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Abstract: Ride comfort is an important requirement that passenger rail vehicles must
meet. Carbody–anti-bending system is a relatively new passive method to enhance the ride
comfort in passenger rail vehicles with long and light carbody. The resonance frequency
of the first bending mode (FBM) of such vehicle is within the most sensitive frequency
range that affects ride comfort. Anti-bending bars consist of two bars that are mounted
under the longitudinal beams of the carbody chassis using vertical supports. When the
carbody bends, the anti-bending bars develop moments in the neutral axis of the carbody
opposing the bending of the carbody. In this way, the carbody structure becomes stiffer
and the resonance frequency of the FBM can be increased beyond the upper limit of the
discomfort range of frequency, improving the ride comfort. The theoretical principle of this
method has been demonstrated employing a passenger rail vehicle model that includes
the carbody as a free–free Euler–Bernoulli beam and the anti-bending bars as longitudinal
springs jointed to the vertical supports. Also, the method feasibility has been verified in
the past using an experimental scale demonstrator system. In this paper, a new model of
the carbody–anti-bending bar system is proposed by including three-directional elastic
elements (vertical and longitudinal direction and rotation in the vertical–longitudinal plane)
to model the fastening of the anti-bending bars to the supports and the vertical motion of
the anti-bending bars modelled as free–free Euler–Bernoulli beams connected to the elastic
elements of the fastening. In the longitudinal direction, the anti-bending bars work as
springs connected to the longitudinal elastic elements of the fastening. The modal analysis
method is applied to point out the basic properties of the frequency response functions
(FRFs) of the carbody–anti-bending bars system, considering the bounce and FBMs of both
the carbody and the anti-bending bars. A parametric study of the FRF of the carbody shows
that the vertical stiffness of the fastening should be sufficiently high enough to eliminate
the influence of the modes of the anti-bending bars upon the carbody response and to
reduce the anti-bending bars vibration in the frequency range of interest. Longitudinal
stiffness of the elastic elements of the fastening is critical to increase the bending resonance
frequency of the carbody out of the sensitive range. Longer anti-bending bars can improve
the capability of the anti-bending bars to increase the bending resonance without the risk
of interference effects caused by the bounce and bending modes of the anti-bending bars.

Keywords: carbody; anti-bending bars; Euler–Bernoulli beam; bounce mode; FBM; fastening
stiffness

1. Introduction
Railway vehicles are subjected to a complex vibration behaviour coming from the

3D irregularity of the track [1–3], which affects the ride quality and comfort [4–6], the
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traction-braking behaviour [7–9], and produces rolling surfaces wear and fatigue in the
structure of the vehicle [10–12].

Much effort has been made to develop research to enhance the ride comfort regarding
vertical vibration in passenger rail vehicles, especially in high-speed vehicles. High-speed
vehicles must meet specific requirements that involve distinct approaches. For instance,
high-speed vehicles should be lighter to reduce energy consumption and vibrations trans-
mitted through the ground, resulting in lower manufacturing costs [13,14]. When this
requirement is applied to a carbody with a long length, its structure becomes more flexi-
ble [15], causing intense structural vibration that affects the ride comfort and the life service
because of material fatigue [16,17]. As for ride comfort, this deteriorates because the FBM
of the light, long-length carbody, which is the most important regarding vibration behavior,
has its eigenfrequency within the frequency range of maxim sensitivity of the human
being [18–20].

Two main approaches have been developed to enhance the ride comfort in high-speed
vehicles: (a) isolating the carbody by applying passive, semi-active, and active methods to
diminish the transmittal of the vibration generated by track irregularity to the carbody via
suspension [21–23]; and (b) reducing the structural vibration of the carbody by applying
passive and active methods using specific devices mounted to the carbody [24–27].

Semi-active and active methods are based on the use of different types of actuators
that require complex command and control systems and are therefore expensive and less
reliable [28–30].

Passive methods involve the use of passive elements of suspension (springs and
dashpots) or different mechanical devices that are simpler to make, less costly, and more
reliable [31–33].

One of the passive methods of reducing the bending vibrations of light passenger
rail carbody to enhance ride comfort involves the use of a carbody–anti-bending bars
system [34]. This system has two bars mounted under the carbody chassis via vertical
supports attached to the longitudinal beams of the chassis, and its aim is to increase the
frequency of the FBM of the carbody over the upper limit of the sensitivity range of the
human body to vertical vibrations.

Figure 1 shows how the carbody–anti-bending bars system works, where the carbody
is labelled 1, the anti-bending bar is labelled 2, the supports are labelled 3, and the secondary
suspension is labelled 4, which are displayed for simplicity. The carbody motion is induced
by the motion of the bogies (not shown in the figure) zb1 and zb2 via the elements of the
secondary suspension.
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Figure 1. Principle of the carbody—anti-bending bars: 1. carbody; 2. anti-bending bar; 3. support;
4. secondary suspension; zb1 and zb2—displacements imposed by the bogies.

When the FBM of the carbody is excited, the cross-sections in which the anti-bending
bar supports are fixed, located on either side of the vertical axis of symmetry of the carbody,
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rotate in opposite directions. Depending on how the carbody bends, the anti-bending bars
are subjected to stretching or compression. In this way, longitudinal elastic reaction forces
appear in the anti-bending bars acting on the supports (figured by red arrows), resulting
in longitudinal forces and bending moments at the level of the neutral axis of the carbody.
Bending moments are opposed to the bending motion of the carbody. These moments are
of an elastic nature, and therefore their effect leads to an increase in the bending stiffness of
the carbody and the eigenfrequency of its FBM.

To demonstrate the possibility of enhancing the ride comfort by increasing the eigen-
frequency of the FBM of the carbody beyond the upper limit of the frequency range of
maximum sensitivity to vertical vibrations with the aid of the anti-bending bar system,
an original model of the railway vehicle with seven degrees of freedom was used in the
cited reference. The carbody was represented as a free–free Euler–Bernoulli equivalent
beam, and its rigid modes of vertical vibration and the FBM have been included in the
vehicle model via the modal analysis method. The two bogies of the vehicle have been
modelled as double-degree rigid objects, namely bounce and pitch. The anti-bending bars
have been reduced to linear elastic elements articulated by supports, hereinafter referred
to as the spring model. The mass of the anti-bending bars in relation to the weight of the
carbody was neglected. The parameters of the anti-bending bars, respectively their length
and diameter, are determined based on the condition to achieve a particular frequency
of bending of the carbody with anti-bending bars, advantageous for comfort. However,
to limit the interference between the bending vibration of the carbody and the bending
vibration of the anti-bending bars, the maximum length of the bars has been set so that the
FBM frequency of the anti-bending bars is one octave higher than the FBM of the carbody.

The feasibility of the method of improving the comfort of passenger vehicles by
using the anti-bending bar system was proven via an experimental scale demonstrator
system [35,36].

The objective of this paper is to deepen the research on the vertical vibrations of
vehicles with anti-bending bars on the basis of the development of the model of the
carbody–anti-bending bars system presented in [34]. A new model of the carbody–anti-
bending bar system has been proposed by including the elastic elements for fastening the
anti-bending bars of supports capable of relative vertical and longitudinal displacements
and relative rotation in the vertical-longitudinal plane. The anti-bending bars are modelled
as free–free Euler–Bernoulli beams that are connected at the ends by the elastic elements
of the support fasteners. In this way, the model of the carbody–anti-bending bar system
allows the description of the vertical bending movement of the anti-bending bars by
considering the rigid modes and the FBM. On the longitudinal direction, the model of the
anti-bending bars previously proposed in ref. [34] is preserved. The paper aims to highlight
the basic properties of the carbody–anti-bending bar system regarding the following:
(a) the correlation between the bounce and bending frequencies of the carbody–anti-bending
bar system and the stiffness of the elastic elements of the fastening of the anti-bending
bars to the supports; (b) the influence of the elastic elements of the fastening of the anti-
bending bars by the supports on the FRFs; and (c) identifying opportunities to augment the
frequency of carbody bending.

2. Mechanical Model of the Carbody–Anti-Bending Bar System and the
Equations of Motion

Figure 2 shows the mechanical model of the carbody–anti-bending bars system, in
which the vehicle carbody and the anti-bending bars are considered free–free Euler–
Bernoulli beams. The anti-bending bars are attached to the vertical supports fixed to
the carbody chassis longerons by elastic elements that work in three directions: verti-
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cal translation, longitudinal translation along the anti-bending bars, and rotation in the
vertical–longitudinal plane.
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Figure 2. Mechanical model of the carbody—anti-bending bars system.

The carbody rests on the elements of the secondary suspension, which are modelled
as Kelvin–Voigt systems working only in the vertical direction.

The parameters of the model are as follows: EcIc—the bending stiffness of the car-
body, where Ec is the Young modulus and Ic is the second moment of area of the carbody
cross-section; ρc—the carbody mass per unit length; µc—the structural damping coefficient
of the carbody; lc—the length of the carbody; lc1,c2—the distances between the secondary
suspension elements and the left end of the carbody; 2kzc—the elastic constant of the sec-
ondary suspension at one end of the carbody; 2czc—the damping constant of the secondary
suspension at one end of the carbody; EI—the bending stiffness of a bar, where E is the
Young modulus and I is the second moment of area of the bar cross-section; ρ—the mass of
one bar per unit length; µ—the structural damping coefficient of the bar; d—the diameter
of a bar; l—the length of a bar; kx—the longitudinal stiffness of the bar–support fastening;
kz—the vertical stiffness of the bar–support fastening; kθ—the angular stiffness of the
bar–support fastening for rotations in the vertical–longitudinal plane; l1,2—the distances
between the bar supports and the left end of the carbody; h—the distance between the
anti–bending bars and the neutral axis of the carbody.

In the longitudinal direction, the anti-bending bars are reduced to elastic elements
of stiffness k (for a bar) that work in series with the longitudinal elastic elements of the
bars’ attachment to their supports (Figure 3). The cumulative effect is an equivalent elastic
element with the stiffness.

ke = k
kx

2k + kx
. (1)

The excitation of the carbody—anti-bending bars system comes from the vertical
displacements of the bogies, zb1,b2, which are applied at the level of the secondary
suspension elements.
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Figure 3. Mechanical model of the anti-bending bars in the longitudinal direction.

The motion of the carbody is described by the function uc(xc, t), which represents the
displacement of the xc section at the time t with respect to the Ocxczc reference frame.

The motion of the anti-bending bars is described similarly by means of a single function
of the form u(x, t) since the two bars move identically due to the symmetry and the absence
of the rolling motion of the carbody; x locates any section of the bar in relation to the
Oxz reference system originating at the left end of the anti-bending bar, at the level of its
neutral axis.

The presented model can be considered a simplified model of the railway vehicle,
obtained by neglecting the components of the bogies and reducing them to simple vertical
displacements imposed on the secondary suspension elements. However, the simplified
vehicle model has the particularity of having the same fundamental properties as those of
the complete vehicle model. The advantage of the simplified model lies in the possibility
of easily establishing the correlation between the characteristics of the anti-bending bar—
support clamping and evaluating the coupling between the anti-bending bar vibration and
the carbody vibration.

Such an approach is not a new one. Cheli and Corradi used a similar model to
analyse the excitation mechanism of the vibration modes of the carbody [37]. However, the
simplified model of the vehicle adopted here is different from the one presented in the cited
work above because of the anti-bending bar system. In addition, the problem addressed by
Cheli and Corradi is totally different from the problem dealt with in this paper, as can be
seen from the presentation above.

Figure 4 shows the loads acting on the carbody and Figure 5 displays the corresponding
reactions acting on the anti-bending bars.
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Applying the free–free Euler–Bernoulli beam theory for both carbody and anti-bending
bars, the equations of motion read as follows:

Ec Ic
∂4uc(xc, t)

∂x4
c

+ µc Ic
∂5uc(xc, t)

∂x4
c ∂t

+ ρc
∂2uc(xc, t)

∂t2 =

2
∑

i=1
[Fzciδ(xc − lci) + Fziδ(xc − li)]−

2
∑

i=1
(Mi − Fxih)

dδ(xc − li)
dxc

,
(2)

2EI ∂4u(x,t)
∂x4 + 2µI ∂5u(x,t)

∂x4∂t + 2ρ ∂2u(x,t)
∂t2 = −Fz1δ(x − l)− Fz2δ(x)+

M1
dδ(x−l)

dx + M2
dδ(x)

dx ,
(3)

where δ(.) is the Dirac delta function; Fzci are the forces in the secondary suspension; and
Fxi, Fzi, and Mi are the forces and the moments in the elastic elements of the anti-bending
bars—supports fastenings

Fzci = −2czc

(
∂uc(lci, t)

∂t
− .

zbi

)
− 2kzc[uc(lci, t)− zbi], (4)

Fx1,2 = ±2keh
[

∂uc(l1,t)
∂xc

− ∂uc(l2,t)
∂xc

]
, .

Fz1 = −2kz[uc(l1, t)− u(l, t)], Fz2 = −2kz[uc(l2, t)− u(0, t)],

M1 = −2kθ
[

∂uc(l1,t)
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− ∂u(l,t)
∂x

]
, M2 = −2kθ

[
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− ∂u(0,t)

∂x

]
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(5)

Employing the modal analysis method, the displacement of the carbody and the
displacement of the anti-bending bars can be described as follows.

uc(xc, t) = zc(t) +
(

xc −
lc
2

)
θc(t) + Yc(xc)Tc(t), (6)

where zc(t) and θc(t) are the bounce and pitch of the carbody, Tc(t) and Yc(xc) are the time
coordinate and the eigenfunction of the FBM of the carbody, and we obtain the following:

u(x, t) = z(t) +
(

x − l
2

)
θ(t) + Y(x)T(t), (7)

where z(t) and θ(t) are the bounce and pitch of the anti-bending bars, T(t) and Y(x) are the
time coordinate and the eigenfunction of the FBM of the anti-bending bars.

The two eigenfunctions have similar shapes.

Yc(xc) = sin(αcxc) + sinh(αcxc)−
sin(αclc)− sinh(αclc)
cos(αclc)− cosh(αclc)

(cos(αcxc)− cosh(αcxc)), (8)

Y(x) = sin(αx) + sinh(αx)− sin(αl)− sinh(αl)
cos(αl)− cosh(αl)

(cos(αx)− cosh(αx)), (9)

where αc =
4
√

p2
cρc

Ec Ic
and α =

4
√

p2ρ
EI verify the following characteristic equations:

cosαclc coshαclc − 1 = 0 (10)

and
cosαl coshαl − 1 = 0 (11)

where pc and p are the natural angular frequency of the FBM of the carbody and anti-
bending bars.
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Next, following the modal analysis method steps that are presented in the Appendix A,
the following equations of motion can be distilled:

• For the bounce motion:

mc
..
zc + 4czc

.
zc + 4(kzc + kz)zc + 4εczc

.
Tc + 4(εkzc + βkz)Tc − 4kzz − 4γkzT =

2czc
( .
zb1 +

.
zb2
)
+ 2kzc(zb1 + zb2),

(12)

2m
..
z + 4kzz + 4γkzT − 4kzzc − 4βkzTc = 0, (13)

• For the pitch motion:

Jc
..
θc + 4a2

c czc + (4a2
c kzc + l2kz + 4kθ)θc − (l2kz + 4kθ)θ =

2acczc
( .
zb1 −

.
zb2
)
+ 2ackzc(zb1 − zb2),

(14)

2J
..
θ+ (l2kz + 4kθ)θ− (l2kz + 4kθ)θc = 0, (15)

• For the FBM:

mmc
..
Tc + (cmc + 4ε2czc)

.
Tc + (kmc + 4ε2kzc + 4β2kz + 4β′2kθ + 8β′2h2ke)Tc + 4εczc

.
zc+

(4εkzc + 4βkz)zc − 4βkzz − 4(βγkz − β′γ′kθ)T = 2εczc(
.
zb1 +

.
zb2) + 2εkzc(zb1 + zb2),

(16)

2mm
..
T + 2cm

.
T + 2(km + 2γ2kz + 2γ′2kθ)T + 4γkzz − 4γkzzc − 4(βγkz − β′γ′kθ)Tc = 0, (17)

where mmc, cmc, and kmc are the modal mass, damping, and stiffness for the FBM of the
carbody and mm, cm, and km are the modal mass, damping, and stiffness associated to the
first mode of the anti-bending bars.

mmc = ρc

lc∫
0

Y2
c dxc, cmc = µc Ic

lc∫
0

(
d2Yc

dx2
c

)2

dxc, kmc = Ec Ic

lc∫
0

(
d2Yc

dx2
c

)2

dxc, (18)

mm = ρ

l∫
0

Y2dx, cm = µI
l∫

0

(
d2Y
dx2

)2

dx, km = EI
l∫

0

(
d2Y
dx2

)2

dx. (19)

The following notations have been used in equations of motion (12)–(17):

Yc(lc1) = Yc(lc2) = ε, Yc(l1) = Yc(l2) = β,

dYc(lc1)
dxc

= −dYc(lc2)
dxc

= ε′, dYc(l1)
dxc

= −dYc(l2)
dxc

= β′,

Y(0) = Y(l) = γ, dY(0)
dx = −dY(l)

dx = γ′.

(20)

Examining equations of motion (12)–(17), there are two independent sets of equations
of motion: (a) Equations (12) and (13) and (16) and (17) that describe symmetrical motions
of bounce and bending; (b) Equations (14) and (15) for antisymmetric pitch motion.

Excitation of the carbody–anti-bending bar system has two modes of excitation:
(a) symmetrical mode of excitation, implying the bogie displacements sum, zb1 + zb2,
which excites the symmetrical motions; (b) antisymmetric mode of excitation, involving the
difference between the bogie displacements, zb1 − zb2, exciting the antisymmetric motion.

3. Frequency Response Functions
To determine the FRFs, it is considered that both the excitation of the carbody–anti-

bending bars system and its response are of the harmonic shape. It is presumed that
the displacements zb1 and zb2 are harmonic functions of angular frequency ω with equal
amplitudes. The two displacements are in phase to excite the symmetrical modes, written
as follows:

zb1,2 = Zb cosωt (21)
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or out of phase to excite the antisymmetric modes, written as follows:

zb1,2 = ±Zb cosωt (22)

where Zb is the amplitude.
The response of the carbody–anti-bending bars system is described by the following relations:

zc = Zc cos(ωt +φzc), θc = Θc cos(ωt +φθc), Tc = Tco cos(ωt +φTc), (23)

z = Z cos(ωt +φz), θ = Θ cos(ωt +φθ), T = To cos(ωt +φT), (24)

where Zc, Θc, and Tco, and φzc, φθc, and φTc are the amplitudes and the initial phases of
the carbody coordinates, and Z, Θ, and To, and φz, φθ and φT are the amplitudes and the
initial phases of the anti-bending bars coordinates.

Complex variables associated to the real ones are introduced with the following:

zb1,2 = Zbeωt (25)

zc = Zceiωt, θc = Θceiωt, Tc = Tcoeiωt, (26)

z = Zeiωt, θ = Θeiωt, T = Toeiωt, (27)
where the complex amplitudes are given by the relations, written as follows:

Zb = Zbei×0 (28)

Zc = Zceiφzc , Θc = Θceiφθc , Tco = TcoeiφTc , (29)

Z = Zeiφz , Θ = Θeiφθ , To = ToeiφT . (30)
Complex variables verify the equations of motion, written as follows:

• Symmetrical modes:[
−ω2mc + 4iωczc + 4(kzc + kz)

]
Zc + 4(εkzc + βkz + iωεczc)Tc − 4kzZ − 4γkzT =

4(iωczc + kzc)Zb
(31)

[
−ω2mmc + iω(cmc + 4ε2czc) + (kmc + 4ε2kzc + 4β2kz + 4β′2kθ + 8β′2h2ke)

]
Tc+

4[iωεczc+ (εkzc + βkz)]Zc − 4βkzZ − 4(βγkz − β′γ′kθ)T = 4ε(iωczc + kzc)Zb
(32)

(−2ω2m + 4kz)Z + 4γkzT − 4kzZc − 4βkzTc = 0 (33)[
−2ω2mm + 2iωcm + 2(km + 2γ2kz + 2γ′2kθ)

]
T − 4γkzZc − 4(βγkz − β′γ′kθ)Tc = 0. (34)

• Antisymmetric modes:[
−ω2 Jc + 4iωa2

c czc + (4a2
c kzc + l2kz + 4kθ)

]
Θc − (l2kz + 4kθ)Θ =

4(iωacczc + ackzc)Zb
(35)[

−2ω2 J
..
θ+ (l2kz + 4kθ)

]
Θ − (l2kz + 4kθ)Θc = 0. (36)

There are two sets of algebraic equations; the first has four equations, (31)–(34), and
the second has 2 equations, (35) and (36), where the complex amplitudes are the
unknowns. Solving the two sets of algebraic equations, the FRFs of the coordinates
are obtained as follows:

• For symmetrical modes:

Hzc(ω) =
Zc(ω)

Zb
, HTc(ω) =

Tc(ω)

Zb
, Hz(ω) =

Z(ω)

Zb
, HT(ω) =

T(ω)

Zb
; (37)

• For antisymmetric modes:

Hθc(ω) =
Θc(ω)

Zb
, Hθ(ω) =

Θ(ω)

Zb
. (38)

Finally, the FRFs of the displacement can be calculated as follows:

• For the carbody:
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Hc(xc,ω) = Hzc(ω) +

(
xc −

lc
2

)
Hθc(ω) + Yc(x)HTc(ω), (39)

• For the anti-bending bars:

H(x,ω) = Hz(ω) +

(
x − l

2

)
Hθ(ω) + Y(x)HT(ω). (40)

For comparison, the following two cases are considered: (a) carbody without anti-
bending bars and (b) carbody with anti-bending bars—the spring model, as in ref. [34].

The FRFs of the coordinates for the carbody without anti-bending bars are obtained
by solving Equations (31), (32), and (35) for ke = 0, kz = 0, and kθ = 0.

(−ω2mc + 4iωczc + 4kzc)Zc + 4(εkzc + iωεczc)Tc = 4(iωczc + kzc)Zb (41)[
−ω2mmc + iω(cmc + 4ε2czc) + (kmc + 4ε2kzc)

]
Tc + 4(iωεczc + εkzc)Zc = 4ε(iωczc + kzc)Zb (42)

(−ω2 Jc + 4iωa2
c czc + 4a2

c kzc)Θc = 4(iωacczc + ackzc)Zb (43)

The FRFs of the coordinates for the carbody with anti-bending bars—the spring
model—are obtained by solving Equations (31), (32), and (35) for ke = k, kz = 0, and kθ = 0.

(−ω2mc + 4iωczc + 4kzc)Zc + 4(iωεczc + εkzc)Tc = 4(iωczc + kzc)Zb (44)[
−ω2mmc + iω(cmc + 4ε2czc) + (kmc + 4ε2kzc + 8β′2h2k)

]
Tc + 4(iωεczc + εkzc)Zc =

4ε(iωczc + kzc)Zb
(45)

and Equation (43) for the pitch motion of the carbody.

4. Assessment of the Dynamic Response of the Carbody–Anti-Bending
Bar System

In this section, the dynamic response of the carbody—anti-bending bar system is
calculated and analysed based on the FRFs of the mechanical model presented above.
Only the symmetrical modes are considered because the displacement at the centre of the
carbody is the quantity of interest.

The reference values of the carbody model parameters are those mentioned in the
reference [34], and these are presented in Table 1.

Table 1. Parameters of the carbody.

mc = 34,000 kg
EcIc = 3.158 × 109 Nm2

lc = 26.4 m
2ac = 19 m

lc1 = 22.7 m
lc2 = 3.7 m

2kzc = 1.2 MN/m
2czc = 34.28 kNs/m

mmc = 35,224 kg
kmc = 88.998 MN/m
cmc = 53.117 kNs/m

h = 1.2 m;

Anti-bending bars parameters are given in Table 2. The main parameters, l = 5.28 m
and d = 0.17 m, are taken from ref. [34].

Table 2. Parameters of the anti-bending bars.

m = 941 kg
E = 210 GPa

l = 5.28 m
d = 0.17 m

I = 4.0998 × 10−5 m4

k = 902.76 MN/m

mm = 975 kg
km = 30.33 MN/m

cm = 860 Ns/m
l1 = 15.84 m
l2 = 10.56 m

Figure 6 shows the FRF of the displacement of the middle of the carbody without and
with anti-bending bars—the spring model, calculated in the absence of damping. It is about
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the two reference cases. The dynamic characteristic of the carbody is henpecked by the
two peaks that correspond to the resonance frequencies of the carbody on the secondary
suspension, whose movement presents only two degrees of freedom in the middle of the
carbody due to the pitch motion not being present. Resonance frequencies of the carbody
without anti-bending bars are given by the bounce mode at 1.328 Hz and by the FBM at
8.058 Hz. When the carbody is equipped with anti-bending bars, the resonance frequency
of the FBM reaches up to 14.05 Hz, while the resonance frequency of the bounce mode
remains unchanged at 1.334 Hz.
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(b) carbody with anti-bending bars (spring model).

In the following lines, the anti-bending bar modes and the stiffness of the fastening of
the anti-bending bars to supports are considered. First, the longitudinal elasticity of the
fastening of the anti-bending bars to supports is neglected, meaning kx → ∞ or ke = k.

For simplicity, the angular stiffness kθ is calculated depending on the vertical stiffness
kz, written as follows:

kθ = kz
b2

12
, (46)

where b is the fastening width. Fastening width depends on the anti-bending bar diameter,
and, as a guideline, it is considered b = 1.3 × d.

Figure 7 shows the dynamic response in the centre of the carbody and in the middle
of the anti-bending bars for several values of the vertical stiffness of the fastening of the
anti-bending bars to the supports. Damping is not considered yet. The calculation was
performed on the frequency range 0.1–100 Hz by discretising it with the step ∆f = 10 µHz.
All diagrams show 4 peaks corresponding to the four resonance frequencies of the system.
However, the FRF in the centre of the carbody does not apparently show the fourth peak
in diagrams (a) and (b). This is because the discretisation step is too large to catch the
resonance peak due to the very poor coupling between the carbody vibration and that of the
anti-bending bars, caused by the high elasticity of the fastening system. Indeed, by choosing
a low enough frequency step, one can highlight the fourth resonance frequency, as Figure 8
shows. Here, the frequency step is 0.1 µHz, and the fourth resonance frequency appears
in the FRF of the displacement at the centre of the carbody between 28.115 and 28.1155 Hz
for kz = 10 kN/m and between 28.460 and 28.465 Hz for kz = 100 kN/m.

When the coupling between the carbody vibration and the anti-bending bars vibra-
tion is stronger, as seen in Figure 7c,d, practically only the resonance frequencies of the
anti-bending bars are changed while the resonance frequencies of the carbody remain
almost unchanged. Thus, the resonance frequency of the anti-bending bars bounce reaches
6.597 Hz for kz = 1 MN/m and 11.08 Hz for kz = 10 MN/m. At the same time, the resonance
frequency of the bending of the anti-bending bars increases first to 31.91 Hz (kz = 1 MN/m)
and then to 58.40 Hz (kz = 10 MN/m).
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Figure 9 shows the FRFs in the middle of the carbody and in the centre of the
anti-bending bars when the stiffness of the fastening of the anti-bending bars to the
supports takes high values. The diagrams show the response functions also in the range
of 0.1 to 100 Hz, without considering the influence of damping. In diagrams (a), (b), and
(c) of Figure 9, the FRFs show three peaks corresponding to the resonance frequencies
due to the bounce and bending of the carbody and the bounce of the anti-bending
bars. The fourth peak, which is due to the bending of the anti-bending bars, is located
outside the range considered for simulation. Diagram (d) shows only the resonance
peaks of the carbody, the bounce of the anti-bend bars being outside the frequency
range represented.
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Based on the analysis of the frequency response of the carbody and the anti-bending
bars calculated with the non-damping model, it is concluded that the resonance frequen-
cies of the carbody on the secondary suspension are not significantly influenced by the
presence of the anti-bending bars or by the vertical and rotational stiffness of the fasten-
ing of the anti-bending bars to the supports. On the flip side, the resonance frequencies
of anti-bending bars increase continuously as the fastening of the anti-bending bars to
the supports is stiffer. The justification comes from the fact that the mass of the carbody
is much greater than the mass of the anti-bending bars, and its movement is slightly
influenced by the presence of the anti-bending bars. On the other hand, the restriction
imposed on the length of the anti-bending bars, resulting from the requirement that the
resonance frequency at bending the anti-bending bars is no less than one octave from
the resonance frequency at bending the carbody, is not necessary when the stiffness of
the fastening of the anti-bending bars to the supports is sufficiently high, because their
bending frequency increases with the stiffness of the fastening of the anti-bending bars
to the supports.
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Figures 10 and 11 show the influence of the model’s damping on the FRFs of the
carbody and anti-bending bars. It is about the damping of the secondary suspension, as
well as the structural damping of the carbody and the anti-bending bars. For comparison,
the FRF of the carbody without/with anti-bending bars is presented; in the latter case, the
non-inertia bar type model was used. The effect of the anti-bending bars (spring model)
on the frequency response is observed by increasing the bending frequency of the carbody
from 8 Hz to 14 Hz.
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In the case of low stiffness of the fastening between the anti-bending bars and the
supports, Figure 10a,b, the frequency response curve in the middle of the carbody overlaps
that calculated utilising the anti-bending bars (spring model), except for the area around
the bounce frequency of the anti-bending bars. The vibration behaviour of the anti-bending
bars is much more intense than that of the carbody in the low-frequency range due to the
bounce resonance of the bars. At the same time, the vibration of the anti-bending bars has
a poor damping at the bending frequency of approx. 28 Hz.

When the vibrations of the carbody and anti-bending bars are more stronger coupled
(Figure 10c,d), the characteristics of the FRFs of the carbody–anti-bending bars system
mentioned above are preserved, with the difference that the vibration of the anti-bending
bars decreases in intensity at its bounce frequency but increases in the rest, especially at its
bending resonance. In diagram (c), the vibration of the anti-bending bars is lower than that
of the carbody at the bending frequency of the carbody, while in diagram (d), when the
bounce of the anti-bending bars comes closer to the bending frequency of the carbody, the
vibration of the anti-bending bars is greater than that of the carbody. It is also interesting
to note that the bending resonance of the carbody increases to a certain extent compared
to the ideal case where the carbody model is “fitted” with spring-type anti-bending bars.
This aspect is the effect of the coupling between the bounce mode of the anti-bending bars
and the bending mode of the carbody and it is especially visible in diagram (d), where the
vertical stiffness of the fastening of the anti-bending bars to the supports is 10 MN/m.

When the vertical stiffness of the fastening of the anti-bending bars to the supports
is higher, for instance, kz = 100 MN/m and kz = 1 GN/m, the bounce resonance of the
anti-bending bars is near the bending resonance of the carbody, according to Figure 11a,b.
The vibration of the carbody has two peaks between 10 Hz and 20 Hz, and both peaks are
lower than the peak calculated with the help of the spring model of the anti-bending bars
(dotted black line). The vibration of the anti-bending bars is more intense than that of the
carbody when the excitation frequency is around the two peaks.

Diagrams (c) and (d) from Figure 11 present the FRFs for the case of very rigid fastening
of the anti-bending bars to the supports. In diagram (c), where kz = 10 GN/m, the FRFs
of the carbody—anti-bending bars system have three peaks, of which the one located at
the highest frequency corresponds to the bounce of the anti-bending bars, and in diagram
(d), where kz = 100 GN/m, these functions have only two peaks because the bounce of the
anti-bending bars is out of the range of interest. As regards the vibration of the carbody,
the results obtained are close to those obtained with the spring model of the anti-bending
bars with two differences: (a) the peak related to the bending of the carbody has a slightly
lower frequency, 13.51 Hz compared to 14.05 Hz resulting from the spring model of the
anti-bending bars; (b) the vibration of the carbody shows the apex corresponding to the
bounce of the anti-bending bars, as shown in diagram (c). The vibration of the anti-bending
bars is practically equal to that of the carbody at low frequencies, up to 4–5 Hz, after which,
progressively, it becomes higher.

Next, the influence of the longitudinal stiffness of the fastening of the anti-bending
bars to the supports is analysed. The longitudinal stiffness of the fastening is linked to the
longitudinal stiffness of the anti-bending bar k by a relationship of the shape.

kx = Kk, (47)

where K is a proportionality factor.
Figure 12 shows the FRFs in the centre of the carbody for different values of the stiffness

fastening of the anti-bending bars to the supports, from 0 up to 30 Hz. The parametric
calculation was carried out by choosing the last four values of the vertical stiffness of
the fastening between the anti-bending bars and the supports considered in the previous
case, so that the bounce frequency of the anti-bending bars is higher than the bending
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frequency of the carbody. For each value of the vertical stiffness of the fastening of the
anti-bending bars to the supports, five values of the longitudinal stiffness kx corresponding
to the proportionality factor K are tested.

K ∈ {0.5, 1, 2, 5, ∞} (48)
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In diagrams (a) and (b) in Figure 12, both the peaks representing the bending resonance
of the carbody and the bounce resonance of the anti-bending bars are close to each other. In
diagrams (c) and (d), the peak of the bounce resonance of the anti-bending bars exceeds the
limit of the frequency range presented. When the longitudinal stiffness of the fastening of
the anti-bending bars to the support decreases, the peak frequency of the bounce resonance
of the anti-bending bars decrease as the details in the diagrams (a) and (b) show. On the
other hand, in all cases shown in Figure 12, the frequency of the peak corresponding to
the bending resonance of the carbody decreases too as the longitudinal stiffness of the
fastening becomes lower. The frequency values of these peaks are listed in Table 3.

Table 3. Carbody bending resonance frequency.

Vertical
Stiffness kz

Proportionality Factor K
∞ 5 2 1 0.5

100 MN/m 12.20 Hz 11.51 Hz 10.07 Hz 9.88 Hz 9.11 Hz
1 GN/m 13.21 Hz 11.98 Hz 10.93 Hz 10.00 Hz 9.18 Hz

10 GN/m 13.52 Hz 12.16 Hz 11.04 Hz 10.07 Hz 9.22 Hz
100 GN/m 13.56 Hz 12.19 Hz 11.05 Hz 10.08 Hz 9.23 Hz

If the vertical stiffness kz is 100 MN/m, then the bending frequency of the carbody
decreases from 12.2 Hz to 9.11 Hz, and for kz = 1 GN/m, the same frequency decreases from
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13.2 Hz to 9.18 Hz. Regarding the last two cases considered, no important differences can
be identified between them; the bending frequency of the carbody decreases from approx.
13.5 Hz to about 9.2 Hz.

On the other hand, when the longitudinal stiffness of the fastening equals kx = 0.2 k,
which means K = 0.5, the frequency of the bending resonance of the carbody is between
9.11 and 9.23 Hz, whatever the vertical stiffness of the fastening.

In any case, the results obtained show the importance of ensuring longitudinal stiffness
at a sufficiently high level so as not to compromise the functionality of the anti-bending
bar system.

The effect of increasing the length of anti-bending bars on the FRFs of the carbody
is further analysed. The analysis is restricted to one value of the vertical stiffness of the
fastening, kz = 10 GN/m, and two cases regarding the proportional factor K, respectively
K = 2 and K = 5.

Figure 13 shows the FRF of the carbody for five values of the length of the anti-bending
bars in arithmetic progression with a ratio of 0.8 m starting from a reference value of 5.28 m.
Diagram (a) is constructed for K = 2, and the diagram (b), for K = 5, and the blue curve
represents the reference FRF of the carbody. As the length of the anti-bending bars is longer,
the bounce mode frequency of the bars decreases because the mass of the anti-bending bars
increases. On the other hand, the effect of increasing the length of the anti-bending bars on
the bending frequency of the carbody can be observed in both cases represented. For K = 2,
the frequency of the carbody bending increases from 11.04 Hz to 11.84, and when K = 5,
this frequency grows from 12.16 Hz for l = 5.28 m to 13.14 Hz for l = 8.48 m.
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5. Conclusions
In this work, a simplified model of the vehicle comprising the carbody resting on the

secondary suspension and fitted with a system of anti-bending bars has been elaborated
to explore the basic properties of the FRFs of the carbody–anti-bending bars system and
to investigate the effectiveness of the bending vibration of the anti-bending bars and the
stiffness of the fastening of the anti-bending bars to the supports upon the FRF of the
carbody. To this aim, both carbody and anti-bending bars have been modelled as free–free
Euler–Bernoulli beams, considering the rigid and FBMs and the vertical, longitudinal, and
rotational stiffness in the vertical–longitudinal plane of the fastening of the anti-bending
bars to the supports. The parametric study performed in this paper resulted in the following
successive outcomes:

(a) In general, the vibration of the carbody is influenced by the interference with the
bounce mode of the anti-bending bars, but it becomes independent when the vertical
stiffness of the fastening is high enough;
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(b) The vibration of the anti-bending bars is significantly higher than the carbody vibra-
tion because of their bounce and bending resonances when the vertical stiffness of the
fastening is not sufficiently strong enough;

(c) To cut down the vibration of the anti-bending bars, high vertical stiffness in the
fastening of the anti-bending bars to the supports is necessary;

(d) The resonance frequencies of the bounce and bending modes of the anti-bending bars
continuously increase as the vertical stiffness of the fastening of the anti-bending bars
to the supports is stiffer;

(e) The longitudinal elasticity of the fastening of the anti-bending bars to the supports
reduces the bending frequency of the carbody and can even compromise the capability
of the anti-bending bar system to raise the bending frequency of the carbody out of
the sensitivity range;

(f) Compensation for the unfavorable influence of the longitudinal elasticity of the
fastening of the anti-bending bars to the supports can be made by adopting longer
anti-bending bars.

Further research aims to integrate the new model of the carbody–anti-bending bars
system into the model of the entire passenger vehicle running on a track with random
irregularity to assess the influence of this system upon the ride quality and ride comfort
and to identify the possibilities to improve the vehicle performance.
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Appendix A
Displacements of the carbody and anti-bending bars, Equations (6) and (7), are intro-

duced in the following equations of motion (Equations (2) and (3)):

Ec Ic
d4Yc

dx4
c

Tc + µc Ic
d4Yc

dx4
c

.
Tc + ρc

[
..
zc +

(
xc −

lc
2

)
..
θc + Yc

..
Tc

]
=

2
∑

i=1
[Fzciδ(xc − lci) + Fziδ(xc − li)]−

2
∑

i=1
(Mi − hFxi)

dδ(xc − li)
dxc

,
(A1)

2EI d4Y
dx4 T + 2µI d4Y

dx4

.
T + 2ρ

[..
z +

(
x − l

2

) ..
θ+ Y

..
T
]
= −Fz1δ(x − l)− Fz2δ(x)

+M1
dδ(x−l)

dx + M2
dδ(x)

dx .
(A2)

Equation (A1) is integrated on the interval [0, lc] and Equation (A2) is integrated on
the interval [0, l].
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Ec IcTc
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Performing the integrals, the following equations of motion for the carbody and
anti-bending bars bounce are obtained:

mc
..
zc =

2

∑
i=1

(Fzci + Fzi), (A5)

2m
..
z = −(Fz1 + Fz2), (A6)

where the following results established by direct integration were considered:
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To obtain the pitch equations, multiply Equation (A1) by (xc − lc/2), and Equation (A2)
by (x − l/2), and then integrate each equation on the related domain, written as follows:
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The integrals of the two equations are calculated either by direct integration or by
applying the integration by parts method, written as follows:
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Equations (A9) and (A10) become the following:
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2
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We now move on to the equations of the bending movement of the carbody and the
anti-bending bars, respectively. For this, Equations (A1) and (A2) are multiplied by the
eigenfunction of the first bending mode, Yc(xc) of the carbody and Y(x) of the anti-bending
bars, and then integrated as follows:
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Then calculate the integrals as follows:
lc∫
0

Yc
d4Yc

dx4
c

dxc =
lc∫
0

(
d2Yc

dx2
c

)2

dxc,
lc∫
0

Ycdxc = 0,
lc∫
0

Yc

(
xc −

lc
2

)
dxc = 0,

lc∫
0

Ycδ(xc − lci)dxc = Yc(lci),
lc∫
0

Ycδ(xc − li)dxc = Yc(li),

lc∫
0

Yc
dδ(xc − lci)

dxc
dxc = − dYc(lci)

dxc
,

lc∫
0

Yc
dδ(xc − li)

dxc
dxc = −dYc(li)

dxc
,

(A17)

and
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l∫
0

Y
d4Y
dx4 dx =

l∫
0

(
d2Y
dx2

)2

dx,
l∫

0
Ydx = 0,

l∫
0

Y
(

x − l
2

)
dx = 0,

l∫
0

Yδ(x − l)dx = Y(l),
l∫

0
Yδ(x)dx = Y(0),

l∫
0

Y
dδ(x − l)

dx
dx = −dY(l)

dx
,

l∫
0

Y
dδ(x)

dx
dx = −dY(0)

dx
.

(A18)

Equations (A15) and (A16) become the following:

mmc
..
Tc + cmc

.
Tc + kmcT =

2

∑
i=1

[FzciYc(lci) + FziYc(li)] +
2

∑
i=1

(Mi − hFxi)
dYc(li)

dxc
(A19)

2mm
..
T + 2cm

.
T + 2kmT = −Fz1Y(l)− Fz2Y(0) + M1

dY(l)
dx

+ M2
dY(0)

dx
, (A20)

where mmc, cmc, and kmc are the modal mass, damping, and stiffness for the FBM of the
carbody (Equation (18)) and mm, cm, and km are the modal mass, damping, and stiffness
associated to the first mode of the anti-bending bars (Equation (19)).

Inserting Equations (4) and (5) and the notations (20) in Equations (A5), (A6), (A13),
(A14), (A19), and (A20), we obtain the resulting equations of motions (Equations (12)–(17)).
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