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Abstract: Rapid advancement of wireless communication systems and the increasing need
for accurate, real-time signal processing have driven innovations in direction-of-arrival
(DoA) estimation techniques. This paper introduces a novel convolutional neural network
(CNN) architecture that combines spatial attention mechanisms with a transfer learning
framework to enhance both accuracy and versatility in DoA estimation. The model in-
tegrates spatial attention layers to dynamically prioritize signal regions with the highest
information value, allowing it to isolate relevant signals and suppress interference in
noisy or crowded signal environments. In addition, we utilize a transfer learning frame-
work that enables the model to generalize across various antenna array configurations
(i.e., planar, linear, and circular arrays) with minimal additional training. Extensive sim-
ulation results benchmark the proposed model against existing state-of-the-art methods
for DoA estimation, achieving improved absolute error across diverse conditions. This
hybrid approach not only enhances DoA estimation precision, but also significantly reduces
retraining requirements when adapting to new array configurations, positioning it as a
robust, scalable tool for next-generation wireless communication systems.

Keywords: direction-of-arrival (DoA) estimation; machine learning; convolutional neural
networks; spatial attention; transfer learning; multiple-input multiple-output (MIMO)
systems; wireless communications

1. Introduction
The rollout of 5G and the anticipated development of 6G networks have introduced

new demands for high-precision, real-time direction-of-arrival (DoA) estimation. Core
applications, including beamforming, interference management, and spatial signal process-
ing, rely on accurate DoA estimation to optimize network performance and maximize data
throughput. As user density and data traffic increases, precise DoA estimation becomes
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critical to minimizing latency and reducing signal interference in congested environments.
Emerging use cases, for example autonomous vehicles, radar and sonar applications, aug-
mented reality, and industrial IoT, require robust DoA solutions to ensure seamless and
reliable connectivity in dynamic and complex settings. To meet these demands, advanced
DoA estimation methods must address challenges including high mobility, multipath ef-
fects, and varying propagation conditions, which are increasingly prevalent in modern
wireless systems.

1.1. Literature Review

DoA estimation has been a foundational technique within wireless communications,
radar, sonar, and sensor networks [1,2]. Initial research into DoA primarily leveraged
signal processing algorithms, including conventional beamforming [3], Capon’s minimum
variance method [4], multiple signal classification (MUSIC) [5], and estimation of signal
parameters via rotational invariance techniques (ESPRIT) [6]. Although these pioneering
methods laid the foundation for array processing, they revealed inherent limitations in
complex environments, especially when managing multiple source signals with low signal-
to-noise ratios (SNR). In addition, these classical methods encounter limitations in high-
interference or multi-signal scenarios, and are typically tailored to fixed antenna arrays,
which constrains their adaptability in the increasingly dynamic configurations required
by modern networks. Subspace methods remain computationally intensive, and require
highly controlled conditions for accurate performance, limiting their suitability for real-time
applications or scenarios with non-linear interference patterns [7].

With the evolution of signal processing techniques, statistical and model-based meth-
ods emerged, further advancing the robustness and adaptability of DoA estimation.
Bayesian estimation techniques introduced probabilistic frameworks that addressed un-
certainties, enhancing robustness in complex signal conditions [8]. Maximum likelihood
methods, particularly those coupled with iterative refinement algorithms, e.g., expectation
maximization, gained popularity for achieving high-resolution DoA estimations [9,10].
Deep research has also been applied on heuristic and adaptive methods to alleviate compu-
tational constraints [11]. Although these methods surpass traditional algorithms in accuracy,
their computational demands make them less suitable for real-time adaptation in dynamic
signal environments. This evolution underscored the increasing need for more flexible and
efficient DoA estimation techniques to support next-generation network requirements.

The advent of machine learning (ML) marked a shift in DoA research [12–16], as
traditional algorithms began to be augmented or replaced by data-driven approaches.
Early ML models, i.e., support vector machines and k-nearest neighbors, demonstrated
that supervised learning could help DoA systems generalize better across varying signal
conditions. Nevertheless, these techniques could not fully capture the complex, high-
dimensional relationships inherent in real-world signals, which limited their efficacy in
challenging scenarios involving multi-path and dense interference. Recent advancements
in deep learning [17] have introduced more powerful architectures, including feed-forward
neural networks (FFNNs), convolutional neural networks (CNNs), and recurrent neural
networks (RNNs), which have shown significant promise for DoA estimation in com-
plex environments. FFNNs have been applied for their simplicity and computational
efficiency, particularly in scenarios where low-latency DoA estimation is critical [18]. Early
CNN-based models were largely designed for single-source DoA estimation and exhibited
reduced efficacy in high-noise, multi-source environments [19,20]. However, CNNs have
been used mainly to exploit spatial features in signal data, allowing for robust DoA estima-
tion under multi-signal and multi-path conditions [21,22]. RNN-based approaches have
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also been explored to model temporal dependencies within time-sequenced signals, which
can improve accuracy in rapidly changing signal environments [23].

Recent endeavors in DoA estimation research have explored innovative array config-
urations, algorithmic improvements, and novel hardware setups, leading to significant
enhancements in localization accuracy and applicability across various domains. Ref. [24]
introduced a 2-D DoA estimation framework leveraging an L-shaped array, which effec-
tively enhances angular resolution and spatial diversity. Ref. [25] investigated the use of a
partially connected receiving reconfigurable intelligent surface for 3D localization, provid-
ing comprehensive positioning error analysis and a tailored algorithmic design. Ref. [26]
explored virtual antennas within the MUSIC algorithm framework, demonstrating their
capability to improve spectral resolution and target separation in constrained physical
arrays. This innovation broadens the applicability of subspace methods in real-time appli-
cations and environments with limited sensor resources. Additionally, Ref. [27] showcased
a cost-effective DOA estimation system using a single antenna and low-cost backscattering
tags. Their approach reduces hardware complexity while achieving competitive perfor-
mance, making it suitable for IoT applications and resource-constrained environments.
Ref. [28] proposed an innovative generative approach to enhance the robustness of DoA
estimation under jamming attacks. By leveraging a generative framework, this method
effectively reconstructs corrupted signal data, mitigating the adverse effects of intentional
interference. This advancement is particularly impactful in secure wireless communication
scenarios, where resilience against adversarial attacks is crucial for maintaining accurate
signal localization.

Hybrid models combining CNNs and RNNs have been proposed to simultaneously
capture spatial and temporal features, yielding promising results for DoA estimation
in mixed-line-of-sight and non-line-of-sight scenarios [29]. Recent work has introduced
transformer-based architectures, which leverage attention mechanisms to further enhance
DoA estimation by focusing on the most informative parts of the signal data [30]. Com-
bining CNNs with advanced attention mechanisms allows models to selectively focus on
specific regions within the input signal and improve accuracy in high-interference envi-
ronments [31,32]. Attention-based models, i.e., transformers, have shown promise in DoA
applications, as they enable the network to weigh different input regions dynamically, lead-
ing to more precise signal localization under adverse conditions [33,34]. While attention
mechanisms are increasingly popular in various domains, their application in spatial DoA
tasks is still novel.

Another crucial challenge in DoA estimation is the model adaptability to different
antenna configurations. Most deep learning models are trained for specific array structures
(e.g., uniform planar or linear arrays), and this specificity often requires retraining or fine-
tuning when applied to new configurations. Transfer learning has emerged as a promising
solution to this limitation, allowing models to be pre-trained on one configuration and
adapted to others with minimal additional data [35–37]. This approach not only reduces
computational demands, but also improves generalization across varied settings. Recent
research has demonstrated the effectiveness of transfer learning in tasks that share similar
spatial structures, suggesting that DoA models can be enhanced to handle diverse array
types without requiring extensive retraining.

1.2. Motivation and Contributions

Recent research efforts focus on addressing the limitations of deep learning models
in DoA estimation. Conventional and even deep learning-based models tend to be spe-
cialized for specific antenna types or configurations. However, in practical applications,
the requirements of the system demand flexibility to work with multiple configurations
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and accommodate dynamic, high-noise environments. This is where spatial attention and
transfer learning prove highly valuable: spatial attention allows the model to selectively
focus on relevant parts of the input, improving its ability to isolate signals of interest even
when interference is high. Transfer learning provides the model with the capability to
adapt to various antenna array geometries without requiring extensive data retraining for
each configuration.

Given the limitations of existing DoA estimation methods, this study is motivated by
the need to develop a novel CNN encompassing spatial attention layers, capable of robust
and improved performance in challenging signal environments and adaptability across
diverse antenna array configurations. The primary contributions of this paper include
the following:

• The introduction of a novel CNN architecture that encompasses spatial attention
layers, tailored for enhanced accuracy on DoA estimations and robustness.

• The development of a transfer learning framework that enables the model to generalize
across different antenna array configurations with minimal retraining.

• The analysis of the model’s complexity before and after adding the attention layer
focuses on the performance trade-offs. Transfer learning complexity and training
times are also evaluated to assess adaptation efficiency.

• Comprehensive simulation results demonstrating the model’s superior performance,
achieving minimal error in various noise levels and array types, indicating its robust-
ness and versatility.

The proposed method holds significant potential across various industries, particularly
in telecommunications, radar systems, and autonomous vehicles. In telecommunications,
precise DoA estimation is crucial for optimizing beamforming in 5G and future 6G net-
works, enhancing signal reception while minimizing interference. The ability of our model
to generalize across different antenna configurations ensures robust performance in het-
erogeneous network environments, enabling more efficient resource allocation in massive
MIMO systems. In radar and autonomous systems, accurate DoA estimation is essential
for situational awareness and target tracking. Our approach enhances the reliability of
phased-array radar systems by efficiently adapting to varying sensor geometries, which is
particularly beneficial in defense, aerospace, and weather monitoring applications. In au-
tonomous vehicles, precise localization of signal sources, such as GPS, V2X communication,
and obstacle detection sensors, is critical for safe navigation.

1.3. Structure

The remainder of this paper is structured as follows. Section 2 outlines the signal
and antenna array models across various configurations. Section 3 details the experimen-
tal setup, simulation parameters, and datasets used. Section 4 describes the proposed
model architecture, emphasizing the spatial attention mechanism and the transfer learning
framework. Section 5 analyzes the results, highlighting the model’s performance and
superiority compared to existing methods. Finally, Section 6 provides conclusions and
discusses potential future research directions.

2. Signal Model and Array Geometry Analysis
The arrival of each incoming signal can be described by an angle pair (θk, ϕk), where

k = 1, . . . , K. Alternatively, it can be represented by a radial unit vector in the spherical
coordinate system as

vk = cos ϕk sin θkx0 + sin ϕk sin θky0 + cos θkz0, (1)
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where x0, y0, and z0 denote unit vectors along the x, y, and z axes, respectively. For the
wavefront of the k-th signal, there is a time delay required to travel from the position of the
m-th array element to the origin of the coordinate system. This time delay is given by

τm(θk, ϕk) =
rm · vk

c
, m = 1, . . . , M, (2)

where c represents the speed of light, M is the total number of antenna elements, and rm

is the position vector of the m-th array element. These time delays represent the phase
differences of the incoming signals as received by the array elements. Collectively, these
phase differences are expressed through the so-called “steering vector”.

Different array geometries provide unique spatial characteristics that influence DoA
estimation performance. This section presents a comprehensive analysis of these geome-
tries, focusing on the signal models, the construction of their steering vectors, and spatial
properties relevant to DoA estimation in complex signal environments. Figure 1 illustrates
three distinct antenna array configurations: the uniform planar array (UPA), uniform linear
array (ULA), and uniform circular array (UCA). Each configuration is shown capturing
signals from a transmitter, highlighting their spatial arrangement and how they differ in
terms of layout.

Figure 1. Schematic of three antenna array configurations—UPA, ULA, and UCA—capturing signals
from a transmitter.

2.1. Uniform Linear Array

A ULA consists of M antenna elements aligned linearly with equal spacing d between
consecutive elements. Given K narrowband plane waves impinging on the ULA at azimuth
angles θk (for k = 1, 2, . . . , K), the received signals at the array can be expressed as

y(t) =
K

∑
k=1

a(θk)sk(t) + n(t), (3)

where y(t) ∈ CM×1 is the received signal vector at time t, sk(t) is the signal from the k-th
source, n(t) ∈ CM×1 is the additive noise vector, and a(θk) ∈ CM×1 is the steering vector
for the k-th source at angle θk.
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The steering vector a(θk) for the ULA is formulated based on the phase differences
introduced by the array structure. For a ULA with inter-element spacing d and wave
number β = 2π

λ , the steering vector can be written as

a(θk) =


1

ejβd cos θk

...
ej(M−1)βd cos θk

. (4)

This formulation captures the progressive phase shifts across the array elements as
a function of the incoming signal’s polar angle. The ULA’s primary advantage lies in its
simplicity and strong directional sensitivity along the array’s axis, making it suitable for
DoA estimation with respect to polar angles.

2.2. Uniform Planar Array

A UPA is a two-dimensional array structure with M1 × M2 elements arranged in a
grid pattern, typically spaced d units apart along both the x- and y-axes. This configuration
allows for both azimuth and polar DoA estimation, providing improved spatial resolution.
Consider a UPA receiving K narrowband plane waves from sources located at polar angles
θk and azimuth angles ϕk. The received signal model is given by

y(t) =
K

∑
k=1

a(θk, ϕk)sk(t) + n(t), (5)

where a(θk, ϕk) ∈ CM1 M2×1 is the steering vector for a source at angle (θk, ϕk). For a source
with polar θk and azimuth ϕk, the UPA steering vector can be decomposed as a Kronecker
product of two steering vectors along the x- and y-axes,

a(θk, ϕk) = ax(θk, ϕk)⊗ ay(θk, ϕk), (6)

where ⊗ denotes the Kronecker product. Vectors ax(θk, ϕk) and ay(θk, ϕk) are defined as

ax(θk, ϕk) =


1

ejkd cos ϕk sin θk

...
ej(M1−1)kd cos ϕk sin θk

, ay(θk, ϕk) =


1

ejkd sin ϕk sin θk

...
ej(M2−1)kd sin ϕk sin θk

. (7)

2.3. Uniform Circular Array

A UCA consists of M elements arranged in a circular formation with radius R, provid-
ing 360-degree coverage in the azimuth plane. This array type is particularly effective for
omnidirectional DoA estimation. Assuming a signal arriving at polar θk and azimuth ϕk,
the steering vector for a UCA is defined by the spatial phase shift relative to each element.
The steering vector a(θk, ϕk) for the UCA is given by

a(θk, ϕk) =


ejβR cos(ϕk−α1) sin θk

ejβR cos(ϕk−α2) sin θk

...
ejβR cos(ϕk−αM) sin θk

, (8)

where αm = 2π(m−1)
M is the angular position of the m-th antenna element.
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2.4. Covariance Matrix

The covariance matrix, denoted as Rxx, is a critical tool in analyzing the properties
of the received signals, as it encapsulates the spatial correlations between the different
received signals, and is defined as

Rxx = E[y(t)yH(t)]. (9)

Substituting the received signal model into this equation leads to

Rxx =
K

∑
k=1

a(θk)E[sk(t)sH
k (t)]aH(θk, ϕk) + σ2I. (10)

This equation can succinctly be expressed as

Rxx = ARssAH + σ2I, (11)

where A is the steering matrix containing the steering vectors for each source and Rss

is the covariance matrix of the source signals, representing the correlation between the
individual source signals sk(t). Each element of Rss captures the expected value of the
product between signals from different sources, E[sk(t)sH

l (t)], for all k and l.
Rxx captures the information needed for various conventional DoA estimation algo-

rithms, e.g., MUSIC and ESPRIT, which exploit the eigenstructure of Rxx to identify the
directions of the incoming signals. Differences in the configuration of the array significantly
affect the structure of the covariance matrix. In a UPA, the covariance matrix incorporates
additional dimensions, reflecting the influence of the polar angle on the received signal.
This added complexity allows for more accurate estimations in scenarios with multiple
signal paths. Similarly, for a UCA, the covariance matrix reflects the circular symmetry of
the array, which can enhance the resolution of DoA estimates, especially in scenarios with
closely spaced sources.

3. Experimental Setup
In our analysis, we construct a diverse dataset that includes data from various antenna

configurations: UPA, ULA, and UCA. This dataset serves as the foundational input for the
proposed CNN model. Given the intricacies and demands of DoA estimation, careful atten-
tion is paid to dataset creation to ensure robustness and reliability. In this section, we detail
the process of dataset design, emphasizing the considerations for representing different
array configurations. Additionally, we outline the dataset’s structure and the performance
metrics employed to evaluate the model, ensuring a comprehensive framework for analysis
and validation.

3.1. Dataset and Signal Generation

Our dataset comprises 106 records of incoming signal data, offering a robust foun-
dation for the CNN to learn and generalize from multiple DoA scenarios. These records
represent a broad spectrum of AoA situations, simulating different signal sources and
their respective arrival angles. The dataset is then divided into two parts: 90% is allo-
cated for training the CNN, while the remaining 10% is set aside for validation purposes.
This split allows the model to learn effectively while preserving a subset for unbiased
performance evaluation.

For each record, the azimuth angle (ϕ) ranges between 0◦ and 360◦, while the polar
angle (θ) ranges between 0◦ and 60◦. The dataset includes three variations based on
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the array type, which directly impacts the dimensions and complexity of the covariance
matrices generated. In our analysis,

1. UPA is a 4 × 4 array, resulting in a total of 16 elements. For each record associated
with the UPA configuration, we generate a 16 × 16 covariance matrix Rxx. Since this
is a complex matrix, we decompose it into three parts for CNN compatibility: real,
imaginary, and phase components. This yields a 106 × 16 × 16 × 3 matrix, where each
record has dimensions 16 × 16 × 3. This ensures that both the amplitude and phase
information, crucial for accurate signal localization, are preserved.

2. ULA is a linear arrangement of 8 antenna elements in a single row. For each record,
this results in a 4 × 4 covariance matrix Rxx. Similar to the UPA, this matrix contains
complex elements, so we decompose it into real, imaginary, and phase components.
Each record for the ULA configuration is thus represented as a 106 × 8 × 8 × 3 matrix.
By including this configuration, the dataset allows the CNN to learn from a simpler
array structure with fewer elements, which is useful for applications where space or
cost constraints limit the number of antennas.

3. UCA consists of 8 elements arranged in a circular pattern, with a radius of 0.5 wave-
lengths. Similarly to the ULA, the UCA produces a 8 × 8 covariance matrix Rxx for
each record, which is also decomposed into real, imaginary, and phase parts. The
resulting data for each UCA record are thus represented as a 106 × 4 × 4 × 3 matrix.
The circular arrangement introduces unique spatial properties, e.g., uniform sensitiv-
ity across azimuth angles, making it particularly suitable for applications requiring
omnidirectional reception.

Each sample of our dataset is created with a specified SNR value, varying between
−20 to 20 dB. The variation in SNR values is critical for ensuring that the model learns to
distinguish signal patterns under both high and low signal quality conditions. Alongside
the covariance matrix data, the dataset includes an angle label matrix with dimensions
S × K, where S = 106 (total records) and K represents the total number of distinct angle
sets. This matrix contains the actual AoA values (θk, ϕk) for each record, providing a basis
for comparing the CNN’s predictions with the true AoAs.

3.2. Performance Evaluation Metrics

To rigorously evaluate the model’s performance in DoA estimation, we employ a suite
of performance metrics focusing on angular error and computational efficiency. These
metrics include mean absolute error (MAE) and root mean squared error (RMSE) in the
angle domain, along with inference time, to provide a comprehensive understanding of
both accuracy and speed in predictions.

MAE is the primary metric used to assess the accuracy of the model in estimating
angles. In the angle domain, MAE captures the absolute deviation between the estimated
angles and the true angles across multiple sources. MAE is defined as

MAE =
1
Q

Q

∑
q=1

(
|θ̂k − θk|+ |ϕ̂k − ϕk|

)
, (12)

where Q represents the total number of sources in each instance for the considered scenario,
θ̂k and ϕ̂k denote the estimated polar and azimuth angles, respectively, for the k-th source,
and θk and ϕk are the true polar and azimuth angles, respectively, for the k-th source.
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To gain further insight into the model’s error distribution, we also calculate RMSE.
Unlike MAE, RMSE penalizes larger errors more heavily, offering a deeper view of the
model’s performance consistency across instances. RMSE is calculated as

RMSE =

√√√√ 1
Q

Q

∑
q=1

(
(θ̂k − θk)2 + (ϕ̂k − ϕk)2

)
, (13)

where the terms are defined similarly to those in the MAE calculation. In this equation,
(θ̂k − θk)

2 and (ϕ̂k − ϕk)
2 represent the squared differences of predicted and actual polar

and azimuth angles, respectively.
To complement the analysis of RMSE and MAE, we also evaluate the mean absolute

percentage error (MAPE) to assess the relative error as a percentage of the true values.
MAPE is insightful when the scale of the target values varies significantly, as it standardizes
the error by dividing the absolute error by the magnitude of the true value. This metric is
defined as

MAPE =
1
Q

Q

∑
q=1

(∣∣θ̂k − θk
∣∣

θk
+

∣∣ϕ̂k − ϕk
∣∣

ϕk

)
× 100. (14)

Another critical performance aspect is the inference time per instance, which reflects
the model’s real-time processing capability. For practical DoA applications, low-latency
estimation is essential, particularly in systems that require rapid response times, such
as adaptive beamforming or dynamic interference management. We assess the model’s
inference time under two scenarios:

1. Batch processing: the time required to process a batch of instances simultaneously,
which evaluates the model’s efficiency in high-throughput scenarios.

2. Single-instance processing: the time taken to process a single instance, providing
insights into the model’s feasibility for real-time or near-real-time applications.

4. Proposed CNN with Spatial Attention Mechanisms Architecture
4.1. Hyperparameter Tuning

The hyperparameter tuning process for our CNN model with spatial attention and
transfer learning is a crucial step in optimizing the model’s accuracy, robustness, and adapt-
ability in different antenna array configurations. Given the complexity of the model, tuning
is performed iteratively, focusing on parameters that govern the feature extraction layers,
attention layers, and transfer learning components. Each hyperparameter is evaluated for
its impact on both convergence speed and final performance metrics.

The model comprises multiple convolutional layers designed to extract spatial features
from the covariance matrices. Filter size and number of filters are two of the most impactful
hyperparameters. We experiment with filter sizes ranging from 3 × 3 to 7 × 7, finding
that higher filter sizes captured localized spatial features effectively, which is essential in
high-noise environments. Increasing the number of filters per layer, starting with 64 and
progressing to 128 and 256 in subsequent layers, enhances performance, particularly in
deeper layers. However, beyond a threshold, larger filter counts increased computational
cost without significant performance gains. Ultimately, using a combination of high filter
sizes (7 × 7) and gradually increasing the filter count as the network deepened resulted in
the best trade-off between computational efficiency and accuracy.

Key hyperparameters for tuning the spatial attention include the attention pooling
size and regularization factor. For the pooling size, a 2× 2 configuration is found to balance
information retention and computation overhead effectively. The regularization factor,
which controls the sensitivity of the attention map to specific regions, is tuned to prevent
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overfitting on noise. Overly strong regularization dampens the model’s ability to discern
relevant features, while too weak regularization results in overfitting on high-noise samples.
After evaluating several values, we found an optimal regularization factor that allows the
model to generalize well across diverse SNR conditions and antenna configurations.

Transfer learning is a central feature of the model, allowing it to adapt to different
antenna array configurations with minimal retraining. The primary parameters tuned
are learning rate adjustments and layer freezing configurations. Given the unique spatial
characteristics of each array configuration, we experiment with freezing different layers
in the convolutional backbone. Freezing too many layers reduced the model’s adaptabil-
ity to new configurations, while freezing too few increased training time. A balanced
approach involved freezing only the initial convolutional layers while allowing deeper
layers, including the attention and fully connected layers, to fine-tune to each configuration.
This approach achieves efficient transfer without significant re-training, especially when
adapting from one array type to another (e.g., ULA to UPA). Additionally, adjusting the
learning rate for the fine-tuning phase is critical; a low learning rate (i.e., 10−3) provides
stable convergence without diverging from the pre-trained weights.

The choice of optimizer and regularization techniques further influence the model’s
performance. We experiment with standard optimizers, including Adam and SGD with
momentum, both offering unique advantages. Adam provides rapid convergence, which is
crucial for initial model evaluation, though SGD with momentum proves more effective
during the fine-tuning phase, helping the model generalize better across configurations.
Validating on that trade-off, Adam proves the most suitable for our architecture, providing
higher accuracy. For regularization, dropout layers are incorporated into the fully con-
nected layers, and batch normalization is applied after each convolutional layer to mitigate
overfitting and stabilize training. Different dropout rates (0.2 to 0.5) were tested, with a
moderate rate of 0.3 offering the best trade-off between training speed and generalization.

4.2. Proposed Architecture

The proposed model’s input is the covariance matrix Rxx. The CNN initiates with
three convolutional layers designed to progressively extract spatial features from the covari-
ance matrix. Early layers employ higher filter sizes of 7 × 7, with high depth (256 filters),
enabling the network to capture local, fine-grained spatial features essential for resolving
closely spaced DoAs. Each convolutional layer is followed by a ReLU activation function,
f (x) = max(0, x), which introduces non-linearity, allowing the model to represent complex
patterns. Moreover, appropriate strides and padding are used to preserve spatial resolution
while ensuring that the convolutional operations encompass the full extent of the input
matrix. The max-pooling layer is interspersed between the second and the third convolu-
tional layer, to down-sample the spatial dimensions and reduce computational demands.
Each pooling operation halves the spatial resolution, preserving essential information by
retaining the most prominent features from local regions.

After the core feature extraction layers, spatial attention mechanisms are introduced.
These attention layers are integrated to enhance the model’s focus on high-information
regions of the input, particularly beneficial in noisy or multi-source scenarios. The attention
mechanism integrated into our neural network operates as a channel-wise attention layer
designed to enhance the model’s ability to focus on the most relevant features for accurate
direction-of-arrival (DoA) estimation. The attention layer is implemented using a two-
step process:

1. A global average pooling (GAP) operation is applied to the feature map F, where
F ∈ RH×W×C represents the output of the convolutional layers. Here: H and W are
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the spatial dimensions of the feature map and C is the number of channels (filters) in
the feature map.
The GAP operation collapses the spatial dimensions, producing a vector z ∈ RC,

zc =
1

H × W

H

∑
i=1

W

∑
j=1

Fijc, (15)

where Fijc is the value of the feature map at spatial location (i, j) for channel c. This
vector z captures the global representation of each channel’s contribution. GAP
aggregates spatial information into a single value for each channel, providing a global
summary of each filter’s activation. This is critical for capturing spatially invariant
features relevant to the DoA task.

2. The pooled vector z is passed through a two-layer feed-forward network to compute
attention weights for each channel,

w = σ(W2 ReLU(W1z)), (16)

where W1 ∈ RC×(C/r) and W2 ∈ R(C/r)×C are weight matrices of the fully connected
layers. Here, r is a reduction ratio (e.g., r = 2), which reduces the parameter com-
plexity while preserving key information, and σ is the sigmoid activation function,
ensuring the weights w lie in the range [0, 1].
These weights w ∈ RC signify the importance of each channel. The two-layer feed-
forward network acts as a lightweight attention mechanism that captures inter-channel
dependencies. By using a non-linear ReLU activation followed by a sigmoid, the
network learns complex, non-linear relationships between channels and maps them
to importance weights.

3. The weights w are applied to the original feature map F through channel-wise multiplication,

F̂ijc = wcFijc, (17)

where F̂ijc is the recalibrated feature map. This operation amplifies the channels with
higher weights and suppresses less relevant ones. By multiplying the original feature
maps by the learned attention weights, the model dynamically adjusts its focus to
emphasize more relevant feature maps while suppressing noise. This aligns with the
principle of selectively amplifying signals that represent the angles of arrival.

The final stage of the proposed CNN architecture features fully connected layers that
consolidate the spatial features extracted by the preceding convolutional layers. Specifically,
the architecture employs three fully connected layers, with the first two layers having
dimensions of 2048 and 1024, respectively. To mitigate overfitting, dropout layers with a
dropout rate of 0.2 are applied after these layers. The final fully connected layer serves as
the network’s output, with dimensions determined by the desired number of AoAs to be
estimated. For classification purposes, a predefined angular grid is introduced, mapping
each grid cell to a unique polar or azimuth angle, facilitating the interpretation of results.

The output layer is structured as a grid where each neuron corresponds to a specific
angular position, represented by dimensions N(T + F), where T and F denote the number
of neurons allocated for angles θ and ϕ, respectively. Neurons in the grid are classified as
either 0 or 1, indicating the absence or presence of an AoA, respectively. This classification
process is extended across all neurons, with the total number calibrated to balance the
desired accuracy with the classification precision of the neural network.

To address the DoA estimation task as a binary classification problem, a sigmoid
activation function is applied to the output layer. This function assigns a probability
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score to each neuron, reflecting the likelihood of it representing a specific AoA. Scores
closer to 0 denote a low probability, while scores near 1 indicate a high likelihood. The
sigmoid activation simplifies the interpretation of the network’s predictions, enabling
straightforward thresholding to classify neurons accurately. This approach enhances the
model’s reliability in producing precise and interpretable AoA estimates.

Figure 2 demonstrates the CNN-based DoA estimation model, which consists of three
convolutional layers, followed by a spatial attention module and three fully connected
layers. The final FC layer outputs the predicted DoA. When adapting to data from a dataset
of a different array configuration, the first three convolutional layers are frozen, allowing
adaptation by fine-tuning the attention and FC layers.

 

Figure 2. Overview of the proposed CNN-based DoA estimation model architecture, highlighting
key elements including spatial attention layers and transfer learning modules.

4.3. Training

To establish a baseline, the model is initially pre-trained using data generated from a
UPA, a widely utilized antenna configuration in DoA estimation. This scenario serves as
a starting point for evaluating the model’s performance and adaptability. In subsequent
sections, we will extend this analysis by pre-training the model on alternative configura-
tions, including ULAs and UCAs. During this phase, the model learns core spatial patterns
and relationships that are relevant to DoA estimation in the 3D space. Once the model has
learned these foundational patterns, transfer learning is applied to adapt it to other array
configurations. For deployment on different array configurations, the model undergoes
selective fine-tuning: initial layers, which capture fundamental spatial features, are kept
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frozen, while higher layers specific to the new configuration are fine-tuned. This process
allows for rapid adaptation with minimal additional data and computational resources.

The figures below illustrate the convergence and performance stability of the proposed
model over training epochs, highlighting both training and validation accuracy and training
and validation loss. In Figure 3, the training and validation accuracy curves demonstrate
steady improvement and convergence as the number of epochs increases. Both curves start
at lower accuracy levels and show rapid improvement in the initial epochs, indicating the
model’s capacity to quickly learn essential features. As training progresses, the accuracy
levels approach convergence, suggesting that the model has effectively learned the task
with minimal overfitting, as seen by the alignment of the validation curve with training
accuracy toward the final epochs.
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Figure 3. Training and validation accuracy over epochs.

Figure 4 provides a complementary view of model stability through the evolution of
training and validation loss over epochs. The loss curves start at higher values and decrease
significantly in the initial stages, reflecting effective model optimization. The validation
loss closely follows the training loss, further supporting that the model is generalizing well
to unseen data. As epochs progress, the loss values stabilize at a low level, confirming the
robustness of the proposed model and the successful minimization of errors.
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Figure 4. Training and validation loss over epochs.
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5. Results and Discussion
In this section, a detailed analysis of the results obtained from the proposed model is

presented. Statistical analysis relies on a 1◦ interval discretized output grid, introducing
a baseline MAE of around 0.23◦. This error comes from the finite resolution of the grid,
reflecting a compromise between computational efficiency and output precision. Despite
being an inherent artifact of the discretization approach, maintaining errors near this
threshold is key to showcasing the model’s learning capacity and its proficiency in reducing
estimation errors. This analysis underscores the balance between grid granularity and the
model’s accuracy in angle-of-arrival prediction. The evaluation spans multiple aspects,
including the effectiveness of transfer learning, accuracy across configurations, the impact
of spatial attention, robustness under noise, computational efficiency, and comparison to
state-of-the-art models.

5.1. Effectiveness of Transfer Learning

Firstly, the accuracy is evaluated across all antenna array configurations, capturing the
adaptability to differing spatial layouts. The proposed model demonstrates high accuracy
in estimating DoAs. In Table 1, the results show the mean MAE and RMSE achieved by
the proposed model for two incoming signals across configurations and random-noise
environments with SNR ranging from −20 to 20 dB. The transfer learning framework
achieves remarkably low training times while maintaining strong generalization across
configurations. This highlights the model’s ability to adapt to new setups with minimal
performance degradation, enabling swift deployment in diverse scenarios. Its ability to fine-
tune effectively for various array configurations with minimal retraining effort underscores
the practical value of transfer learning for real-world applications.

Table 1. Effectiveness of transfer learning in cross-configuration generalization. Mean error (MAE,
RMSE, and MAPE) for the proposed model across different antenna configurations and random-
noise environments.

Antenna Array Configuration Pre-Training Fine-Tuning Training
Time (min) MAE (◦) RMSE (◦) MAPE (%)

ULA UPA 5:21 0.25 0.28 0.45
UCA UPA 6:17 0.23 0.32 0.42
UPA ULA 6:43 0.26 0.29 0.54
UCA ULA 4:52 0.28 0.30 0.68
UPA UCA 6:19 0.29 0.34 0.67
ULA UCA 4:45 0.30 0.36 0.83

To further substantiate the effectiveness of transfer learning in our framework, it
is important to align our practical results with the theoretical understanding of transfer
learning, which emphasizes the leveraging of knowledge from a source domain to improve
learning in a target domain. The transfer learning paradigm is beneficial in settings
where labeled data are scarce, and computational efficiency is essential, as it enables faster
convergence with fewer labeled samples [35]. In the context of our work, the transfer
learning approach allows the model to retain learned representations from a pre-trained
configuration and then fine-tune it for specific configurations with minimal effort. As
shown in Table 1, this not only maintains strong performance in terms of MAE, RMSE, and
MAPE, but also drastically reduces training time. This aligns with the theoretical premise
that transfer learning minimizes retraining efforts and accelerates the model’s ability to
adapt to new, unseen data, thereby enabling swift deployment across varying spatial
configurations. By effectively fine-tuning the model for new antenna layouts, we maintain
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high generalization capabilities across different environments, further underscoring the
practical and theoretical advantages of transfer learning in DoA estimation.

5.2. Impact of Spatial Attention

The integration of spatial attention has been instrumental in refining the model’s
focus on regions of the input that hold high signal relevance, especially in high-noise
environments. To quantify this impact, we assess the MAE reduction attributable to spatial
attention at various SNR levels, demonstrating a marked improvement over the baseline
CNN model without attention mechanisms. Table 2 details the performance increase
achieved by spatial attention in diverse signal environments for two incoming signals,
highlighting its role in noise reduction and enhanced feature extraction.

Table 2. Impact of spatial attention across different SNR levels.

SNR (dB) MAE (◦) Without Attention MAE (◦) with Attention

−20 0.60 0.76
−15 0.48 0.52
−10 0.40 0.36
−5 0.36 0.32
0 0.33 0.30
5 0.27 0.26

10 0.24 0.24
15 0.24 0.23
20 0.23 0.23

The observed trend indicates that the performance improvement attributed to spatial
attention is more significant at lower SNR levels and gradually diminishes as SNR increases.
This behavior can be explained by considering the role of spatial attention in mitigating
noise interference. At lower SNR values, the received signal is heavily contaminated by
noise, making it more challenging for the neural network to extract meaningful spatial
features. The introduction of spatial attention enhances feature selection by emphasizing
the most relevant signal components while suppressing noisy or less informative regions.
This targeted feature enhancement results in a notable reduction in MAE at low SNR.

However, as SNR increases, the input signal quality naturally improves, and the neural
network can already extract spatial features with high fidelity even without attention.
In such high-SNR scenarios, the additional benefit of attention mechanisms diminishes
because the baseline model without attention is already approaching the optimal estimation
performance. This is particularly evident for SNR values above 10 dB, where the MAE
difference between the models with and without attention is minimal. This trend aligns with
theoretical expectations, where the effectiveness of noise-mitigation techniques becomes
less significant in high-SNR conditions.

5.3. Impact of Dataset Size on Accuracy and Computational Complexity

The dataset size plays a critical role in balancing model accuracy and computational
efficiency. Larger datasets provide more training diversity, improving generalization,
but they also increase computational costs, memory requirements, and training time. To
analyze this tradeoff, we evaluate the model’s performance across different dataset sizes
ranging from 104 to 108 records.

Table 3 presents the MAE, training time, and memory usage for different dataset sizes.
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Table 3. Impact of dataset size on accuracy and computational complexity, on estimating two targets.

Dataset Size MAE (◦) Training Time (h) Memory Usage (GB)

104 0.45 1.2 3.5
105 0.34 3.8 8.2
106 0.23 9.5 42.7
107 0.23 14.3 196.4
108 0.23 72.8 985.2

The dataset size plays a crucial role in model performance, but accuracy gains become
limited due to the resolution of the DoA estimation grid. Increasing the dataset size
significantly improves accuracy up to 106 records. However, beyond this point, the MAE
remains stable at 0.23◦, despite substantial increases in training time and memory usage.
This plateau occurs because the estimation accuracy is inherently constrained by the
predefined grid resolution, limiting further improvements regardless of additional training
data. Thus, while larger datasets improve robustness, there is no practical benefit in
exceeding 106 records. This dataset size strikes the optimal balance between accuracy,
computational efficiency, and real-time feasibility.

5.4. Sensitivity to Noise and Interference

The robustness of the model to noise was evaluated by evaluating the performance
across a range of SNR levels, from −20 dB to 20 dB. The results in Figure 5 demonstrate
the accuracy of the model and the low error rates even at low SNR, which emphasizes its
suitability for environments with considerable noise and interference. The spatial attention
mechanism contributed significantly to the model’s resilience, allowing it to retain high
accuracy in challenging noise conditions.
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Figure 5. Comparison against conventional and state-of-the-art models.

5.5. Complexity

The computational complexity of the proposed model was analyzed by parameter
count and memory requirements. The addition of spatial attention layers did not signif-
icantly increase overall complexity, as shown in Table 4. This efficiency, combined with
the benefits of transfer learning, allows the model to maintain high performance without
excessive resource demands, making it suitable for embedded systems.
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Table 4. Model complexity in terms of total number of parameters and memory usage.

Model Component Number of Parameters (Million) Memory (MB)

Baseline CNN 3.3 11.7
CNN with Attention 3.5 12

To assess the real-time feasibility of the model, we measured inference times for both
batch and single-instance scenarios. The results, as presented in Table 5, demonstrate that
our model maintains lower inference times compared to the baseline model, largely due to
the spatial attention layers that optimize feature extraction.

Table 5. Inference efficiency in batch and single-instance scenarios.

Scenario Baseline Inference Time (ms) Proposed Model Inference Time (ms)

Batch (32 instances) 175 151
Single Instance 90 82

5.6. Performance Comparison

Figure 6 shows a comparison of RMSE between the proposed model and conventional
and state-of-the-art models on different numbers of incoming signals. The plot clearly
indicates that the CNN model achieves superior accuracy in all tested scenarios, with
the greatest advantage in multiple incoming signals. The superior performance can be
attributed to the model’s ability to capture complex, non-linear relationships in the data.
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Figure 6. Comparison of RMSE between the proposed model, conventional, and state-of-the-art
models against multiple incoming signals.

The experimental results provide compelling evidence of the adaptability and pre-
cision of the proposed model in various antenna configurations and challenging signal
conditions. One notable observation is the effectiveness of the model in leveraging transfer
learning to reduce training times while maintaining high accuracy, as shown in Table 1.
This feature is particularly relevant for scenarios where frequent reconfiguration of antenna
arrays is necessary, such as in dynamic communication systems or mobile networks. More-
over, the model’s fine-tuning capability underscores its potential for broader applicability,
demonstrating that it is not constrained by the specificities of any one array configuration.
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Spatial attention mechanisms emerge as a pivotal factor in the model’s resilience
to noise and interference. Table 2 highlights consistent MAE reductions across all SNR
levels, emphasizing the mechanism’s ability to identify and prioritize regions of the input
covariance matrix that are most relevant for DoA estimation. This finding not only validates
the inclusion of spatial attention, but also suggests a path for further refinement; potentially
by exploring hybrid attention mechanisms that could combine spatial and channel-wise
focus. The marked improvement under low-SNR conditions also underscores the model’s
potential in environments where traditional techniques struggle, such as in highly cluttered
or urban communication scenarios.

From a computational point of view, the analysis shows that the added complexity
of spatial attention remains minimal, as seen in Table 4. However, this small trade-off
is offset by significant gains in accuracy and inference efficiency. Although inference
times are slightly reduced, this improvement hints at optimized processing during the
feature extraction phase, enabled by the spatial attention layers. These findings open up
opportunities for the deployment of the model in real-time applications, including edge
computing scenarios where computational resources are limited. Additionally, the model’s
superior performance in handling multiple incoming signals (Figure 6) sets it apart from
existing methods, making it a strong candidate for next-generation communication systems
that require robust multi-signal processing capabilities.

Unlike [27,28], which focus primarily on transformer-based models, our framework in-
corporates spatial attention layers optimized for DoA estimation. While transformers excel
in capturing long-range dependencies, their computational overhead is significantly higher.
Our approach leverages spatial attention within a CNN backbone to efficiently capture
spatial correlations while maintaining computational feasibility. Compared to [29,30], our
framework explicitly utilizes a transfer learning mechanism that enables cross-configuration
adaptation with minimal retraining. The study in [30] explores transfer learning primarily
within a residual attention network, whereas our model applies fine-tuning across multi-
ple antenna configurations, significantly reducing the need for dataset-specific retraining.
Moreover, refs. [27–29] rely on gridless or transformer-based architectures, which often
require additional computational complexity for robustness against noise. Our model
effectively integrates spatial attention and transfer learning, achieving lower error rates,
even in low-SNR conditions, as demonstrated in Table 2. This ensures higher accuracy
in real-world deployment scenarios with dynamic noise interference. Compared to [30],
our model maintains a lower parameter count and faster inference times, as shown in
Table 5. This makes it more suitable for real-time applications in embedded systems and
edge computing environments.

6. Conclusions
In conclusion, this study presents a robust model architecture that combines deep

convolutional neural networks with spatial attention mechanisms and a transfer learning
framework to improve DoA estimation across multiple antenna configurations. Key contri-
butions of this work include significant accuracy improvements in DoA estimation in UPAs,
ULAs, and UCAs in challenging noise environments. Experimental results demonstrate
that our model achieves a lower error in predictions compared to the baseline model, with
consistent performance gains across SNRs. Transfer learning is employed to adapt the
model to new configurations, with selective fine-tuning minimizing the need for addi-
tional data while preserving computational efficiency. By focusing on compact spatial
representation and leveraging advanced feature extraction, this approach enables accurate
DoA predictions with both stability and responsiveness to complex input variations. Our
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findings suggest that it is possible to have DoA estimation with lower prediction errors
using the proposed deep learning framework.

Future research could explore several extensions to further refine and enhance the
proposed model. The integration of reinforcement learning to enable real-time optimiza-
tion and continuous model updating in dynamic environments, is promising as it would
allow for responsive adaptations to changes in noise and signal characteristics. Finally, the
development of more complex spatial attention mechanisms that consider multi-source in-
terference patterns could further improve DoA estimation in densely packed environments,
addressing the growing demands of modern wireless communication networks.
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The following abbreviations are used in this manuscript:

CNN Convolutional neural network
DoA Direction of arrival
DL Deep learning
ML Machine learning
MIMO Multiple-input multiple-output
MAE Mean absolute error
NN Neural network
LSTM Long short term memory
RMSE Root mean squared error
SNR Signal to noise ratio
SGD Stochastic gradient descent
UCA Uniform circural array
ULA Uniform linear array
UPA Uniform planar array
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