each frame, whereas for the thoracic image,
two objects were expected. Regardless, for all predictions, the IOU score was calculated as
an average across the entire image.

2.4. Diagnostic AI Models

For the development of diagnostic AI models, different approaches were used for
the thoracic and abdominal regions. Each approach utilized the same YOLOv8 model
architecture, except configured for classification for this use case. Diagnosis of injury in
the abdominal region is regularly made from B-mode scans; as such, AI models were
only trained using this type of imaging. In the thoracic region, due to the nature of lung
sliding and how injuries present in ultrasound, M-mode images are a common means
of distinguishing between injured and non-injured states. Diagnostic models trained for
the thoracic region used two approaches: predictions from US-system-generated M-mode
scans, or custom-generated M-mode images from a static hold in B-mode imaging mode.
The latter approach is described below, followed by overall AI training procedures for the
other scan points.

2.4.1. Creating Custom Motion Mode Images from US Scans

For the development of diagnostic models focused on the thoracic region, we first gen-
erated M-mode images from the original B-mode US scans. This approach used a sequence
of consecutive frames to create custom M-mode images. Each frame was processed through
the guidance model for rib detection and, based on the predicted rib locations, the central
point between the ribs was calculated. At this central point, a vertical slice was extracted
from each frame (Figure 4). These slices were then concatenated to generate an image that
closely resembled a genuine M-mode image. To ensure that a generated M-mode image
was indicative of its diagnosis, the rib detection guidance model was used to filter out
images without only two ribs visible. If a frame did not have exactly two ribs detected, that
set of subsequent frames was not used for the M-mode creation process.
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Figure 4. Overview of how M-mode images were generated from B-mode frames using rib guidance
AI models. Shown first is a traditional B-mode ultrasound frame from which the guidance AI
determined the location of the ribs (blue bounding boxes). A 3-pixel-wide region at the midpoint
between the bound boxes (red dotted region) is selected across each frame to create a custom M-mode
image (shown on the right).

An optimization process was conducted to determine the ideal set of parameters
used to generate the images. These parameters included the number of frames per image,
the width of the slice taken from each frame, the window stride between images, and
the number of slices taken from each frame. The first two optimization parameters were
concerned with the makeup of the generated M-mode images. For frames per image, we
tested 30, 90, and 150 frames per image. Images were captured from a video running at
30 frames per second, so these represent 1, 3, and 5 s capture windows. Three slice widths
were also tested, these being 1-, 3-, and 5-pixel widths.

The remaining optimization parameters were focused on the generation of our training
image dataset. The window stride parameter refers to the number of frames the model
moves forward between images. For example, if using 30 images per generated M-mode
and a stride of 15, one generated image will use frames 1–30, and the next will use images
15–45. The stride options used during the optimization were either 6 or 15 images. The
final optimization parameter was the number of slices taken from each image, with either 1
or 3 slices being taken from each image. These parameters would affect both the number
and makeup of images present in the training dataset.

These options produced 36 unique combinations of training parameters to be validated
in the grid search using a YOLOv8 classification model trained for 100 epochs. After
optimization, the resulting best parameters were as follows: 150-frame window size,
5-pixel slice width, 15-frame stride, and 1 slice taken per frame.

2.4.2. Training AI Models for Injury Identification

The diagnostic models were trained for injury detection at each eFAST scan site. For
the abdomen, the AI models to identify AH injury were trained independently for the
RUQ and BLD scan sites. For the thorax, two separate models were trained to predict
if there was HTX, PTX, or no injury present, using either US-system-generated M-mode
images or the custom generated ones as the input data. The dataset was split into 3 groups
of 13 swine each to be able to perform the leave-one-subject-out (LOSO) cross-validation
methodology. Each unique LOSO group was randomly generated from three research
protocols and designated as a training, validation, or test set. We previously compared
several AI model architectures to develop AI models for each eFAST scan site [19]. With
the larger image dataset used in this study, these models needed to be retrained, and, for
simplicity, they utilized the same YOLOv8 architecture for image classification that was
used for the AI guidance model development. We applied the default training parameters
over a span of 100 epochs to allow for sufficient learning and refinement. Predictions were
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then tested on a holdout set of images from subject data not in the training data to test
model performance. The best performing model from each scan site was then selected to
be used in real-time testing.

2.5. Real-Time Validation of AI Models

Real-time (RT) image capture was performed in three swine subjects completely
separate from the dataset used to develop and test the underlying AI models. Each animal
underwent imaging at the experimental timepoints shown in Figure 1. Three real-time
approaches were used: (i) RT eFAST application, which allowed for selection of a single
scan site and capture of images while AI predictions for guidance and diagnostics occurred
in RT; (ii) full handheld, manual eFAST examination, driven by AI guidance and diagnostic
models; (iii) automated eFAST image capture using a robotic imaging platform equipped
with computer vision, guidance, and diagnostic AI models. Each of these approaches is
described in more details below.

2.5.1. Real-Time eFAST Application

To enable the RT testing of models, a dedicated graphical user interface (GUI) was
developed in Python using the Kivy library and designed to run on a laptop connected
to the US machine via a Magewell USB Capture HDMI Gen 2 capture card (Magewell
Electronics Co., Reading, PA, USA). The RT eFAST application allows users to input various
experimental parameters, including subject identifier, scan mode (guidance or diagnostic),
scan site (BLD, RUQ, M-mode, or RibsAI to generate M-Mode images), injury status,
and number or duration of predictions (Figure 5). Additionally, the interface provides a
comment section, with all inputs saved as a text file in addition to the prediction results
from each individual scan. The best performing model for each scan site and method
that received the best blind test accuracy score was selected to be used in the real-time
experiments. The trained model weights were packaged along with the GUI code to allow
for the quick deployment of models and switching between models in real time. Users also
have the option to select filtering methods that can be applied during the scan, as shown in
Figure 5B; these are further described in the next section.
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The RT eFAST application can be used for testing AI models in real time, as well
as for data collection while performing the eFAST exam. The GUI allows the user to
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select relevant parameters for the operation and to start image capture. This in turn
initializes the video stream and activates a thirty-second timer, which is displayed on the
application. US imaging and RT predictions run for thirty seconds or until the specified
number of predictions is reached, whichever comes first. While the scanning mode is
active, the predictions and corresponding images are shown in real time, along with the
prediction confidence scores. To ensure smooth operation, process threading was employed
to make predictions concurrently, preventing any interruption to the RT eFAST application’s
functionality. The system processed one frame at a time, waiting for each prediction to
finish before loading the next frame.

As part of the data collection feature, the program can save all frames captured
between predictions. A results folder was generated for every scan, containing subfolders
for the saved intermediate frames and one for the frames used for the predictions, a CSV file
listing model predictions with confidence scores, and a TXT file with user-input comments.
For guidance scans, predicted images were stored with overlaid object detection boxes.

Ultrasound Image Filtering Features

Several filtering options are available to the user while scanning: bad frame removal,
guidance filtering, and the option to turn both of these on at the same time. The bad frame
removal filtering option performs an analysis of each image to quantify the quality of the
image based on intensity-based and texture-based features before predictions are made. To
attain this functionality, a sample of 2000 images was taken from each scan site in the dataset
and then analyzed using noise and pattern analysis to find some correlation between the
ultrasound images labeled “bad” and quantifiable characteristics, such as average pixel
intensity, the standard deviation of pixel intensity, entropy, or the signal-to-noise ratio.
Images were labeled “bad” by two US operators based on the quality of the image and
the ability to make a diagnostic prediction from the image. The metrics that indicated the
strongest correlation to image quality were the average and standard deviation of pixel
intensity, corresponding to the brightness and contrast of the images, respectively. Using
this analysis, the most ideal values for brightness, contrast, and the signal-to-noise ratio
were selected as the parametric floor to classify an image as a bad frame. The user also has
the option to adjust the aggressiveness of bad frame removal from the GUI by entering
a multiplier value to be applied to the bad frame parameters. Bad frame removal was
only used for the RUQ and BLD sites, as the M-mode capture process required multiple
seconds of undisturbed data capture, making bad frame removal not possible during this
capture process.

In addition to bad frame removal, we developed a guidance filter as a second filtering
option. For this process, streamed frames were passed through the guidance model for the
designated scan site before any predictions were made. The guidance AI models evaluated
each image for the identification of relevant anatomical features, such as two ribs, a bladder,
or a kidney. If these features were not detected, the GUI bypassed the frame and moved on
to the next available one without making a diagnostic AI prediction. For the rib models,
guidance occurred at the start of the scan. Once two ribs were identified, the GUI prompted
the user to hold still for M-mode capture until the scan was complete, whether it was real
or generated. For the RUQ and BLD models, guidance was applied before each prediction,
with the model only proceeding if the appropriate anatomical features were detected in the
image. When both filters were active, images were passed through bad frame removal first,
followed by guidance filtering.
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2.5.2. Manual eFAST Exam with AI Model Guidance

A python script was developed to test the guidance and diagnostic AI models during a
full eFAST exam, recording the time taken to complete each scan point. The script prompted
the operator to follow a scan order of upper-left thorax, lower-left thorax, upper-right
thorax, lower-right thorax, RUQ, and BLD. For each scan point, the user prompts, model
predictions, and the times taken to complete each scan were displayed in the command
terminal. At the lung scan sites, the guidance model for lungs ran until it detected two ribs,
and then prompted the user to stay in that location while it made three predictions using
generated M-mode images, before telling the user to move to the next scan point. For RUQ
and BLD, the user had to swap to the curvilinear transducer and then the guidance model
ran continuously, only making a diagnostic prediction when the kidney or bladder was
detected, until it reached 30 predictions. This imaging application was run in two modes:
one in which the operator viewed the ultrasound screen during the exam, and a second
“blind” scan where the user was unable to see the display. The manual eFAST exam with
RT AI predictions was performed at the timepoints specified in Figure 1.

2.5.3. Automated Robotic US eFAST Exam

A UR5e robotic platform (Universal Robots, Odense, Denmark) was configured for
semi-autonomous eFAST examination (Figure 6). The UR5e was programmed to navigate
to eFAST scan sites using computer vision and stereo vision technology. Once at the
scan site, the robotic arm was programmed to capture ultrasound images using a custom-
made ultrasound probe holder to position the ultrasound probe and using integrated force
feedback to apply the probe to the subject. Robotic navigation and image acquisition
were further assisted by ultrasound-based guidance feedback that allowed the robot to
search a scan site at several positions until relevant anatomical features were in view of
the image. Finally, the ultrasound images captured by the UR5e were evaluated for injury
interpretation using the diagnostic AI models.
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Robotic Platform Configuration

The computer vision AI model was developed to detect the location of relevant scan
sites on the subject’s body using external image features. Ultrasound images were used to
confirm the location of the relevant anatomical features for each scan site, and a fiducial
target in the form of a circular color-coded sticker was placed on the body of the subject
at this location. The UR5e was programmed to travel around the body of the subject,
capturing images using an Intel RealSense 435i camera (Intel, Santa Clara, CA, USA).
Images were captured with and without the targets placed on the subject. eFAST scan sites
were then labeled in MATLAB using the images that included targets. This process was
repeated so that the image training dataset comprised images captured for two subjects. A
computer vision model was then trained using YOLOv8s to accurately identify the color-
coded stickers. Images of swine were also captured without stickers present to determine if
the AI models could accurately identify scan sites without stickers present. Unfortunately,
not enough data were captured for training models for this application and the computer
vision models for detecting stickers at each scan site were used. IOU scores were calculated
for model predictions during the testing performed on the three swine subjects reported in
this study based on agreement between ground truth labeled sites and AI model prediction.

During testing, the UR5e was positioned over the subject at mid-torso using a hoist–lift
structure (Figure 6). The UR5e was programmed to capture four images of the top, left side,
and right side of the pig using an Intel RealSense camera fixed to the end of the robotic arm.
For each image, the computer vision model was used to detect the location of each scan
site, providing the UR5e with real-world scan site coordinates for computer-vision enabled
navigation. The model returned the pixel value of the center of the color-coded targets that
were detected in each image. Next, with the inherent depth reading capabilities of the Intel
RealSense camera due to stereo vision technology, the real-world 3-dimensional location of
the target relative to the lens of the camera was determined. The 3-dimensional location
of the target was then transformed to the robot’s coordinate system, allowing the robot to
navigate to the scan site and apply the probe for image acquisition.

The quality of image acquisition was improved by using ultrasound image-based
guidance feedback to scan a site, capturing multiple US images until an US image was
acquired that could be used for proper diagnostic interpretation. For the abdominal sites,
eight additional scan locations positioned in a circle equidistant apart at a 2.54 cm radial
offset from the location of the original scan site were available for image capture. For the
thoracic sites, the robot was programmed to scan linearly in intervals of 1.2 cm in the caudal
direction before scanning another set of sites, following a line slightly offset in the same
direction. This resulted in a total of 7 potential scan site positions for evaluation.

In addition to finding all the scan sites, radial positions, and linear positions on the
subject, it was necessary to ensure that the probe was oriented orthogonally and applied
sufficient contact force to the surface to receive a clear ultrasound image. To do so, depths
were measured at the detected scan point, so that the slopes of the measured surface could
be used to calculate the correct roll, pitch, and yaw coordinates that would allow the robot
arm to position the probe normal to the surface at each scan site. By accounting for the
local curvature of the anatomy of the subject, adequate contact was sought between the
surface of the ultrasound probe and the surface of the subject at each scan position. For
the abdominal scan sites, a rocking B-mode scan was performed, where upon reaching an
adequate position, the robot rotated to four different angles at a 5-degree offset relative to
the scan site and collected a set of ultrasound frames at each different angle to pass to the
diagnostic model. The set of ultrasound frames was acquired over a period of a tenth of a
second for both the guidance and diagnostic scans, yielding between 5 and 7 frames.
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Robotic eFAST (RoboFAST) Exam with AI Model Guidance

A set of three RoboFAST exams, each with a different set of criteria, were run on each of
three experimental swine subjects at the two post-euthanasia timepoints (Figure 1). All trained
diagnostic and guidance AI models were integrated into the RoboFAST algorithm to assess
the robotic platform’s capabilities and compare its performance to the manual eFAST exam
performance. Upon detecting all scan sites and converting the pixel coordinates to coordinates
relative to the origin of the robot, the robot started the respective experimental run.

The first run, referred to as “Radar”, conducted a general eFAST exam where the robot
scanned both the original scan site and additional radial and linear positions until the guidance
AI model returned that the proper organ or anatomy was present, indicating that a suitable
location to run the diagnostic model was found. If no such detections occurred, the robot moved
on to the next site without conducting a diagnostic prediction. However, when the guidance AI
returned that the relevant object was detected, the diagnostic AI provided an injury prediction
result for five consecutive frames. For the second run, referred to as “No Radar”, the robot
performed a single image capture at the location where the colored sticker was detected. For the
third experimental run, referred to as “All Radar”, the robot performed image capture at each
scan site and all of the corresponding additional positions, running the diagnostic AI multiple
times depending on how many positions at a site contained suitable locations. The plurality of
what the diagnostic model returned then determined the prediction of the RoboFAST algorithm.

3. Results
3.1. Guidance AI Performance

For each guidance model trained, model performance was evaluated against a test dataset
comprising images from subjects not included in the training data. Examples of high and low
IOU scores are shown for each guidance model in Figure 7A. The resulting average IOU scores
varied across each model, with kidneys having the highest score at 0.94, followed by the ribs
and bladder at 0.74 and 0.58, respectively (Figure 7B). The precision and recall metrics were
also strong for each guidance model, apart from precision for the bladder model, which was
only 0.65 (Figure 7B). A higher false-positive rate due to the pixels being identified as bladder in
the model’s prediction but not in the ground truth image resulted in this lower score for the
bladder model. Overall, each model was trained at variable performance levels and was able to
correctly identify anatomical features to aid with proper eFAST US image acquisition.
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3.2. Diagnostic AI Performance

For thoracic diagnostic models, models were trained for both M-mode and generated
M-mode diagnostic models (as described in Section 2.4.1). The M-mode diagnostic model
predictions had a higher accuracy compared to the generated M-mode diagnostic models,
at 0.94 vs. 0.78 accuracy, respectively. From the confusion matrix analysis, the generative
M-mode models had a higher accuracy for the ground truth PTX predictions but identified
27% of the ground truth HTX images and 22% of the negative images as PTX (Figure 8A,B).
Conversely, M-mode models had a slight bias toward HTX predictions, with 7.6% and 6.5%
of the PTX and negative ground truth images being incorrectly identified as HTX-positive.
We further developed RUQ and BLD diagnostic prediction models, which were binary in
nature: positive or negative for abdominal hemorrhage. The RUQ models reached 0.77
accuracy but had a lower specificity metric of 0.68 compared to a higher recall of 0.80,
hinting at slight bias toward positive predictions across the testing dataset (Figure 8C). As
for the BLD models, overall performance remained lower at 0.59 accuracy, with a much
larger bias toward negative predictions in the testing dataset, as indicated by the confusion
matrix and 0.49 recall metric (Figure 8D).
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tion model.

3.3. Real-Time Model Performance

We conducted real-time testing in three different ways. The first used the RT eFAST
application and was primarily used to evaluate the AI guidance and diagnostic model
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performance at each scan site, along with the utility of different filtering approaches. The
other two approaches were the manual, handheld eFAST exam with AI model feedback
and RoboFAST. Both of these approaches allowed for a full eFAST exam to measure
the timing of the procedures and how the AI models synergized with various image
acquisition approaches.

3.3.1. Evaluation of the Real-Time eFAST Application

Starting with the RT eFAST application, the different filtering methods impacted the
number of images that were captured at each scan site during a 30 s data capture window
(Figure 9A). For ribs, on average, six less images were captured when using the guidance
filter (approximately 37 vs. 31 images). Bad frame filtering was not applicable at this
scan point due to M-mode capture needing to be continuous and not interrupted by frame
removal procedures. The effects were more noticeable with RUQ and BLD, where bad frame
filtering reduced the number of images by 12 and 3 images, respectively, while guidance
filtering reduced the number of images by 30 and 16 images, respectively. Compounding
these approaches reduced the number of images sent to the diagnostic models by 32 and
approximately 18 images, respectively.
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of real-time image capture compared to test accuracies during model training for each scan location.
Mean values are shown with error bars denoting standard deviation.

Next, we evaluated how the guidance models performed using the RT eFAST applica-
tion. This was undertaken without any filtering methods applied to obtain an overall IOU
performance metric for each scan site (Figure 9B). In real time, performance decreased for
ribs (0.70 real time vs. 0.74 training) and more substantially for the RUQ (0.33 real-time vs.
0.94 training), while BLD performance slightly increased (0.59 real time vs. 0.57 training).
In terms of diagnostics, the effects of these filters on overall diagnostic accuracy were
minimal, so the averaged diagnostic accuracy results comparing training performance are
shown in Figure 9C. Performance was comparable to training data, with the exception of
the M-mode thoracic model, which had a reduced accuracy of 0.67 compared to 0.94 during
model training.

3.3.2. RoboFAST Evaluation

The robotic imaging platform relied on a computer vision model to identify each
eFAST scan site automatically. The IOU scores for these predictions across scan sites were
as follows: 0.51, 0.52, and 0.56 for ribs, RUQ, and BLD, respectively (Figure 10C). For US
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image capture, three approaches were used to capture images, as described in the Section 2,
using the Robotic eFAST (RoboFAST) exam with AI model guidance: Radar, No Radar, and
All Radar modalities. We first evaluated the effects of the various methods on the total
number of images captured (Figure 10A). As anticipated, the All Radar approach captured
the most images for each scan site, while No Radar and Radar had similar numbers of
images for the RUQ and BLD scan sites. We next quantified the overall success of each
scan site across the three swine subjects, where success is defined as at least one image
being captured that could be used for diagnosis (Figure 10B). All approaches had high
performance here, except for the RUQ/No Radar approach at 67% success. Factoring
this in, Radar and All Radar had similar performance levels for this evaluation criterion.
The guidance model IOU performance scores were similar for each RoboFAST imaging
modality, with BLD having the highest IOU scores and RUQ performing the worst and
having the highest subject variability (Figure 10C).
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Figure 10. RoboFAST performance evaluation in swine. (A) Number of images captured with each
imaging modality with the robotic imaging platform. (B) Overall success of RoboFAST in finding
an US image to send to diagnostic AI models for each scan point and imaging modality. (C) IOU
performance results for guidance AI models using No Radar, Radar, and All Radar modalities;
computer vision IOU scores for identifying scan sites are also shown for ribs, RUQ, and BLD
positioning. (D) Diagnostic accuracies for each scan modality compared to diagnostic model blind
test accuracies during training. Averages are shown and error bars denote standard deviation across
triplicate swine subjects throughout.

Lastly, we evaluated the diagnostic model performance. The All Radar modality
resulted in the lowest accuracy for the M-mode thoracic AI (16.5%) and RUQ (46%) models
(Figure 10D). Radar and No Radar performed similarly at each scan site. Compared to
the test results obtained during model training, BLD and RUQ were comparable to the
RoboFAST captured accuracies, while RoboFAST severely underperformed for the thoracic
scan sites. This was likely a result of the robotic imaging platform experiencing difficulty
reaching the proper thoracic scan site where pleural space was present, as shown in the
representative US images captured during RoboFAST (Figure 11).
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3.3.3. Timing Comparison Between Handheld eFAST Application and RoboFAST

Ultimately, we compared the overall time required to complete two RT eFAST imaging
methodologies (Figure 12). Instead of the RT eFAST application, we configured the AI
models for use in sequence across six total scan locations to mirror how the images were
captured with the robotic imaging platform: (i) right thoracic top and (ii) bottom, (iii) left
thoracic top and (iv) bottom, (v) RUQ, and (vi) BLD (described in Section 2.5.2). This
matches the number of scan sites used during RoboFAST. We evaluated the timing of image
capture by the end user having or not having the US screen visible (only relying on AI
predictions and instructions to move to the next scan site), which resulted in a slightly
longer time on average with no screen visible compared to when the screen was present
(138 s manual, screen vs. 183 s manual, no screen). The RUQ scan site was most impacted
by not looking at the US screen, as most captured images were excluded by the guidance
filter. For the robotic imaging platform, the No Radar modality was the quickest (87 s),
with rapid thoracic image capture compared to the slower Radar image capture (170 s), and
the overall slowest All Radar modality (580 s).
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4. Discussion
As ultrasound technology becomes smaller and more portable, its potential utility in

emergency medicine widens. Pre-hospital triage by US imaging may be possible if the
challenges of imaging can be reduced so that less-skilled personnel can perform initial
triage assessments. This is especially true for military medicine, where triage decisions
in the battlefield must prioritize limited evacuation opportunities in scenarios where
air evacuation is not readily available, as has been the case in the ongoing conflict in
Ukraine [29]. The AI-driven tools showcased in this research demonstrate how US imaging
can be simplified to lower the skill threshold for triage on future battlefields or in other
civilian emergency situations.

We have previously developed AI models for the diagnostic evaluation of eFAST scan
sites, so this research effort was predominately focused on the automation of image acqui-
sition techniques. Guidance object detection AI models were built using a YOLO model
architecture, which was further tuned for use with swine datasets. Performance was mixed
in the real-time implementation of these models, with BLD and RUQ underperforming com-
pared to rib detection models. However, this still highlights how guidance models could
assist with real-time scanning. These models can be used as a filter during manual scanning
to exclude all frames in which key anatomical features are not present. Additionally, they
may be used to provide autonomous feedback to robotic image acquisition platforms to
acquire images with evident anatomical features that are required for proper diagnostic
interpretation. However, these models need further refinement to ensure that not only
anatomical features are present in the image, but also that the ideal anatomical features for
diagnostic determination are identified. For instance, our models confirmed the presence
of two ribs in each image so that the pleural space between the ribs can be evaluated for
diagnosis. However, if the probe is not oriented correctly, the pleural space cannot be seen,
making injury identification impossible. Additionally, our model confirms the presence
of a kidney in each image to evaluate RUQ scan sites. However, since fluid often pools
around the edges of the kidney, guidance models could be improved by confirming that the
edges of the kidney are in view so that images used for diagnostic interpretation capture
the area most likely to demonstrate evidence of injury. These additional improvements
would further enhance their utility in providing ultrasound-based guidance feedback for
image acquisition during an eFAST examination.

In addition, diagnostic AI models were further refined prior to further developing
the models for real-time application. US image sets were expanded to more than 35 swine
subjects to ideally allow for more robust model training performance. For simplicity in this
study, all models were developed using a YOLOv8 image classification model. However,
the guidance models were consistently more accurate compared to the new diagnostic
models. A likely reason for the difference in model performance is that the guidance models
were required to identify anatomical landmarks, while the diagnostic models were tasked
with the more difficult task of interpreting nuanced changes in variable injury sizes. In the
real-time testing, the BLD diagnostic models performed at low accuracy levels of 50–60%,
similar to the initial model training performance. The overall low BLD performance could
be due to three primary challenges: one, the additional image variability due to the size of
the bladder being more variable than anatomical features at other scan sites; two, on US
scans, the bladder presents as a dark fluid-filled feature, similar to abdominal hemorrhage
fluid, possibly making the AI training task more complex; three, the urinary catheter
balloon is often in view in the US scan images, which could be adding an additional artifact
to the BLD training process. Additional image curation, robust model architecture, and
rigorous model fine-tuning will be needed to improve AI training performance and the
use of these models for real-time image interpretation. As for the methods of exploring
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model architectures, deep learning models used for segmentation can be applied to localize
features of injury to help the models attribute the presence of fluid around the bladder,
resulting in positive classifications. Long short-term memory (LSTM) networks used in
video analysis can be explored to give the models more context on the appearance of
variable injury sizes when making predictions on sequential images. Lastly, adding filters
or pre-processing techniques with the purpose of amplifying relevant areas of the bladder
can be tested for model training to help differentiate features between classifications.

AI models were evaluated in real time, with and without a robotic imaging platform,
highlighting the different end-user applications of this technology. The handheld manual
AI-guided application had faster performance, but still requires a user to position the probe
in the right location. Filtering approaches were used to exclude images that were not suit-
able for diagnostic evaluation, which resulted in the exclusion of a large number of images
from the diagnostic pipeline. Image filtering is critically needed for automated image
acquisition in a handheld format, as less-experienced users may place the ultrasound probe
at incorrect positions that may not have been included in diagnostic AI training datasets,
resulting in a higher likelihood of incorrect diagnostic predictions. Rather than try and
make diagnostic models more robust to handle these irregular images, filtering applications
can prevent these images from impacting diagnostic predictions. Unfortunately, due to the
lower performance of some of the diagnostic models during testing, it is hard to evaluate
the effects of some of these filtering methods on overall eFAST performance metrics. Larger
datasets paired with modified diagnostic models are needed to finalize the development of
these filters and manual AI-guided eFAST image capture techniques.

However, there are some limitations with these filtering approaches when used in
real time. For instance, over-filtering can result in removing viable images for diagnostic
evaluation, leading to reduced model performance. Both bad frame removal and guidance
filtering approaches could contribute to the over-filtering issue. The parameters for the
bad frame removal filter were generated from a subset of 2000 images per scan site; as
a result, the image subset could be not representative of the entire dataset or real-time
testing data, leading to performance issues. Similarly, the guidance filter could impede
real-time performance based on the guidance models’ own performance biases. Further, the
identification of anatomical features is not always indicative of where fluid pools around
organs or in the pleural space. Another challenge with real-time implementation is the
loss of image resolution and introduction of artifacts due to streaming the US signal. To
account for this effect, the inclusion of streamed frames at different resolutions in AI model
training data should be considered for improving performance in future implementations
of this technology.

For the robot image capture platform, different configurations had a wide impact
on the speed of performing an eFAST examination. However, this is mostly tied to the
number of images that were being captured and the carefulness being applied to ensure
that a proper eFAST viewpoint was captured at each scan site. The robot’s limited range of
motion was challenged by the deeper angles required to image the RUQ or the lower thorax,
where HTX injuries are often identified. This was due to the bulkiness of the platform
and poor clearance with the table on which the subject was placed. Guidance models
performed as expected; however, diagnostic accuracies for the thoracic scan sites were low.
This was not exclusively due to issues with the model, but also challenges with the robot’s
ability to correctly position and angle the probe on the chest to properly image two ribs
in the area that was searched. More gradual movement and better tracking of the proper
direction to move across the thoracic cavity could improve performance in future iterations
of RoboFAST. Conversely, the RUQ and BLD had similar accuracy to the testing results
of the diagnostic models. This provides evidence of the utility of robotic mechanisms to
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automate image capture, but more work is needed to further ready this platform for rapid
and proper eFAST image acquisition.

The utility of the handheld and robotic eFAST imaging platforms differ greatly in
their potential applications. Obviously, a large robotic system is not feasible in all pre-
hospital settings but could be envisioned at a site for processing mass casualty scenarios, for
automated triage assessment in a hospital, or later military echelons of care. Less human
support is needed once the technology is further refined, so a more automated design
can potentially streamline casualty in-processing. In direct contrast, the handheld tool,
if paired with small, portable US devices, could be deployed in ambulatory civilian care
or military care near the point of injury. While the technology will still require the user
to manipulate the technology to proper positions, additional guidance measures in the
software application can further lower the skill threshold during real-time deployment.

The next steps for this research effort will expand this application in several directions.
First, the underlying AI models for detecting injuries need to reach higher performance
metrics to be ready for deployment. This will require a more varied imaging dataset,
as well as improvements to the underlying AI. Model performance may be improved
if the AI is trained with temporal context from several frames, rather than relying on
predictions from a single frame. Further translation of this work will require transfer
learning AI models to use with human anatomy and injury states. To accomplish this, a
large, curated dataset would need to be acquired through collaboration with emergency
medicine departments, where these US images are routinely captured. Second, the real-
time handheld application needs an improved end-user interface so that the end user can
make smaller adjustments during thoracic scanning to ensure proper M-mode images are
captured with varied angles at each scan site. One solution to this challenge is to further
refine guidance functionality beyond the simple identification of anatomical features toward
a determination of optimal scan placement. For example, if the kidney is imaged with
optimal ultrasound probe placement and orientation, the edges of the kidney where fluid
is more commonly seen would be in view. In addition, ensuring the pleural space is
visible in the thoracic site for proper diagnostic interpretation is necessary. Lastly, the
robotic platform will be further automated to overcome some of its limitations. Improved
computer vision algorithms for anatomical landmark detection, automated ultrasound gel
deployment, and automated probe swapping between linear and curvilinear probe types
are just some of the modifications planned to improve this real-time application.

5. Conclusions
Ultrasound imaging can revolutionize medical triage in trauma cases, if it can be

pushed further forward to the point where the first medical decisions are made in both
civilian and military medicine. Towards this mindset, the real-time AI-driven triage tools
showcased here have the potential to lower the skill threshold of image-based triage deci-
sions. The handheld application has a small footprint optimal for ease of deployment if the
end user can position the ultrasound probe correctly and make proper image interpretation
decisions. The robotic-driven image capture application further automates the procedure;
however, it does so at the expense of its larger size, which will not be suitable in the earliest
phase of trauma medical care. In conclusion, both applications provide evidence of the
promise AI can provide to simplify medical imaging and improve medical triage decisions
on the future battlefield and in pre-hospital settings.
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6. Patents
Eric J. Snider and Sofia I. Hernandez Torres are co-inventors on a provisional patent

filed on the eFAST AI concept and usage (63/686,836; August 2024). Eric J. Snider, Sofia
I. Hernandez Torres, and Krysta-Lynn Amezcua are co-inventors on a provisional patent
filed on the robotic eFAST imaging concept (63/686,839; August 2024).
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