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Abstract: Marine life exploration is constrained by factors such as limited scuba diving
time, depth restrictions for divers, costly expeditions, safety risks to divers’ health, and
minimizing harm to marine ecosystems, where traditional diving often risks disturbing
marine life. This paper introduces Nu (named after an ancient Egyptian deity), a 3D-printed
Remotely Operated Underwater Vehicle (ROUV) designed in an attempt to address these
challenges. Nu employs Long Range (LoRa), a low-power and long-range communication
technology, enabling wireless operation via a manual controller. The vehicle features an
onboard live-feed camera with a separate communication system that transmits video to an
external real-time machine learning (ML) pipeline for fish species classification, reducing
human error by taxonomists. It uses Brushless Direct Current (BLDC) motors for long-
distance movement and water pump motors for precise navigation, minimizing disturbance,
and reducing damage to surrounding species. Nu’s functionality was evaluated in a
controlled 2.5-m-deep body of water, focusing on connectivity, maneuverability, and fish
identification accuracy. The fish detection algorithm achieved an average precision of
60% in identifying fish presence, while the classification model achieved 97% precision in
assigning species labels, with unknown species flagged correctly. The testing of Nu in a
controlled environment has met the system design expectations.

Keywords: 3D printing; fish species classification; image processing; Long Range (LoRa);
machine learning; marine biology; marine life; remotely operated underwater vehicle
(ROUV); remotely operated vehicle (ROV); underwater communication

1. Introduction
The ocean covers 70% of Earth’s surface, playing a critical role in sustaining and

impacting life on Earth [1]. Despite this, humanity’s knowledge of what species lie beneath
its surface remains limited, as only 5% of oceans have been explored [2]. Exploring the ocean
could provide us with the necessary knowledge for breakthroughs in medicine and vaccines
or inspire advancements in bio-mimicry with the discovery of new marine species [3]. Such
nature-inspired technologies have led to advancement in all fields, for example, reducing
drag significantly in airplanes, or even cutting down costs on fuel consumption and
emissions [4].

Although ocean exploration is crucial, exploring and studying marine life has proven
to be a challenging endeavor over the years for researchers and scientists [5], for instance,
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health risks to divers and limiting disturbance and damage to the ecosystem, as well as ex-
peditions’ costs. Firstly, exploration expeditions negatively affect marine life. The frequent
physical contact between divers and the marine habitat has caused visible damage over the
years [6]. The damage is partly caused by contact between the equipment of the divers and
the organisms. In addition, increased coral skeletal porosity and decreased skeletal density
due to ocean acidification have made coral reefs vulnerable to sustaining damage easily
when in contact with divers or their equipment [7]. Although divers damaging marine
life is mostly associated with mismanaged tourism and inexperienced divers, experienced
divers also unintentionally cause damage, often with their fins.

The drawbacks and negative effects of ocean expeditions are not exclusively limited to
marine life and organisms, as prolonged and frequent deep diving can cause serious health
issues even to experienced divers. Divers frequently experience nervous system symptoms,
commonly paraesthesia and concentration difficulties, after deep diving, and in some cases,
the symptoms include seizures and temporary memory loss [8]. The negative effects are
not limited to the nervous system. Diving in general risks health complications, as it puts
the cardiovascular system, ears, and lungs under substantial stress, while in some cases it
increases the chances of decompression sickness [8].

Aside from the negative effects on both marine life and divers, ocean exploration
expeditions can be costly and time-consuming. The costs can be broken down but are not
limited to equipment costs, ship renting/buying, hiring/training divers, as well as having
a marine specialist present on board to identify any previous or new fish species in real
time. One of the aims of the proposed ROUV is to reduce human error while identifying
fish species; however, having a marine specialist on board is crucial in order to validate the
data displayed during a mission.

To tackle these issues, Remotely Operated Vehicles (ROVs) or Remotely Operated
Underwater Vehicles (ROUVs) are introduced. ROUVs reduce the number of professionals
needed on board to carry out expeditions and avoid the health risks discussed earlier that
are imposed on divers. ROUVs, however, have a limited depth of exploration due to their
tether. Continuously, the tether is at risk of getting tangled with itself or with debris during
operation. In some cases, an ROUV operates autonomously or wirelessly, eliminating the
need for an operator or a tether [9]. However, having an Autonomous Underwater Vehicle
(AUV) introduces more issues, such as the AUV never returning from operation, being
stuck and unable to free itself, and taking away the privilege of exploring freely since AUVs
operate based on a predetermined path or input from the environment [10,11].

One of the challenges of designing a wireless ROUV is the rapid attenuation of high
radio frequency underwater [12]. In this paper, we introduce a solution that utilizes low
radio frequency, specifically Long Range (LoRa) [13–16]. LoRa prevails in underwater
communication when compared with other high-frequency technologies like Wi-Fi and
Bluetooth due to the nature of signal attenuation underwater. The relationship between
signal attenuation and frequency is proportional, meaning that the higher the frequency
the higher the signal attenuation. In addition to operating at low frequencies, LoRa
minimizes its power consumption significantly when compared with other communication
technologies [17]. Having a tetherless connection means that the ROUV has a limited power
supply, making the low power consumption a beneficial feature for longer missions.

The ROUV proposed in this paper utilizes machine learning (ML) to identify fish
species, offering a low-cost, scalable alternative to traditional diving. In addition, it min-
imizes human error, enhances data collection on migration patterns and fish habitat, is
accessible for education, and promotes marine life conservation efforts.

Given the aforementioned information, in this paper, we introduce Nu (a name in-
spired by an ancient Egyptian deity representing the primordial waters), a machine learning
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leveraged ROUV system designed for marine life monitoring and exploration, with the
following key contributions:

• Designing and implementing a Remotely Operated Underwater Vehicle (ROUV)
from scratch, utilizing 3D modeling and printing. The use of mainly biodegradable
materials for 3D printing ensures both cost efficiency and environmental sustainability
in the final product. Therefore, most of the external body of the ROUV may be 3D
printed on demand, providing further replicability.

• Utilizing LoRa as the main communication technology between the operator and
ROUV, allowing for real-time long-range usage and power efficiency; a novel contri-
bution according to our research.

• Implementing an ML model at a base station that wirelessly receives the live-feed
video from the onboard camera to both identify fish and classify said fish into multiple
species classes. Furthermore, the model is capable of flagging unknown fish species
for the discovery of new species.

• Conceptualizing and implementing two modes of operation: a propeller-based mode
and a water-pump-based mode. The propeller-based mode would allow the ROUV to
travel to the desired mission’s location quickly, while the water-pump-based mode
would allow the ROUV to navigate close to marine life without causing any major
disturbance or harm.

• Combining the aforementioned contributions into a functional prototype that is de-
ployed and tested in water and shown to be ready for marine life exploration.

The remainder of this paper is structured as follows: Section 2 reviews related litera-
ture on previous work regarding other ROVs, AUVs, and ML models. Section 3 details the
system’s design and methodology, including communication, locomotion, and ML pipeline
design. Section 4 presents the implementation, covering waterproofing, circuitry, and full
assembly. Section 5 discusses experimental results, including waterproofing, underwater
communication, motor functionality, and ML model performance. Finally, Section 6 con-
cludes this paper, highlighting the system’s contributions and potential impact on marine
exploration.

2. Literature Review
This section discusses and provides an overview of existing relevant work on

ROVs/ROUVs, AUVs, and a combination of both. In addition, this section also cov-
ers work in the literature related to Artificial Intelligence (AI) models capable of fish species
detection and classification.

The authors in [18] implemented a wireless ROV with an educational goal. The ROV’s
design is inspired by the Seawolf submarines. The authors opted to use a wooden mold
that was later on cast with fiberglass. The ROV operates using a single Brushless Direct
Current (BLDC) propeller motor allowing forward and reverse movement. In addition, it
utilizes fins to navigate through the water, with the help of servo motors. The ROV was
designed to be controlled wirelessly using a remote controller and a 2.4 GHz receiver. The
ROV was tested for a maximum transmission range of 180 m above the water’s surface.
The ROV utilized lead acid and lithium polymer (Li-Po) batteries to power the motors and
the water pump respectively, achieving 1 h operating time [18].

In [19], an AUV is proposed that is able to “dynamically change” the structure of the
body and positions of the motors, allowing the AUV to explore and navigate through tight
spaces such as shipwrecks and underwater cave systems. The AUV can receive commands
wirelessly from a laptop, The AUV follows a predetermined path that is planned before the
mission, and the operator needs to send instructions of the specific yaw, pitch, etc., angles,
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as well as the desired depth. Using onboard sensors, the AUV then compares the desired
angle with the actual angle and adjusts the positions and thrusters’ power accordingly [19].

Another AUV proposed by [10] aimed to inspect and monitor the growth of seaweed
farms autonomously. Mission planning is conducted on a software system called Neptus
where the operator is able to stop, pause, replace, or resume a running mission plan.
The AUV localizes the farm relative to its position and then determines the rough outer
lines of the farm. The mission is then started and the AUV begins heading to the specified
location using a GPS module onboard. Once the AUV arrives at the location, it begins
scanning the seaweed using a 2D sonar. Aside from the 2D sonar, the AUV utilizes acoustic
technology for any underwater communication needed between itself and the operator.
The authors did not utilize a camera since water visibility around farms is low, which would
hinder the AUV’s scanning ability. Once the AUV has successfully followed the specified
path, it heads back to base. The AUV uses counter-rotating propellers allowing forward
and backward movement and implements a thrust vectoring nozzle for maneuvering [10].

The authors in [20] propose an ROV that is capable of six degrees of freedom, identi-
fying benthic species, following desired routes, detecting cracks, and analyzing obstacles.
The ROV has a battery life of 3 h and is tethered. The mentioned ROV can reach up to
7 m underwater, however, it is not mentioned whether this is due to the length of the
tether used or the ROV’s pressure-handling capabilities. The benthic species recognition is
based on geometric shapes; however, the dataset did not include images of specific benthic
species. Moreover, the ROV is capable of following specifically red lines at the bottom of
a pool and avoiding obstacles that were represented as cubes placed on the pool’s floor.
Crack detection was tested successfully and showed positive results [20].

In [21], Aguirre-Castro et al. developed and implemented a tethered ROV that can
reach up to 100 m underwater while having a battery life of 2 to 3 h. Testing was conducted
on monitoring cracks in polyvinyl chloride (PVC) pipes located at the seabed, which the
ROV performed successfully. The ROV is equipped with a camera which is installed at
the lower part of the ROV to carry out the pipe inspection. The ROV is controlled using
a Graphical User Interface (GUI) on a computer. The body of the ROV was made out of
PVC pipes, which were filled with steel rods in order to reach the desired weight and
buoyancy [21].

The authors in [22] designed the SPARUS II ROUV for versatility. It is a lightweight
underwater vehicle with hovering and long-range capabilities, supported by a robust
propulsion system. The primary goals in designing SPARUS II were to create a cost-
effective, maneuverable, and easily deployable AUV. SPARUS II offers two modes of
transportation: hovering mode and torpedo-based mode. When operating in the hovering
mode, its estimated maximum velocity in surges is between 3 and 4 knots, with 3 thrusters
for controlling the surges, heave, and yaw. In torpedo-based mode, two fins are installed
behind the two horizontal thrusters to control the depth and maintain a stable angular
position in roll. It is able to reach a maximum depth of 200 m and can remain operational
from 8 to 10 h [22].

The submarine discussed in [23] aims to use Near-Infrared (NIR) Spectroscopy to
detect and collect microplastics in the ocean. The design consists of three main sections,
an outer hull, an inner hull, and a pressure hull in between the two that decides the
maximum depth the submarine can dive. The micro-objects pass through a pipe with a
filter paper to separate the water, then a motor pushes the objects through onto a conveyor
belt that moves them under a spectrometer to determine whether they are microplastics or
not. This approach aims to reduce the inefficiencies and environmental harm associated
with traditional detection methods. At the same time, the authors underline the need
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for further refinement of the detection algorithm and integration of ML for improved
accuracy [23].

In [24], a submarine was developed using a 30 cm PVC pipe and metal sheets. PVC
was used due to its ease of fabrication, comparatively low cost, low weight, reliability and
sustainability, recyclability, and a high degree of inertness and resistance to corrosion, while
the metal sheets were used to fit the motors. A container was fitted inside the hull to be
filled with water to match the submarine’s density with the water outside. For effective
displacement, propellers were fitted to 4 DC geared motors which were powered by two
lead acid batteries, and the whole body was waterproofed using a glue gun and epoxy
resin. The submarine used multiple 35 m wires taped together to communicate with the
surface [24].

The work in [25] proposed the deployment of low-data-rate acoustically controlled
ROVs. In [25], the Blue Robotics BlueROV2 was used as the remotely operated submersible
platform. Two Arduino MKR WAN 1300 microprocessors/radios, which offer LoRa ra-
dio frequency connectivity, along with MAVlink messages were used to develop half
duplex tether-free communication between the Ground Control Station (GCS) and the
ROV. The LoRa radios connect the GCS’s MAVProxy to the ROV’s Proxy, which is run on a
Raspberry Pi. The Raspberry Pi, in turn, acts as an intermediary between the GCS and the
Pixhawk. The Pixhawk acts as a real-time controller to maintain altitude and control the
motors. The system was tested in both large and small water tanks and the successfully
transmitted and received packets were measured. At a distance of 3 ft, while the ROV was
on the surface, all packets were successfully transmitted and received, while 60% were
successful underwater. The submarine was responsive after informal testing in a 3 ft pool.
The system uses an instruction-based system, where the ROV awaits instructions from the
operator and stops receiving new ones until the last instruction is done [25].

The authors in [26] develop an ROUV that tackles the detection and collection of
underwater plastic waste through a ML model installed on a Raspberry Pi. For the body of
the ROUV, PVC pipes were chosen as the material for the body frame, and both a float and
a camera were installed on the top and bottom of the frame respectively, while a propeller
was attached to help the body move. The Raspberry Pi was used to control all primary
functions, including image processing, motor control signal transmission, managing the
ROUV position, and capturing plastic waste. The YOLOv3 model was also installed on the
Raspberry Pi. The estimated current consumption for one hour was 3000 mAh, and the
maximum depth was 10 m. After testing, it was determined that the effective threshold for
object detection is around 100 NTU, with an average confidence score of 77%.

The study in [27] proposed a method for the inspection of hull surfaces with the use of
Convolutional Neural Networks (CNNs) equipped on an ROUV. The tethered ROUV used
was developed by SLM Global to clean underwater hull surfaces. It attaches itself to the hull
surface and crawls along it using electrically driven magnetic wheels. Two brushes installed
on the bottom are used to clean the surface of the hulls. The classification was carried out
using a soft voting ensemble of the well-known CNN models DenseNets, EfficientNets,
Inceptions, MobileNets, ResNets, and VGGs. The optimal weights of each were selected
using transfer learning. The classification accuracy and F1-score were approximately 98.13%
and 98.11%, respectively.

Furthermore, there have been several works in the literature that targeted fish identifi-
cation and classification problems. In [28], a novel Transformer-based method for fish image
classification was proposed. The method introduced claims an efficient handle of images
of different resolutions and excellent generalization ability. It is capable of distinguishing
between low-resolution marine fish images and high-resolution freshwater fish images.
Furthermore, a label smoothing loss function was introduced to alleviate over-fitting and
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overconfidence issues, and data augmentation techniques such as cropping and random
flipping were used to enhance the model’s robustness. Finally, pre-trained model weights
were implemented to expedite the training process [28].

In [29], as an alternative to standard tracking technology, a fish passage observation
platform to monitor fish was developed. An automated real-time deep learning framework
was included in order to analyze the data. First, a YOLO model was included to accurately
detect and classify eight species of fish. Following this, a Norfair object tracking framework
was added to track and count the fish [29].

According to the works in the aforementioned literature, there is a lack of work on a
complete ROUV system for the fish classification problem. Additionally, there is a notable
research gap when it comes to recent ROUV technology, as most studies focus on AUVs.
Moreover, not many works make use of different communication technologies such as
LoRa to tackle the underwater communication range issue. The use of a LoRa module for
underwater wireless communication between the remote control and the submarine body
presents a novel approach to achieving tether-free control. While previous works such
as [25] have explored this technology, they have not addressed additional features that Nu
incorporates, such as real-time control, cost efficiency, power efficiency, and environmen-
tally friendly design as well as the use of ML for fish identification and classification based
on external features. Although ML has been applied in some underwater applications,
and fish detection and classification have been previously explored in some reviewed
works such as [28,29], none of the reviewed works have integrated an ML model for these
tasks within the ROUV itself based on our research. The approach in Nu not only detects
and classifies the fish species in the dataset but also fills a gap by allowing the model to
identify anomalous species not introduced in the training data. This increases the real-
world applicability of the system, making it more robust for marine life monitoring and
exploration. Table 1 demonstrates a comparative study between all of the discussed works
throughout Section 2 and the proposed ROUV system.

Table 1. Comparative study of referenced works relevant to the proposed ROUV.

Reference Propulsion
Method

Communication
Method

Special Features

[18] BLDC motor with
fins

2.4 GHz wireless Designed for education; max range
of 180 m above water

[19] Dynamic motor
positioning

Wireless
commands from a
laptop

Navigates tight spaces such as caves
and shipwrecks

[10] Counter-rotating
propellers

Acoustic
communication

Inspects seaweed farms; uses 2D
sonar for scanning

[20] BLDC motors Tethered Identifies benthic species; follows
routes and detects cracks

[21] PVC pipe-based
thrusters

Tethered Inspects PVC pipes at seabed;
operational depth of 100 m

[22] Thrusters and fins WiFi, Xbee,
GSM/3G, acoustic
modem

AUV; lightweight design;
operational depth of 200 m

[23] Motor-driven
conveyor belt

Not specified Uses NIR spectroscopy for detecting
microplastics

[24] DC geared motors
with propellers

Tethered Cost-effective; waterproofed using
epoxy and glue gun
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Table 1. Cont.

Reference Propulsion
Method

Communication
Method

Special Features

[25] BlueROV2
platform

LoRa (433 MHz) LoRa-based tether-free
communication with MAVLink
integration

[26] Propeller-based
motion

Tethered Detects and collects plastic waste
using YOLOv3

[27] Electrically driven
magnetic wheels

Tethered Cleans hull surfaces; uses CNN for
defect detection

Nu BLDC and Water
pump motors

LoRa (433 Mhz) Utilizes an ML pipeline to detect
and classify fish species; Minimizes
disturbance and damage to marine
life.

3. Methodology and Design
This section illustrates the proposed system model and the 3D design process of the

ROUV body.

3.1. System Model

Before implementing the ROUV, the system model illustrated in Figure 1 was created
to outline the fundamental components necessary for its operation. The diagram highlights
the communication mediums utilized between the operator and the ROUV, as well as
between the ROUV and the ML model. As observed in Figure 1, the operator controls
the ROUV using a wireless controller. Moreover, the live video feed is also transmitted
wirelessly from the onboard camera to the laptop, where it is fed to the ML model. The ML
model then identifies, classifies, and records any instances of fish found in real-time,
allowing the operator the freedom to explore unhindered.

Figure 1. ROUV system model.

3.2. Locomotion

As previously mentioned in Section 1, divers can cause harm and disturbance to
the surrounding habitat or marine life. However, this can also be the case in ROUVs if
propeller-based movement systems are utilized, if the ROUV is no longer motile, or its
guidance system is flawed. As such, the proposed ROUV in this paper utilizes two modes
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of locomotion. When the ROUV is first deployed, it utilizes propeller-based motors,
specifically BLDC motors, to travel to the specified exploration area. This mode will
be mainly used near the surface of the water, away from any fish or habitat. Once the
ROUV reaches its destination, the operator switches to the precision mode. In this mode,
the operator is able to utilize the surrounding water in propelling the ROUV with the
help of water pump motors. These motors are significantly weaker and quieter than the
BLDC motors but have enough torque to push the ROUV, making them an ideal fit for the
application. This eliminates any disturbance and harm that could be caused due to the
propellers spinning at high speeds.

3.3. Exterior Design

The body of the ROUV is 3D printed using carbon fiber polylactic acid (PLA) on a
Fused Deposition Modeling (FDM) 3D printer. To ease the printing process and simplify
assembly and disassembly, the ROUV’s body is constituted by the parts shown in Figure 2
which were designed using SolidWorks. Moreover, the ROUV is designed to be symmetrical
for stability underwater. The exact dimensions (length × width × height) in millimeters
for each part are as follows:

• Figure 2a: 140× 170× 200.13 mm.
• Figure 2b: 130× 93.87× 93.87 mm.
• Figure 2c: radius of 50.2 and 25.41 mm thick.
• Figure 2d: 167× 20× 30 mm.

(a) (b)

(c) (d)

Figure 2. Three-dimensional-designed parts of the ROUV’s body: (a) Exterior body piece used to
hold the WTC. (b) Component holder to house the components inside the WTC. (c) End-cap design
to seal the WTC. (d) Syringe holder design.

The body of the ROUV consists of four symmetrical 3D-printed pieces at each corner.
The piece is shown in Figure 2a. Any unused surfaces of the piece are hollowed out in
order to reduce the material cost while printing, and to minimize water drag. The pieces
have a curved edge equal to the diameter of the Water Tight Chamber (WTC). The WTC is
an acrylic tube that is water-sealed from both ends using 3D-printed end-caps in Figure 2c.
The end caps are equipped with O-ring grooves that allow wires to pass through to the



Technologies 2025, 13, 41 9 of 26

motors. This acrylic tube houses all the electrical components and is transparent. In case the
pressure inside the WTC becomes an issue in the testing phase, the end caps are designed
with three mounting points for threaded rods. These rods would pass through both end-
caps, preventing them from popping out, making the design suitable for deeper diving.
In addition, the end-caps are hollowed from the middle in order to pass a wire gland.
This wire gland would be tightened on the wires passing to the outside, preventing water
leakage to the WTC.

In order to control the buoyancy of the ROUV, a system consisting of two syringes
and a tubing system with peristaltic motors is implemented. The syringes are used to
hold 200 mL of air in total to decrease or increase the buoyancy accordingly. To hold these
syringes in place, a syringe holder is designed as shown in Figure 2d. The syringe holder
is screwed to the exterior body piece shown in Figure 2a. The syringes are inserted and
secured into the two O-openings of the syringe holder.

Finally, as previously mentioned, the center of mass is important to maintain under-
water stability. As such, a component holder was designed to prevent the components from
moving freely in the WTC, thus maintaining the center of mass, securing the components
in place, and allowing for fluid and secure motion in the water. The component holder
design is shown in Figure 2b.

The component holder is designed to hold a 20× 5× 5 cm, 11.1 V 6000 mAh Li-Po
battery, an Arduino UNO microcontroller, a camera, and several electrical components (like
relays). Moreover, the holder has circular openings to allow the wires to pass from one end
to the other in any direction.

A simulation of the ROUV fully assembled using these parts was conducted as illus-
trated in Figure 3. In this figure, we show how all the parts in Figure 2 give the final shape
of the ROUV. Apparent in this figure is how the WTC will house the complete electrical
components on the component holder.

Figure 3. Full 3D design assembly simulation.

3.4. Maximum Depth Analysis

The maximum depth that the ROUV can safely operate is determined by the water
pressure at depth and the structural integrity of the Water Tight Chamber (WTC), primarily
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made of acrylic. The pressure at a given depth, h, is calculated using the hydrostatic
pressure formula [30]:

Ptotal = Psurface + ρgh, (1)

where Psurface is the atmospheric pressure at the surface (approximately 101,325 Pa or 1 atm),
ρ is the density of water (1025 kg/m3 for seawater), g is the acceleration due to gravity
(9.81 m/s2), and h is the depth in meters.

The critical pressure that the structure can withstand before failure is estimated using
the thin-walled cylinder formula for buckling [30]:

Pcritical =
2E

(1− ν2)

(
t
D

)3
, (2)

where E is the Young’s modulus of acrylic (3.2× 109 Pa), ν is the Poisson’s ratio for acrylic
(approximately 0.35), t is the wall thickness of the acrylic tube, and D is the outer diameter
of the tube. Given t = 5 mm and D = 100 mm, the critical pressure is approximately
Pcritical ≈ 912,000 Pa (9.01 atm). The maximum depth, hmax, is calculated by equating the
hydrostatic pressure to the critical pressure [30]:

hmax =
Pcritical − Psurface

ρg
, (3)

substituting the values gives hmax ≈ 80.6 m. Thus, the ROUV is estimated to safely operate
up to a depth of approximately 80.6 meters under seawater conditions. To account for
material imperfections and unforeseen stresses, a safety factor of 1.5 is applied, limiting the
operational depth to approximately hsafe ≈ 53.7 m [30].

3.5. Machine Learning Pipeline

This section gives an overview of the final implementation of the ML pipeline. Details
regarding each step in the model’s development process will be explained more thoroughly
in Section 4.4.

As previously stated, Nu allows detecting and classifying different fish species by
implementing different ML models. A camera, with a resolution of 720p at 60 frames
per second, installed on the submarine captures live-feed footage and sends it to a base
station above water. Each frame captured by the camera is first passed to a YOLOv8 object
detector [31]. The detected fish in each image are cropped individually. Following this,
these cropped images are resized to 224× 224, as it is the expected input size for the next
stage in the pipeline. Captured images are then passed to a ResNet50 classifier before a
threshold of 50% is applied [32]. This threshold acts as a filter so that any detected fish
with a confidence score below the threshold is discarded. Otherwise, the cropped image is
classified into one of two categories: known and unknown. The dataset could be expanded
to include any number of fish classes. However, the creation of an inclusive dataset
representative of the thousands of known fish species is outside the scope of this project.
Therefore, the known fish species included were Blacktip (Carcharhinus limbatus), Clownfish
(Amphiprion ocellaris), Eagle ray (Aetomylaeus bovinus), Emperor Angelfish (Pomacanthus
imperator), and Jellyfish (Cassiopea andromeda and Catostylus perezi). The unknown category
is reserved for anomalous data points outside the five known species, or in other words,
species that were not present in the dataset while training. A pseudocode of the ML pipeline
is provided in Algorithm 1.
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Algorithm 1 Machine Learning Pipeline.

1: procedure FISH CLASSIFICATION PIPELINE
2: LoadYOLO Model← Model File Path
3: LoadResNet Model← Model File Path
4: classNames← Blacktip, Clownfish, Eagle ray, Emperor Angelfish, Jellyfish, Unknown
5:
6: def crop fish from frame (frame, boundingBox):
7: cropped fish← frame[boundingBox]

return cropped fish
8:
9: def Classify fish species (ResNet, cropped fish):

10: img← resize cropped fish to (224,224).
11: img← Convert cropped fish to required format for classification.
12: img← Add batch dimension to prepare for model input.
13: img← Preprocess img.
14: predictions← Pass img to ResNet model.

return predictions
15: cap← video capture from camera.
16: threshold← 0.5.
17: while True do
18: ret, f rame← read frame.
19: if not ret then: break;
20: results← Pass frame to YOLO model.
21: for result in results.boxes.data.tolist() do
22: x1, y1, x2, y2, con f , classid← result.
23: if conf > threshold then
24: draw bounding box.
25: cropped f ish← crop fish from frame.
26: predictions← classify fish species method.
27: img← resize(cropped f ish, (224, 224)).
28: classID ← index of max prediction.
29: con f idence← value of max prediction.
30: className← classNames[classID].
31: if confidence > 0.80 then:
32: Display class name.
33: else
34: Display Unknown.

The machine learning pipeline in Algorithm 1 begins by loading the pre-trained YOLO
model for object detection and the ResNet model for fish species classification, along with
defining a list of target class names, including the aforementioned specific fish species and
an “Unknown” category. A helper function is defined to crop fish from the video frame
based on bounding box coordinates from the fish identification model, and another function
prepares the cropped image for classification by resizing, converting it into a suitable data
format, and preprocessing it for input into the ResNet model. The pipeline captures video
frames in real time and passes each frame to the YOLO model to detect fish, returning
bounding boxes and confidence scores for the detections. For each detection exceeding
a specified confidence score threshold, the bounding box is drawn, and the cropped fish
image is classified using the ResNet model. The classification process identifies the fish
species with the highest confidence score, and if this score exceeds 80%, the species name is
displayed; otherwise, the output is set to “Unknown”. The loop continues until the video
feed ends, enabling the system to perform continuous fish detection and classification.
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4. Implementation
This section details the implementation of the proposed ROUV including circuitry,

assembly, and the ML model for fish species classification.

4.1. Waterproofing

Waterproofing plays a crucial part in the implementation, as it prevents damage to
the electronics and avoids serious hazards such as explosions and toxic fumes when in
contact with the Li-Po battery. Moreover, as previously mentioned in Section 3, all of the
3D designs discussed in Section 3 were 3D printed using carbon fiber PLA on an FDM 3D
printer. It is crucial for the WTC to be sealed such that it does not allow water through.

To a certain extent, all 3D printing materials are hygroscopic by nature, that is, they
absorb water [33]. As observed in Figure 4, while the layers are being printed on an
FDM 3D printer, microscopic voids are produced. Under normal circumstances, these
microscopic voids are insignificant, however, these voids become an obstacle when the
3D part is submerged underwater for a prolonged period of time, especially when placed
under pressure as the depth increases. The voids do not pose any threat to the electrical
components since the body is separated from the WTC, but since the prints are printed at a
35% infill, these voids allow water to seep through and settle in the air pockets inside the 3D
prints, ultimately increasing the weight, which in turn decreases buoyancy. Greater depths
could lead to the end-caps popping out and flooding the WTC, or the ROUV sinks and
is lost. To overcome this, two layers of epoxy resin, composed of Bisphenol-A Diglycidyl
Ether (DGEBA) as the base resin and a cycloaliphatic amine curing agent, were applied to
the 3D prints. This composition allows the epoxy to seep into the voids and cure, forming
a cross-linked thermoset structure that effectively blocks any water from seeping in [34].
After waterproofing each 3D print, the WTC was assembled using the end caps, O-rings,
and waterproofing wire glands.

Figure 4. Printing structure of FDM printers [35].

4.2. Circuit Implementation

This subsection overviews the implementation of both the transmitting and receiving
circuits of the ROUV.

4.2.1. Transmitting Circuit

LoRa is a low-power-consumption, low-frequency radio technology capable of reach-
ing up to 3 km in a suburban area with dense residential dwellings [13] and up to 7 m
underwater [36]. Continuously, it is the main communication technology between the
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operator and the ROUV. The transmitting circuit consists of an Arduino UNO R3 [37]
connected to a LoRa SX1278 module [38]. LoRa operates between 169 MHz and 915 MHz
depending on the region. In this case, the frequency used is 433 MHz. In addition to the mi-
crocontroller and LoRa module, two joysticks are utilized [39]. These components together
make up a controller for the ROUV.

As observed in Figure 5, the controller circuit consists of an Arduino UNO, a LoRa
module, three pull-up resistor buttons, and two joysticks. The two joysticks will be used to
control the 12 V bi-directional BLDC motors as well as four 12 V water pump motors. Next,
the first button is used to switch between control modes, the long-distance mode consisting
of the BLDC motors, and the quiet/precision mode consisting of the water pump motors.
While in precision mode, the other two buttons are used to control two 12 V peristaltic
pump motors connected to the syringes. These peristaltic pumps are used for sinking
and surfacing the ROUV by pumping water in and out of the 100 mL syringes, ultimately
increasing and decreasing the weight of the ROUV by 200 g in total.

Figure 5. Controller circuit diagram.

4.2.2. Receiving Circuit

Similar to the transmitting circuit, the receiving circuit also consists of an Arduino
UNO and a LoRa module to communicate with the controller as observed in Figure 6.
Alongside the microcontroller and the LoRa module, the circuit consists of two 4-Channel
relay modules [40] that control four water pump motors and two peristaltic pump motors,
as well as two Electronic Speed Controllers (ESCs) that are connected to the BLDC mo-
tors. In addition to these components, the circuit also consists of an infrared-controlled
1-Channel relay module, a fuse, and the 11.1 V 6000 mAh Li-Po battery mentioned earlier.
As mentioned in Section 3.3, the acrylic tube is completely transparent, which allows the
utilization of an infrared-controlled relay. This relay is used to remotely connect and dis-
connect the battery from the rest of the circuit, which maximizes the battery life and eases
the process of powering on the ROUV without removing the end-caps. As an additional
safety measure, a 2 A fuse was connected in series with the battery, which would break
in case of a short circuit while the ROUV is operational underwater. Since the operational
voltage of all the components is 12 V, it should be noted that the components are connected
in parallel with one another.
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Figure 6. ROUV circuit.

In addition to these components, a compact bullet camera is also utilized. However,
the LoRa module used, or any low radio frequency technology, is incapable of transmitting
a live video feed due to the low bit rate. To overcome this limitation, a separate communica-
tion system is required. The system consists of a 2.4 GHz transmitter and receiver modules
directly connected to the camera. As previously discussed in Seciton 1, high radio frequency
attenuates easily as the signals penetrate the water. As such, Figure 7 showcases the camera
system which consists of an air-tight container floating above the water’s surface, housing
the transmitter connected to the camera and a separate 9.8× 5.9× 2.1 cm 11.1 V, 4000 mAh
Li-Po battery for the transmitter and camera. The technical specifications of the components
mentioned throughout this section are listed in Table 2.

Figure 7. ROUV camera system.
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Table 2. Technical specifications of components used in the ROUV.

Component Specifications

LoRa SX1278 RA-02

• Frequency: 433 MHz.
• Operating Voltage: 1.8–3.7 V.
• Output Power: 100 mW.
• Sensitivity: −148 dBm.
• Range: Up to 7 m underwater [36].

Arduino UNO R3

• Microcontroller: ATmega328P.
• Operating Voltage: 5 V.
• Digital I/O Pins: 14 (6 PWM outputs).
• Analog Input Pins: 6.
• Power Supply: 7–12 V.

Water Pump Motor

• Operating Voltage: 12 V.
• Power Consumption: Approximately 10 W.
• Current Draw: Approximately 0.83 A.
• Submersible: Yes.

BLDC Motor

• Operating Voltage: 12–16 V.
• Power Consumption: Up to 200 W.
• Current Draw: Approximately 12.5 A.
• ESC: bi-directional 45 A.
• Submersible: Yes.

Peristaltic Pump Motor

• Operating Voltage: 12 V.
• Power Consumption: Approximately 3.6 W.
• Current Draw: Approximately 300 mA.
• Submersible: Yes.

Bullet Camera

• Operating Voltage: 12 V.
• Power Consumption: Approximately 1.8 W.
• Current Draw: Approximately 0.15 A.
• Minimum Illumination: 0.01 Lux, suitable for low-

light conditions.
• FOV: 120° at 720p HD.

ROUV Li-Po Battery
• Voltage: 11.1 V.
• Capacity: 6000 mAh.
• Charge Time: Approximately 2 h.

Camera System Li-Po Battery
• Voltage: 11.1 V.
• Capacity: 4000 mAh.
• Charge Time: Approximately 1 h.

Syringes • Capacity: 100 mL each (2 used).

4.3. Full Assembly

Using the circuit designs discussed in Section 4.2 and the component holder in
Figure 2b, the ROUV electronics were implemented and placed inside the WTC, and the
controller circuit was implemented.

The BLDC motors, peristaltic pump motors, and the syringe holders were screwed to
the printed pieces shown in Figure 2a, and the wires were passed through the glands to the
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motors. The WTC was then placed between the four pieces which were tightened together.
Figure 8 demonstrates an annotated top view of the assembled ROUV. Each annotation,
1 to 7, is as follows:

1. BLDC motors that are used for long-distance travel. These motors can rotate clockwise
and anti-clockwise, allowing the ROUV to move forward and backward, as well as
turn left and right.

2. Water pump motors at the back of the ROUV that are used for precise forward
movement.

3. Water pump motors on each side that are used for precise left and right turns.
4. Peristaltic motors that allow the syringes to be filled with water for sinking and

surfacing.
5. Syringes.
6. Scuba diving flashlights used to illuminate in front of the ROUV.
7. WTC that houses all of the circuitry and electronics.

It should be noted that each flashlight has its own battery that can last up to 8 h.
This is beneficial since connecting LEDs to the battery inside the WTC would reduce the
battery life significantly; moreover, having a separate power source for lighting simplifies
the circuit and reduces overall cost. Finally, Figure 9 demonstrates the ROUV while
operating underwater during testing. As observed, the ROUV is fully operational using
LoRa without any tether, excluding the wires of the live-feed transmitting system that was
mentioned previously.

Figure 8. ROUV assembled.
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Figure 9. ROUV operating underwater.

4.4. Machine Learning Model

Underwater fish identification and classification are met by many challenges, such as
complex image backgrounds, poor visibility, and biological variability in fish appearance.
As such, we develop a ML pipeline that allows the real-time detection and classification of
fish species. The pipeline also aims for the identification and flagging of any anomalous
data points. This allows the model to recognize new species that were not present in the
dataset during training. To that end, both object detection and object classification models
were implemented, along with popular techniques such as anomaly detection, transfer
learning, and data augmentation.

The ML pipeline processes a real-time video feed captured by the camera installed on
the submarine body. The camera, with a resolution of 720p at 60 frames per second, trans-
mits the video feed wirelessly to a laptop above water. Frames are sampled continuously
to ensure real-time processing without latency. Each sampled frame captured from the live
feed is fed to the object detection model. In this case, the YOLOv8 algorithm was used to
train the object detection layer [31]. The object detector’s task is to detect the location of the
fish in each frame. A threshold of 50% is first applied. The model attempts to identify fish
in the image, if the object is identified as a fish with a confidence score over 50%, then it
is flagged as a fish and its coordinates are output. A bounding box is drawn around each
detected fish using the output coordinates of the model. The fish in the frame are then
cropped into separate images and each cropped image is resized to 224× 224 before being
passed to the classifier. The cropping step significantly reduces the impact of complex
underwater backgrounds, which often hinder fish classification. The model was trained on
a dataset with 4214 training images and 823 validation images (roughly 16%), which were
acquired through Google Open Images V7 [41].

Then the images are fed to a different model for classification. The limited number
of images available for training the classification model presented a limitation to the
development process. None of the publicly available datasets that were found met the
requirements needed for the model’s training. In the case of the detection model, the images
from Google Open Images V7 were sufficient for prototyping purposes. On the other hand,
datasets for object classifications were inadequate, either due to a lack of labeled images for
each species or because they included a large number of irrelevant species. To address this
issue, a custom dataset was created by compiling labeled images from multiple publicly
available datasets on Roboflow Universe [42–48]. These compiled images were also further
edited to crop around the fish in the image to replicate the output from the object detector.

As discussed, the cropped images from the frame are fed to the aforementioned object
classification model. The primary objective of the image classifier is to first classify the
cropped fish images into 5 different species present in Kuwait waters that were gathered
for this dataset. The 5 species include Blacktip Sharks, Clownfish, Eagle ray, Emperor
Angelfish, and Jellyfish. Approximately 4000 images were gathered for each class, for a
total of 24,000 images.
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Challenges such as motion blur, low visibility, and dynamic underwater backgrounds
are mitigated through data augmentation, ensuring images are augmented with motion
blur. Noise was added in order to counter any noise that may come up due to the camera
setup. Likewise, the exposure and brightness of the images were augmented in order to
deal with the camera’s naturally low exposure and the brightness that may be caused
due to the flashlights used or darkness present in certain areas. Other techniques such as
re-scaling, horizontal flip, and rotation were also used to make the model more robust.

The pipeline makes use of transfer learning with a pre-trained model as part of our
project implementation. The pre-trained model chosen for this project is Residual Network
50 (ResNet50) [32]. ResNet50 is a deep learning model, specifically a type of Convolu-
tional Neural Network (CNN), used for tasks such as image classification, object detection,
and feature extraction. ResNet50 can be implemented through multiple deep learning
libraries. In this case, TensorFlow was used in the implementation. The ImageNet pre-
trained weights were used for transfer learning. Furthermore, 50 layers of the ResNet50
model were frozen during training to retain the general features learned on a large dataset.
Following this, two dense layers and a dropout layer were also added, and the learn-
ing rate was adjusted to 0.000001. The model processes cropped fish images resized to
224× 224 pixels, which matches ResNet50’s expected input size. The batch size was also
adjusted and set to 16. The optimizer of choice for this model was Adam, while the loss
function was Categorical Cross-Entropy, as the task involves multi-class classification. Early
stopping was also applied to prevent over-fitting.

The pipeline was designed to also be able to detect when an image does not fall
into one of the 5 classes (”Unknown” species), enhancing the monitoring application of
the pipeline in actual missions. In other words, if the input to the classifier is out-of-
distribution, the model is able to identify that and classify the image as such. This is
referred to as Anomaly Detection or Novelty Detection. The goal is to flag unusual or
suspicious data points that may indicate potential anomalies or abnormalities. Multi-class
anomaly detection was chosen and implemented for this project.

Multi-class anomaly detection is an ML technique where the goal is to identify anoma-
lies or outliers across multiple classes or categories simultaneously. In essence, the dataset
will be structured normally, but an additional outlier class to represent anomalies will be
included. As data were already gathered for the fish detection layer, implementing this
method was fairly simple. Aside from the 5 classes for each 5 species discussed previously,
an extra class that contains a variety of images of other fish species was gathered and added,
raising the total number of images to 40,000.

Once the cropped images are passed to the classifier, and a prediction is given, the out-
put is passed to the pipeline where a second threshold of 80% is applied. If the confidence
score of the prediction is above the threshold, one of the six classes (Including “Unknown”)
will be printed on the frame and displayed along with the bounding box from the object
detector. On the other hand, if the confidence score is less than the threshold, “Unknown”
will also be printed on the frame. The double-layer confirmation is performed to ensure
that the model is robust and that potential anomalies are not overlooked.

5. Results
This section displays the results obtained from testing waterproofing, underwater

communication, and the ML model.

5.1. Mechanical Operations

This subsection outlines the testing and validation of key mechanical operations,
including the waterproofing of 3D-printed components and wire glands, as well as the
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performance evaluation of the ROUV’s BLDC and water pump motors in various under-
water scenarios.

5.1.1. Waterproofing

Testing was conducted before and after applying the epoxy resin layers. Initially, each
3D printed part was first weighed and then submerged in a water-filled container for 4 h.
The 3D-printed parts were then taken out, dried, and weighed again. The results obtained
show that the water added a weight that varied between 100 g and 500 g per piece relative
to the size of the print, thus proving that waterproofing the parts is essential.

In order to test the wire glands, dummy wires equal to the total number of wires
needed at each gland were passed through, and a small amount of instant epoxy was used
to fill the openings between the wires. After the epoxy was cured, the WTC was submerged
for an hour as well (without the electrical components) and tested for leakage. In this case,
no leakage was found.

5.1.2. Motor Functionality

As previously mentioned in Section 4.2.2, Nu utilized two modes of transportation,
namely the long-distance mode that uses two BLDC motors and the precision mode with
four water pump motors. In this section, both of these modes, along with the sinking and
surfacing functionality, were tested in the same body of water mentioned previously. First,
Nu was lowered and the peristaltic motors were used to fill the syringes with water. It took
approximately 20 s to either fill or empty the syringes. After Nu was submerged, the BLDC
motors were operated to drive Nu forward. The BLDC motors allowed Nu to travel at
approximately 0.3 m/s, producing a lot of ripples in the process. The water pumps were
also tested, and while they were slower in speed, they did not produce any visible ripples
on the surface of the water, proving they are well suited for locomotion near marine life.

The ROUV was operational for 4 h continuously on a 2 h charge while all the motors
were being used, and it still had charge to spare. A GitHub repository showcasing videos
of Nu operating underwater can be found in [49] alongside other materials.

5.2. Communication Systems and Machine Learning

This subsection explores the integration of underwater wireless communication using
LoRa technology and the evaluation of an ML-based object detection pipeline, highlighting
their effectiveness in enhancing data transmission, fish detection, and classification within
real-world aquatic environments.

5.2.1. Underwater Communication

As mentioned in Seciton 1, traditional wireless systems in ROUVs suffer from lim-
itations in range due to the rapid attenuation of high radio frequencies in underwater
environments. Technologies such as Wi-Fi or Bluetooth, which utilize higher frequencies,
have a range of about 0.1 to 0.5 m underwater [50,51]. This limits what ROUVs can ac-
complish. As mentioned previously, the low-radio-frequency LoRa module was chosen to
address these concerns.

An experiment was conducted to test the validity of the usage of a LoRa module for
communication. The LoRa module was placed in an airtight container and then submerged
slowly into a body of water while another LoRa module on the surface was continuously
sending packets. To make sure that the packets were being delivered successfully, a simple
LED system with a relay module was connected to the submerged LoRa module and then
monitored for change. The LoRa module maintained its connectivity until the bottom of
the body of water was reached at a depth of 2.5 m. This was a result at least five times as
good as the alternatives, proving the effectiveness of the LoRa module.
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5.2.2. Machine Learning Model Results

The object detector was initially evaluated visually on the validation dataset.
Figure 10a,b illustrates a batch of validation images with their ground truth labels alongside
the same batch labeled using the model’s predictions. As shown in the figures, the model
demonstrates high predictive accuracy, often labeling individual fish in the image with
greater precision than the provided labels. This discrepancy arises from the nature of the
dataset used. As mentioned earlier, the training and validation images for the detection
model were sourced from Google Open Images for prototyping purposes. However, this
affected the evaluation of the model’s performance.

Figure 11 depicts a confusion matrix, which shows a summary of the predictions.
The confusion matrix contains four entries: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). As depicted in Figure 11, the model’s ability to detect
individual fish, which were labeled as groups in the dataset, results in inaccurate False
Positive and False Negative counts. Nevertheless, the model’s precise detection significantly
simplifies the process of cropping individual fish from the images. The following equations
utilize the data in Figure 11 to represent the metrics used to assess the model:

Sensitivity(Recall) = R =
TP

TP + FN
=

1850
1850 + 1176

= 0.611 = 61.1% (4)

Precision = P =
TP

TP + FP
=

1850
1850 + 1091

= 0.629 = 62.9% (5)

F-Score =
2PR

P + R
=

2× 0.611× 0.629
0.611 + 0.629

= 0.62 = 62% (6)

AccuracyRate =
TP + TN

TotalSamples
=

1850 + 920
4

× 5037 = 0.55 = 55% (7)

As shown in Equations (4)–(7), the model shows adequacy in its key metrics, with an
average result of 60% across all key metrics. Recall is the ability of the model to correctly
identify all instances of fish present in the dataset. Considering that one of the main aims
of the ML model is the detection of “unknown” species, ensuring that the recall value
does not fall below a value of 50% is of great importance. A result of 61.1% demonstrates
the model’s ability to detect fish species effectively, though some instances may still go
undetected. The precision reflects that 62.9% of the detected fish species were correctly
classified, highlighting moderate reliability in avoiding false positives. However, this result
is acceptable, as it is more important to ensure all instances of fish are detected. The F-score,
a harmonic mean of precision and recall, stands at 62%, indicating a balanced trade-off
between these two metrics. This suggests the model achieves reasonable detection accuracy
while minimizing missed or incorrect classifications. Lastly, the accuracy rate shows that
the model correctly classified 55% of all instances (true positives and true negatives) in
the dataset. Although this indicates room for improvement, the results demonstrate the
potential for real-time monitoring and classification of fish species within the operational
scope of the Nu submarine. These results show that there is potential for further refinement,
such as enhancing dataset quality to ensure that the values for TP, TN, FP, and FN are more
accurate or hyperparameter optimization. The enhancement of dataset quality was outside
the scope of this paper.
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(a) (b)

Figure 10. Validation batch: labels and predictions. (a) Validation batch labels. (b) Validation
batch predictions.

Figure 11. Confusion matrix.

Figure 12a,b showcase the results for the second layer of the pipeline. As can be seen
in the accuracy graph, the training curve quickly converges with the validation curve in an
upward trend. The accuracy curves climb up to 97% accuracy.

The Loss Graph also shows the training loss converging with the validation loss in
a downward trend, noting that the validation loss is lower than its training counterpart,
suggesting that the model has a harder time working with the training data. This occurs
due to the dropout application during the training.

The convergence of both graphs shows that the model does not suffer from either over-
fitting or under-fitting, suggesting that the model is learning successfully from the training
data and proving that the model’s complexity and generalization in real-life scenarios are
sufficient for the task.
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(a) (b)

Figure 12. Training and validation loss and accuracy curves. (a) Loss learning curve. (b) Accuracy
learning curve.

Two more stages of testing were conducted after the models were ready for deploy-
ment. The first stage involved the usage of images and videos to test the pipeline’s capability
for detection and classification in a real-life scenario. These videos were fed directly to the
model without Nu’s involvement. Figure 13a showcases the final pipeline running and
detecting fish species in multiple videos. Some of the videos used were shot personally in
Kuwaiti waters to test the final pipeline. The videos include both known and unknown
fish species.

The second stage of testing, depicted in Figure 13b, involved directly using the onboard
camera on Nu for the detection. Various images of different fish species were acquired for
this stage. Some of the images were altered by increasing the hue or applying different
filters to fully test out the model’s full capabilities. Furthermore, Nu’s flashlight was also
turned on. These steps were taken to better emulate field conditions the proposed system
is likely to encounter. Finally, the images were laminated, and the model was tested in a
pool. The model’s performance was better than what the theoretical calculations indicated.
It managed to accurately detect all the laminated images, only showing some inaccuracies
when the images were approximately 4 to 5 m from the camera. Furthermore, despite the
blur applied to some of the images and the flashlight’s interference, the pipeline correctly
classified each species and managed to classify anomalous data points accurately.

(a) (b)

Figure 13. Pipeline classification testing: (a) High-quality images. (b) Low-quality images (tested
using the onboard camera).

6. Conclusions
This paper introduced Nu, a wireless ROUV system that is capable of identifying

and classifying fish species through a live camera feed in real-time. While operational,
the ROUV minimized damage to the species and their habitat with the implementation
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of two modes of transportation: long-distance mode and precision mode. The long-
distance mode utilized BLDC motors that provided high speeds, while the precision mode
minimized disturbance to marine life and utilized water pump motors that suck water from
one end and push it out the other. The ROUV employed LoRa as its main communication
technology with the operator, which proved to be a reliable option due to its long range, low
power consumption, and low frequency, where higher frequencies tend to attenuate easily
underwater. Using the onboard camera with its own battery and communication systems,
a live-feed video is received on a laptop and displayed to the operator. Through an ML
pipeline, the live-feed video is analyzed and the results are displayed in real time. The first
layer of the pipeline detected all the fish in the feed. Once they are detected, a bounding box
is drawn, and each fish is then cropped and passed to the second layer. The second layer
classified the fish into one of five species in the database: Blacktip Sharks, Clownfish, Eagle
ray, Emperor Angelfish, and Jellyfish, all of which are available in Kuwait’s seas. If the
model fails to classify the image into one of the five classes, a sixth Unknown class is used.
With the mentioned functionalities, Nu cuts down costs on exploration expeditions while
simultaneously reducing the damage done to underwater species and habitats, as well as
reducing the health risks imposed on divers while diving deep underwater for prolonged
periods of time. Future directions include developing an additional ROUV within the
system to transport the identification ROUV to its designated expedition area, thereby
conserving power and enabling the deployment of a coordinated swarm of identification
ROUVs to collect and integrate fish classification data efficiently.
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ROUV Remotely Operated Underwater Vehicle
ROV Remotely Operated Vehicle
AUV Autonomous Underwater Vehicle
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LoRa Long Range
WTC Water Tight Chamber
ML Machine Learning
AI Artificial Intelligence
PVC Polyvinyl Chloride
GUI Graphical User Interface
NIR Near-Infrared
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