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Abstract: This paper investigates the application of graph theory and variants of greedy
graph coloring algorithms for the optimization of distributed peer-to-peer networks, with a
special focus on private blockchain networks. The graph coloring problem, as an NP-hard
problem, presents a challenge in determining the minimum number of colors needed to
efficiently allocate resources within the network. The paper deals with the influence of
different graph density, i.e., the number of links, on the efficiency of greedy algorithms
such as DSATUR, Descending, and Ascending. Experimental results show that increasing
the number of links in the network contributes to a more uniform distribution of colors
and increases the resistance of the network, whereby the DSATUR algorithm achieves the
most uniform color saturation. The optimal configuration for a 100-node network has
been identified at around 2000 to 2500 links, which achieves stability without excessive
redundancy. These results are applied in the context of a private blockchain network that
uses optimal connectivity to achieve high resilience and efficient resource allocation. The
research findings suggest that adapting network configuration using greedy algorithms
can contribute to the optimization of distributed systems, making them more stable and
resilient to loads.

Keywords: greedy algorithms; graph coloring; DSATUR; distributed systems; peer-to-peer
networks; connectivity optimization; private blockchain network; graph theory

1. Introduction
The question of the complexity of algorithms is one of the key ones in the theory of

computing, and all problems that can be solved in polynomial time belong to class P [1].
On the other hand, the set of all problems for which we can check the correctness of the
solution in polynomial time is denoted by NP. One of the most important open questions in
the theory of computing is the following: is P = NP? Among the most famous NP problems
is the problem of coloring graphs, which asks the following question: with how many
colors can we color the vertices of the graph so that no edge has ends of the same color?
The smallest number of colors satisfying this condition is called the chromatic number of
the graph [2].

Graph coloring is widely used in computer science, especially in optimization and
resource scheduling. For example, when allocating registers in compilers, graph coloring
enables the efficient allocation of registers to variables in order to minimize the number
of required registers and avoid collisions between variables [3]. In task scheduling, graph
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coloring helps to allocate tasks to a limited number of processors without conflicts, which
is crucial for the optimization of parallel systems. Also, in network theory, graph coloring
enables the allocation of frequencies to base stations in telecommunication networks to
avoid interference between neighboring stations, thus optimizing spectrum utilization. It is
also widely used in distributed computer networks [4] such as blockchain networks [5].
Furthermore, graph coloring is also used in exam scheduling, ensuring that students taking
the same subjects do not overlap in terms [6].

One of the basic approaches to solving graph coloring problems is greedy algorithms,
which work by assigning to each vertex the first available color that does not cause a conflict
with neighboring vertices. Greedy algorithms are popular due to their simplicity and speed,
which makes them suitable for application in situations where a fast response is required,
such as task scheduling or register allocation [3,6]. However, they often use more colors
than is optimal, making them suboptimal when trying to minimize the number of colors
needed to color a graph [7].

Existing blockchain solutions such as VeDB [8] and LedgerDB [9] enable high resistance
to data changes and superior performance through advanced mechanisms such as Trusted
Execution Environment (TEE) and verification structures such as VSA (Verifiable Shrubs
Array); their implementation often requires specialized hardware and significant resource
capacities. Since the goal is to develop a cost-effective private blockchain network of small
to medium size, the paper focuses on the application of graph theory and variants of greedy
coloring algorithms to optimize connectivity and stability in distributed systems. Those
variants are used because they are widely recognized for their simplicity and computational
efficiency. The goal of the research is to also identify the optimal connectivity configuration
that allows for even resource distribution, reduced congestion, and increased network
resilience to failures. The results have practical applications in the design of private
blockchain networks, where the stability and efficiency of communication between nodes
play a key role in maintaining a reliable and scalable network.

While this study provides valuable insights into the optimization of distributed peer-
to-peer blockchain networks using greedy graph coloring algorithms, several limitations
should be noted. Greedy algorithms, while computationally efficient, may not always
achieve the theoretically minimal number of colors, potentially leading to suboptimal
resource allocation in some cases. Additionally, the results presented here are based on
simulations for a network of 100 nodes with a specific range of link densities, which may
limit their generalizability to networks of different sizes or configurations. Finally, the
conclusions are derived from theoretical models, and real-world implementation might
introduce unforeseen challenges related to dynamic network behavior or external factors.

In the second chapter of this paper, the greedy algorithm will be described, and its basic
algorithm will be given, and then, the most frequently mentioned types will be processed.
In the third chapter, related work will be described, that is, a comparison of algorithms.
In the fourth chapter, the results of testing subtypes of greedy algorithms on graphs of
different density will be analyzed. The fifth chapter will describe how to apply graphs in
network design, followed by the sixth chapter, which will describe how to determine the
optimal number of links in computer networks using variants of greedy algorithms.

The main contributions of this paper can be summarized as follows:

1. The paper investigates how different variants of greedy graph coloring algorithms,
including DSATUR, Descending, and Ascending, can optimize the stability and
resilience of distributed peer-to-peer networks;

2. An optimal connectivity threshold for networks of 100 nodes (2000–2500 edges) has been
identified, which balances resilience and efficiency without excessive redundancy;
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3. The concept of evenness of color distribution as a metric of network stability is
introduced, providing a new way to assess node saturation and connectivity;

4. The paper contributes to a better understanding of the efficiency of various greedy
algorithms in distributed systems, extending their applications to blockchain technology.

2. Greedy Algorithms
The graph coloring problem is NP-hard, which means that computing the optimal

solution is very complex, especially for larger graphs [10]. One of the simplest and most
widely used approaches to solving the graph coloring problem is the greedy algorithm.
This algorithm processes vertices one by one, assigning them the smallest possible color
that is not already used by neighboring vertices. The greedy algorithm for solving the
graph vertex coloring problem works as follows:

1. The vertices of the graph are arranged in an arbitrary sequence;
2. The first peak in the series is colored with color 1;
3. Other vertices are colored with the color of the smallest number for which it is valid

that this vertex is not connected to another vertex of the same color;
4. It returns to step 3 until all vertices are painted.

Although the greedy algorithm is simple, it often uses more colors than is optimal,
which means that it does not always find the best solution. However, its speed and ease of
use make it useful in many practical situations. In practice, the order in which the vertices
are processed significantly affects the efficiency of the greedy algorithm. Some strategies
include sorting the vertices by degree (the number of edges connecting them) in ascending
or descending order or using a random order [3]. Sorting vertices in descending order is
also called the Welsh–Powell algorithm [11]. In addition to this, the DSATUR algorithm is
also popular, which colors vertices according to the degree of saturation, that is, it looks at
how many neighboring vertices are already colored [12].

2.1. Descending (Welsh–Powell) Algorithm

Welsh–Powell is a variant of the greedy algorithm that uses descending order to color
the vertices of a graph. The vertices are first sorted according to their degree, i.e., the
number of neighbors they have, so that the vertices with the most neighbors are colored
first. After the vertices are sorted, coloring takes place in the standard greedy way: each
vertex is assigned the first available color that does not cause a conflict with its neighbors.

The advantage of this algorithm is that it often uses fewer colors than the basic greedy
algorithm, because it colors the most connected vertices first, which reduces the number of
colors needed for the rest of the vertices. Its main disadvantage is that it requires additional
time to sort the vertices before coloring, but overall gives better results compared to random
or unordered greedy algorithms [11].

2.2. Ascending Algorithm

In the ascending greedy variant, the vertices are sorted according to the ascending
order of degrees, that is, the number of neighbors each vertex has. The vertices with the
smallest number of neighbors are colored first. After sorting, coloring takes place according
to the standard greedy algorithm, where each vertex is assigned the first available color
that does not cause a conflict with neighboring vertices.

The advantage of this variant is its simplicity and quick application. Vertices with a
lower degree are processed first, which can facilitate coloring in specific situations. The
disadvantage is using more colors than other variants because it leaves more complex
vertices for later, when most colors are already occupied, which can lead to suboptimal
coloring [13].
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2.3. DSATUR Algorithm

The DSATUR (Degree of Saturation) algorithm also uses a greedy method but relies
on the degree of saturation of the peak. The degree of saturation measures how many
neighbors of a given vertex are already colored with different colors. In each step of the
algorithm, the vertex with the highest degree of saturation is selected for coloring, i.e.,
the vertex with the most colored neighbors. If several vertices have the same degree of
saturation, then the vertex with the highest degree (number of neighbors) is selected.

The advantage of this algorithm is that it often gives better solutions than other
variants of greedy algorithms because it intelligently chooses vertices with the highest
degree of saturation, which reduces conflicts and enables more efficient coloring. The
disadvantage of this algorithm is that it requires more computation due to monitoring the
degree of saturation, which makes it somewhat more complex and slower than classical
greedy algorithms [12].

2.4. Random Algorithm

In this variant of the greedy algorithm, instead of sorting the vertices according to
some strategy (such as the degree of the vertex in ascending or descending order), the
vertices are colored in a random order. After the order of vertices is randomly selected, the
algorithm proceeds with coloring using the classic greedy method: each vertex is assigned
the first available color that does not cause a conflict with its neighbors. The advantage
of this method is that it is very simple to implement and can quickly generate solutions.
Due to the random selection of the order of vertices, the random greedy algorithm often
gives suboptimal results and uses more colors than variants that use strategic ordering
(e.g., Welsh–Powell) and this is the biggest flaw. However, due to its simplicity, it can be
useful in situations where speed is more important than optimality [14].

3. Related Work
The graph coloring problem has wide applications in computer science, including

resource optimization, task scheduling, and frequency allocation. Over the years, scientists
have developed numerous methods and algorithms to improve the efficiency of the solution.
The research of different approaches and variants of greedy algorithms is a key part of
this work.

Some papers, such as [15] from 2013, focus on developing new heuristics for specific
types of graphs, such as interval graphs. This paper introduces an optimal greedy heuristic
that ensures that graphs are colored with the optimal number of colors using a properly
chosen coloring order. The authors conclude that such optimization enables better perfor-
mance in specific graph structures, thereby significantly reducing the complexity of the
algorithm in real scenarios. Similarly, Ref. [3] explores the complexity of graph partitioning
using the greedy approach. The authors conclude that greedy methods are particularly
useful in large and complex graphs where speed optimization is key and suggest their
application in graphs with specific partitioning requirements.

Other papers, such as [16] from 2024, explore variants of greedy algorithms such as
b-greedy and z-greedy. The authors conclude that these variants provide better results
in graphs with a high degree of connectivity, where classical greedy algorithms are not
efficient. These variants help in the more accurate coloring of complex graph structures,
where the balance between the number of colors and the density of vertices plays a key role.
Also, the paper [17] from 2016 compares several variants of greedy algorithms, including
DSATUR and Welsh–Powell. It was concluded that the DSATUR algorithm is most suitable
for graphs with high density, while Welsh–Powell achieves the best results in situations
where the speed of the algorithm is key.
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Papers like [7] from 2021 provide a comprehensive comparison of various methods,
including First Fit, DSATUR, and Welsh–Powell, and analyze their performance in different
graphs. The authors conclude that DSATUR is the most efficient for complex graphs
with high density, while the Welsh–Powell algorithm is the fastest for solving simpler
graphs. This paper emphasizes the importance of choosing an appropriate algorithm in
accordance with the characteristics of graphs, thereby contributing to the understanding
of the relationship between graph structure and algorithm efficiency. On the other hand,
the paper [18] offers an overview of different algorithms on graphs from the DIMACS
benchmark, and concludes that DSATUR consumes the least colors, while Welsh–Powell is
the fastest. The authors recommend using these algorithms depending on priorities such
as time optimization or the number of colors.

In addition to these studies, the paper [19] from 1992 offers a deeper insight into the
limitations of greedy algorithms, especially in the context of finding complex structures
such as cliques in large graphs. The authors conclude that greedy algorithms, although
fast, fail to effectively detect such structures, which indicates the need for more complex
methods in specific cases.

In conclusion, these papers provide a comprehensive overview of different variants of
greedy algorithms, highlighting their applicability in different contexts, from specialized
types of graphs, such as interval graphs, to more complex structures with a large number
of vertices. The papers also emphasize the importance of comparison between algorithms
in terms of efficiency and applicability on different types of graphs.

4. Testing Variants of Greedy Algorithm and Analysis of Results
To test the impact of graph density on the efficiency of graph coloring with greedy

methods, 10 cases were used. In all 10 cases, a graph with 100 vertices was used, while
the number of edges, i.e., their density, increased. The smallest number of edges is 500.
In each subsequent iteration, the number of edges increased by 500, and this method of
incrementing reached 4500. The largest number of edges between 100 vertices is 4950, and
this is singled out as a special case.

The following variants of the greedy algorithm were used: Descending (Welsh–Powell),
Ascending, Random, and DSATUR. For each edge density, each variant was tested a
thousand times. The average of the colors was calculated, and the results are included
in Table 1.

Table 1. Average number of colors used by greedy algorithm variants.

Number of Edges Descending Ascending Random DSATUR Best Worst Best/Worst Difference

500 6.41 8.07 7.31 6.42 DESC ASC 20.56%
1000 9.80 11.84 10.83 9.97 DESC ASC 17.19%
1500 13.02 15.35 14.19 13.32 DESC ASC 15.18%
2000 16.41 19.05 17.72 16.75 DESC ASC 13.81%
2500 19.93 22.94 21.46 20.43 DESC ASC 13.10%
3000 24.00 27.33 25.75 24.58 DESC ASC 12.19%
3500 28.95 32.68 30.86 29.59 DESC ASC 11.41%
4000 35.22 39.47 37.31 35.84 DESC ASC 10.78%
4500 44.91 50.41 47.77 45.76 DESC ASC 10.91%
4950 100 100 100 100 - - 0.00%

After processing the data from the table, some of the test conclusions are presented
graphically on the graph shown in Figure 1.
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Based on the presented graph, several key conclusions can be drawn about the influ-
ence of graph density on variants of greedy algorithms:

1. General trend and linear growth: All curves show an almost linear growth in the
number of colors needed to color the graph as the number of edges increases, that
is, as the graph becomes denser. This linear growth indicates that all algorithms
have a proportional increase in the number of required colors with increasing graph
density. As the number of adjacent vertices increases, more colors need to be used to
avoid conflicts.

2. Descending consistently outperforms other variants by requiring fewer colors, as
prioritizing highly connected vertices minimizes conflicts. This strategy is efficient
because the most connected vertices receive colors before they are assigned to their
neighbors, thus reducing the need for additional colors.

3. The Ascending Algorithm is the least efficient: The Ascending Algorithm almost
always uses the largest number of colors. Sorting vertices in ascending order, where
the vertices with the smallest number of neighbors are colored first, turns out to be an
inefficient approach because it leaves more complex vertices for later, when most of
the colors are already occupied.

4. Random and DSATUR algorithms: Random and DSATUR algorithms show average
results, being placed between the Descending and Ascending variants. The DSATUR
algorithm is generally closer to Descending in efficiency because it uses the degree of
saturation to select vertices, which allows it to better optimize the number of colors.
The Random algorithm, although less consistent, also offers relatively good results.

5. Extreme density: It is interesting to note that all algorithms use the maximum number
of colors (100% coloring) at a very high density of the graph, that is, when the graph
has 4950 edges. This means that, in such a dense graph, each vertex must have its
own unique color because all vertices are directly or indirectly connected.

Although the Ascending variant turned out to be the worst, its percentage reduction
is still visible with regard to the best variant for a particular case. In the first variant, with
the sparsest graph, the difference was 20.56%, while at the end of the test, with the densest
graph (except for the special case with 4950 edges), that difference dropped to 10.91%.
Figure 2 shows a drop in the percentage difference, but it can be seen that this drop is
not linear.

It can be concluded that the Descending algorithm is the most efficient in most cases,
while the Ascending algorithm is the least efficient. Random and DSATUR algorithms
offer a balance between the speed and number of colors, depending on the density of the
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graph. The almost linear growth of the curves for all algorithms shows that the number
of colors needed for graph coloring is proportional to the density of the graph, but also
that the type of greedy algorithm can significantly affect the number of colors needed for
efficient coloring.
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5. Application of Graphs in Blockchain Network Design
The private distributed network of 100 nodes represents a blockchain system in which

each node has the possibility of direct communication with other nodes, and the purpose
of the network is to enable the safe and efficient exchange of information. In the blockchain
architecture, each node participates in the maintenance of a distributed database, ensuring
high fault tolerance and preserving data integrity. This kind of network is designed as a
peer-to-peer (P2P) system without a central server, which achieves decentralization and
increases security [20].

In this chapter, it will be explained how graph theory and vertex coloring with variants
of the greedy algorithm can help in modeling such a network. Nodes are represented as
vertices, and connections between nodes as edges of the graph. According to [21] the
maximum number of edges between nodes is given by Equation (1):

Number o f edges =
n ∗ (n − 1)

2
(1)

5.1. The Effect of the Number of Edges on the Performance of the Blockchain Network

In blockchain networks, there is no strictly defined minimum number of links (edges)
that would automatically make the network decentralized and distributed. Decentralization
in the blockchain architecture results from the independence of nodes and the distribution
of data among nodes in the network. A network can be considered distributed and
decentralized when nodes function independently of each other, data and tasks are evenly
distributed, and nodes are sufficiently connected to allow information exchange and fault
tolerance [22].

5.1.1. Problems with Too Few Links

Too few links in a network can significantly affect blockchain performance, creat-
ing communication bottlenecks, overloading certain nodes, and reducing fault tolerance.
Namely, when nodes do not have enough links to other nodes, the risk of congestion
increases because all information is transmitted through a limited number of channels,
which reduces efficiency and increases network latency [23].
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In a distributed network with too few links, the load becomes unevenly distributed,
with some nodes overloaded by the need for multiple data transfers, while other nodes
remain underutilized. This imbalance can compromise data security and integrity, as a
lack of links makes it difficult to transfer data quickly and synchronize between nodes [22].
Figure 3 shows the worst-case scenario of the connected network. The minimum number
of links was used in the network, which for this network of 100 nodes is 99. In the picture,
the nodes with only one link are colored red. In such a network, there is no redundancy,
and it is not resistant to failures.
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5.1.2. Advantages and Disadvantages of Too Many Links

The excessive number of links in the blockchain network has its advantages, but it
also brings certain disadvantages. On the one hand, a larger number of links increases the
network’s resistance to failures because data can be redirected through alternative channels
in the event of a failure of certain nodes. More links enable better load balancing between
nodes, which avoids bottlenecks and reduces data transfer latency [24].

However, networks with too many links increase the complexity of data routing and
burden the system with unnecessary communications. Increased connectivity can also mean
greater exposure to security risks, as more links provide more potential points of attack. In
private blockchain networks, which require security and resilience, an excessive number
of links can create additional security vulnerabilities and increase network maintenance
costs due to the exponential growth of the number of links with the growth of nodes [22].
Figure 4 shows a fully connected network with 100 nodes and 4950 links.
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5.1.3. Optimal Number of Links

In order to achieve the optimal number of links, it is necessary to balance network re-
silience with performance economy. Graph theory suggests that a network with a moderate
number of links can maintain fault tolerance and security without unnecessary redundancy.
Partial mesh or small-world topologies in practice enable a relatively small number of
edges that ensure a high resistance and efficiency of data transmission. In these topologies,
the nodes are connected enough that data can circulate quickly through the network, but
there are not an excessive number of edges to create congestion or increase complexity.
The optimal number of links can vary. According to [25,26], for a network of 100 nodes,
4950 links are not needed. According to [27], an approximation is 30–50% of that number,
which is about 1500–2500 links. This is a rough recommendation that often provides a good
balance between resilience and avoiding excessive redundancy in large networks, but the
exact optimal number of edges depends on the specific requirements of the network, such as
security, throughput, and resilience. The next chapter will reduce this rough approximation
to more concrete numbers.

6. Determining the Optimal Number of Links Using Variants of the
Greedy Algorithm

While existing systems such as VeDB and LedgerDB offer exceptional performance
and tamper resistance through advanced mechanisms like Trusted Execution Environ-
ments (TEEs) and verifiable structures such as the Verifiable Shrubs Array (VSA), their
implementation often requires specialized hardware and substantial resource investments.
These requirements make them less suitable for small to medium-sized private blockchain
networks, where cost-efficiency and scalability are critical. This study focuses on a simpler
and more cost-effective approach by leveraging graph coloring algorithms, specifically
variants of greedy algorithms, to optimize node connectivity and resource distribution. The
results demonstrate that it is possible to achieve network stability and efficient resource
allocation without relying on advanced hardware infrastructures.

Greedy graph coloring algorithms, such as Descending and DSATUR, can effectively
optimize the distribution of links among nodes by allocating links based on the current
load and degree of connectivity of the nodes. This optimal configuration enhances network
resilience, ensures efficient data transmission, and minimizes the likelihood of bottlenecks.
These variants are particularly relevant because greedy algorithms are widely recognized
for their simplicity and computational efficiency, making them well-suited for scenarios
requiring rapid optimization, such as distributed systems. This study leverages their ability
to optimize node connectivity and resource distribution within distributed peer-to-peer
blockchain networks.

6.1. Insights into Network Structure Properties from Graph Coloring Algorithms

In networks that use different coloring strategies, some variants of greedy algorithms
have specific effects on the color distribution and structure of the network. DSATUR
minimizes conflicts in blockchain networks by prioritizing nodes with the most differently
colored neighbors, ensuring balanced color distribution. If all the colors used in the
DSATUR algorithm appear an equal number of times throughout the network, this means
that each node has a similar number of neighbors with different colors, which suggests
balanced connectivity and a consistent distribution of colors throughout the network. Such
uniform color saturation helps stabilize the network and increases resilience to overloads,
reducing the risk of bottlenecks.

In blockchain networks, the Descending algorithm efficiently colors densely connected
nodes first, reducing conflicts and optimizing central node connectivity. If all the colors
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used in the Descending algorithm occur equally, this means that the links in the network
are evenly distributed. Uniformity in the repetition of colors in this case indicates that
there are no nodes with a dominantly large number of one color, which allows the network
to achieve a balanced degree of connectivity and avoid congestion in densely connected
nodes. This pattern of color distribution contributes to the stability of the network, making
it more resistant to overload and congestion.

The Ascending algorithm allocates fewer colors to sparsely connected nodes, balanc-
ing color usage across the network. After coloring the nodes with fewer neighbors, the
algorithm moves on to nodes with more neighbors, which then have a limited range of
colors due to the already colored neighbors. The ascending approach results in a greater
variety of colors in the edges of the network, while the central parts, with more links,
remain balanced because they have enough options to avoid conflicts with the colors of
their neighbors.

The application of the DSATUR algorithm ensures network stability because evenly
distributed color saturation allows for balanced connectivity and reduces the risk of over-
load. The descending algorithm provides additional stability in networks with densely
connected central parts because it allows for optimal color distribution among nodes with
a high number of links. The ascending approach is useful for networks that require optimal
color distribution in the edge parts, thus reducing the load on the central nodes. The
combination of these algorithms can ensure network stability and resilience, adapting to
different configurations and requirements of network systems, such as distributed and
blockchain networks.

6.2. Coloring of a Network with 100 Nodes with Variants of the Greedy Algorithm for the Purpose
of Optimization

For this paper, a computer-generated network of 100 nodes was used, and different
amounts of edges were used. For this testing, a vertex represents a node in the blockchain
network, while an edge acts as a link. Different link densities were tested.

6.2.1. 1500 Links

Figure 5 shows a graph with 1500 links colored according to the DSATUR variation.
Coloring by saturation shows diversity in the use of colors, but this concentration of colors
is not uniform throughout the network. Nodes with higher saturation use specific colors
at the beginning. Since such vertices are colored first, these colors are first in the list. The
colors are relatively uniform, but there are parts with a concentration of specific colors,
indicating an uneven saturation of the network.
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Figure 6, colored using the Descending variant, shows more colors in the very center
of the network. Since this approach colors the nodes with the most neighbors first, it is
evident that the nodes in the middle have more neighbors, that is, that the central nodes
are more densely connected.
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Figure 7 shows a larger number of different colors on the edge parts which can lead
to a less uniform distribution in densely connected parts. In this example, the ascending
variant of coloring was used.
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Figure 7. Ascending 100 nodes 1500 links.

These examples most clearly demonstrate the possibility of improving the network by
pulling more links from peripheral nodes towards the center of the network.

6.2.2. 2000 Links

As the number of links increases, the DSATUR approach in Figure 8 shows a more
uniform distribution of colors throughout the network. This approach manages to keep the
colors more evenly distributed in the central and peripheral parts of the network, indicating
stability and resilience in the network.
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The descending variant in Figure 9 shows greater color uniformity compared to the
previous case. This approach now uses fewer colors in the central part of the network,
which would mean that the network is more uniformly loaded.
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In Figure 10, the larger deviations in the use of colors at the edges of the network
shown by the ascending variant are still visible. A greater variety of color usage on the
peripheral parts indicates a weaker distribution towards those parts of the network.
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When using 2000 links, slight improvements are visible in the form of less saturation
of the central part of the network. The central part of the network is more evenly connected,
which means that very few nodes stand out with a higher number of links than others. The
peripheral part of the network still shows weaker connectivity.

6.2.3. 2500 Links

Increasing the number of links further improves the uniformity of coloring with the
DSATUR algorithm. In Figure 11, the color is distributed even more evenly throughout the
network, with balanced color usage in all parts. This case shows the highest stability.
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Figure 11. DSATUR 100 nodes 2500 links.

In the configuration shown in Figure 12, the Descending variant, even fewer colors are
used in the central nodes. The color distribution is relatively uniform, with less clustering
of specific colors in individual zones. This case shows the lowest level of saturation.
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Figure 12. Descending 100 nodes 2500 links.

The ascending variant in the case of Figure 13 also shows better uniformity in the color
distribution compared to the smaller number of links. The colors are present in a larger
number of edge parts, but now with reduced contrast between the central and edge parts
of the network.
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6.3. Analysis of Results

Based on the analysis of each coloring approach for different numbers of links, several
conclusions are drawn about the effects of using a larger number of links in the network
and the optimal variants of the coloring algorithms. Using 2500 links results in the most
balanced color distribution, especially when the DSATUR algorithm is applied. This
approach achieves network stability and uniform color saturation among nodes, which
indicates optimal connectivity without overloading individual nodes. In the DSATUR
algorithm, all nodes have an equal number of neighbors with different colors, which
reduces the risk of congestion and ensures stability.

A number of 2000 links can already provide enough connectivity for a 100-node
network and be very close to optimal in many cases, especially when the goal is to balance
resilience and efficiency. With 2000 links, the network should achieve high resilience and
relatively good coloring uniformity, especially for algorithms like DSATUR and Descending.

From a coloring perspective, increasing to 2500 links does not provide a significant
improvement over 2000 links. An additional 500 links may improve color uniformity
somewhat, but this is usually a minimal improvement. Moreover, a larger number of links
may increase redundancy and additional resource burden without a significant positive
effect on coloring stability.

Thus, the number of 2000 links can be considered an optimal compromise, providing
high resistance and efficiency, while 2500 links can be an option for networks that require an
additional safety net, but with minimal improvement in terms of coloring. This conclusion
will be taken into account when creating the actual network.

Although the focus of this study is on private blockchain networks, the proposed
methodology can be applied to other types of networks with similar topological charac-
teristics. Examples include transport networks [28], where resource allocation and route
optimization are critical, or power distribution networks [29], where balanced load distri-
bution and fault tolerance are essential. This flexibility highlights the broader applicability
of the presented approach.

7. Conclusions
This paper investigates the impact of graph density on the efficiency of greedy vertex

coloring algorithms in solving the NP-hard graph coloring problem, with a special emphasis
on applications in distributed peer-to-peer networks such as private blockchain systems.
The results show that increasing the number of edges in the network can significantly



Technologies 2025, 13, 33 15 of 16

improve the uniformity of color distribution, with the DSATUR algorithm emerging as the
most efficient for achieving stability and uniform color saturation.

The research found that increasing the number of edges from 1500 to 2000 led to
significant improvements in the stability and uniformity of coloring, making the network
more resilient and less prone to overload. However, increasing to 2500 edges did not result
in proportional improvements, indicating that 2000 edges may be the optimal balance point
between connectivity and efficiency. This number of edges ensures network stability and
sufficient resilience without excessive redundancy.

These conclusions have practical value as they provide insights into achieving stable
and efficient resource allocation in private blockchain networks. Future empirical tests on a
real private blockchain network are planned to further explore and validate the applicability
of these recommendations in practical scenarios.

8. Future Work
In this paper, the foundations for the creation of a real private blockchain network were

laid, whereby the simulation results were used to define the optimal configurations. In the
future, a private blockchain network based on these conclusions will be implemented. After
the network is built, tests will be conducted under real conditions to evaluate performance,
including fault tolerance, latency, and throughput.
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