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Abstract: This study presents a fault-tolerant control system for Selective Compliance
Assembly Robot Arm (SCARA) robots, ensuring operational continuity in cooperative
tasks. It is evaluated in five scenarios: normal operation, failures without reconfiguration,
and with active reconfiguration. The system employs redundant actuators, differential
gears, torque limiters, and rapid detection and reconfiguration algorithms. Simulations
in MATLAB R2024a demonstrated reconfiguration times of 0.5 s and reduced trajectory
errors (0.0042 m on the X-axis for Robot 1), achieving efficiency above 99%. Nonlinear
Model Predictive Controllers (NLMPCs) and Adaptive Sliding Mode Control (ASMC)
were compared, with NLMPC excelling in stability and ASMC in precision. The system
showcased high productivity in pick-and-place tasks, even under critical failures, estab-
lishing itself as a robust solution for industrial environments requiring high reliability and
advanced automation.

Keywords: fault-tolerant control; SCARA robotics; cooperative coordination; active
redundancy; MATLAB simulations; differential gears

1. Introduction
In recent years, cooperative robotics has significantly impacted various industrial

sectors, enhancing efficiency and precision in complex tasks [1,2]. These systems coordinate
multiple robots to achieve common goals, increasing flexibility and productivity in envi-
ronments like automated factories, precision assembly, and advanced manufacturing [3,4].

Selective Compliance Assembly Robot Arm (SCARA) robots are valued for their pre-
cision and speed in repetitive movements, especially in assembly and object-handling
tasks [5,6]. Designed for high-efficiency horizontal movements, they are ideal for coop-
erative environments requiring speed and accuracy [7]. However, these systems face
challenges in robustness and reliability, particularly when failures occur during cooperative
operations [8].

A robotic system’s ability to remain operational despite failures is crucial in collab-
orative industrial applications, where disruptions can significantly impact productivity
and quality [9]. Collaborative tasks demand high precision and synchronization to prevent
interruptions [10]. Critical failures, such as actuator or sensor issues, can desynchronize
robots, causing errors that compromise system efficiency and accuracy [11,12].

Fault tolerance is another significant challenge in cooperative robotics. Many systems
stop affected robots during failures to avoid damage, ensuring safety [13]. However, this
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can trigger chain reactions, halting the entire system and severely impacting industrial
operations that rely on continuous workflows [14,15].

Designing systems capable of detecting, diagnosing, and reconfiguring robots during
failures is essential. These strategies minimize downtime and enable remaining robots to
adapt, maintaining reliability and efficiency [16]. Robust systems must ensure individual
and collective operation during unexpected events [17,18].

Despite advances in fault-tolerant control, current methods face limitations in re-
sponse time and complexity. Many rely on complex algorithms requiring significant
processing, delaying reconfiguration during critical situations like actuator burnout. Pas-
sive methods, though robust, lack the flexibility for dynamic environments [19,20]. This
study proposes a hybrid solution combining mechanical and electronic components to
minimize interruptions.

Failures in actuators operating under continuous pressure in cooperative setups com-
promise both individual and collective robot performance. These failures often stem from
mechanical issues, like gear wear, or electrical faults, like short circuits [21,22].

Fault-Tolerant Control (FTC) has become a critical research topic in modern robotics,
particularly in applications demanding operational continuity and precision [23]. Inno-
vative solutions are categorized as Passive Fault Tolerant Control (PFTC) or Active Fault
Tolerant Control (AFTC). PFTC systems are robust against known failures without ac-
tive detection, while AFTC systems integrate detection, diagnosis, and reconfiguration
mechanisms, adapting dynamically in real time [8,24].

A study in [25] introduces an adaptive visual control scheme for manipulators in
uncalibrated environments using Lyapunov analysis to ensure stability and image error
convergence. This adaptive approach compensates actuator failures, enhancing industrial
tracking performance. Another scheme combines Multiple Adaptive Neuro-Fuzzy Infer-
ence System (M-ANFIS) with a Proportional Integral Derivative (PID) controller, detecting
faults with neural networks and adapting in real time to ensure robustness [26].

A Neural Dynamic Fault-Tolerant (NDFT) scheme for redundant dual-arm robots
employs Variable Parameter Recurrent Neural Networks (VP-RNN) and Quadratic Pro-
gramming (QP) to compensate for failures while maintaining high-precision trajectory
and orientation [27]. Other methods include fixed-time nonsingular sliding mode control
with disturbance observers, effectively managing actuator failures [28,29], and Interval
Type-2 Takagi-Sugeno Fuzzy Models (IT2 T-S) for handling uncertainties and external
disturbances [30].

For space manipulators, integrated fault diagnosis and fault-tolerant control using
adaptive extended Kalman filters and sliding mode control enhance state estimation accu-
racy under noisy conditions [31]. Distributed neuroadaptive schemes employing neural
networks ensure stability and accuracy for non-holonomic multi-robot systems [22].

For rigid robotic systems, methods like Funnels with Radial Basis Function Neural
Networks (RBFNN) maintain tracking error limits despite dead zones and failures, ensuring
system stability [32]. Disturbance observer-based methods support continuum robots in
high-precision applications like surgery [33]. Image-Based Visual Servoing (IBVS) with
iterative learning fault observers and sliding mode controllers manages uncertainties
effectively, reducing chattering phenomena [34].

For nonlinear systems, ref. [35] introduces an Interval Type-2 Takagi-Sugeno Fuzzy
Model (IT2 T-S Fuzzy Model), which has proven flexible in handling uncertainties and
actuator failures. Numerical simulations validate its ability to manage external distur-
bances and highlight its applicability to different robotic manipulator configurations. For
the aerospace industry, ref. [36] presents a distributed neuroadaptive scheme using back-
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stepping techniques and neural networks to ensure the stability of robot formations, even
in the presence of actuator failures.

A review in [37] discusses advanced planning and control strategies for cooperative
manipulator systems, emphasizing their adaptability in dynamic environments. Specific ap-
proaches include the use of deep learning for trajectory optimization [38] and reinforcement
learning to improve fault detection and adaptation [39]. These methods have demonstrated
robustness in experimental validations, particularly in multi-robot systems requiring high
degrees of precision and resilience [40].

Recent research has also focused on the integration of digital twin technologies for
SCARA robots, enabling real-time simulation and validation of fault-tolerant systems [41].
Advanced domain adaptation techniques for fault diagnosis have been developed to
enhance system reliability under varying operational conditions [42,43].

Further studies explore innovative control strategies, including hybrid neural-fuzzy
systems [44], predictive control models for multi-robot systems [45], and adaptive rein-
forcement learning approaches [46]. These methods aim to optimize fault recovery times
and ensure sustained performance in dynamic and uncertain environments.

For industrial applications, ref. [47] highlights the significance of coordinated motion
planning to mitigate collision risks, while [48] investigates real-time collaborative localiza-
tion techniques for multi-robot setups. These approaches leverage advanced sensing and
data fusion technologies to enhance accuracy and robustness in cooperative scenarios.

The development of fault-resilient hardware, such as dual-actuator configurations
and torque-limiting mechanisms, further supports operational continuity in high-stakes
environments [49,50]. Recent innovations also include bio-inspired control methods and
cerebellum-based predictive models for dynamic task handling [51,52].

Finally, refs. [53–59] present a comprehensive analysis of energy-efficient fault-tolerant
systems, emphasizing the integration of sustainable practices in modern robotics. These
studies collectively highlight the growing need for hybrid solutions that combine mechani-
cal, electronic, and computational advancements to address the challenges of fault tolerance
in cooperative robotics.

Table 1 compares characteristics of these methods with the proposed hybrid system,
which integrates immediate detection and reconfiguration capabilities, ensuring scalability
for multiple robots without compromising coordination or performance.

Table 1. Comparison of previous studies and the proposed approach in terms of response time,
computational complexity, and scalability.

Previous Studies Fault Response Time Computational Complexity Scalability for Multiple Robots

PFTC Systems Fast; but limited to
known faults

Low (no active
detection required)

Moderate; adapts to small and
medium systems

Adaptive Visual Scheme Slow in complex
scenarios

High (Lyapunov analysis and
compensation)

Limited; performance issues with
many robots

Neural Dynamic Scheme Medium; effective for
complex faults

High (recurrent neural
networks and QP)

High; well-suited for dual robot
configurations

Takagi-Sugeno Fuzzy Model Medium; effective
against disturbances Medium (Type-2 fuzzy model) Moderate; better performance in

well-defined systems

Visual Servo Control Medium to slow;
affected by chattering Medium (sliding modes) Limited; challenging to coordinate

multiple robots

Proposed Study
Fast; immediate

detection and
reconfiguration

Low to Medium (simple
mechanical and

electronic components)

High; optimized design for multiple
robots without compromising
coordination and performance

This study addresses the gaps in current solutions by proposing a hybrid system that
combines mechanical innovations and computational efficiency to achieve faster, simpler
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fault-tolerance solutions for SCARA robots. The detailed methodology and experimental
results validate the effectiveness of the approach in enhancing robustness and reliability in
industrial applications.

In the specific case of a cooperative system composed of two SCARA robots, the stop-
page of one due to an actuator failure can significantly affect synchronization, increasing
the risk of accidents within its environment. This can lead to collisions between the robots,
potentially causing severe damage to both the equipment and the process. To address
this issue, this study proposes a hybrid system of redundant actuators that can not only
detect and respond rapidly to a failure but can also enable the robots to continue operating
without interruptions. Although current systems based on diagnostics and automatic
reconfiguration are effective in certain contexts, they have limitations in response speed
and implementation complexity. Therefore, this study proposes an approach that does not
rely solely on complex diagnostics or advanced algorithms but incorporates mechanical
and control solutions to provide greater safety and robustness.

An active redundancy system for the actuators of SCARA robots is proposed, utilizing
a combination of primary and secondary (redundant) actuators in each joint. By employing
a differential gear system along with torque limiters, the system ensures that when an
actuator fails, the secondary actuator is immediately activated to continue operations
without interruptions, preventing any impact on the synchronization and coordination
between the robots.

This approach offers a simpler solution compared to purely algorithmic methods, as it
integrates a mechanical component, a coordination algorithm for cooperative tasks, and a
control system. This combination provides a system capable of responding immediately to
failures without relying exclusively on complex diagnostics.

To implement active redundancy in the joints, a differential gear system is used,
allowing the two actuators to operate jointly without interfering with each other. This
ensures that the torques generated by both actuators are distributed in a controlled manner,
preventing a failure in one actuator from transferring undesired loads to the other. Addi-
tionally, torque limiters are included between each actuator’s shaft, ensuring that when one
actuator fails, the other can take over control without the system experiencing overloads or
additional damage.

This combination not only enables smooth control transfer between actuators but also
reduces the need for complex diagnostic systems and advanced reconfiguration algorithms.
As a solution based on simple mechanical and electronic components, the system can
respond quickly to a failure, minimizing latency in fault detection and robot reconfiguration.
This simplicity also lowers maintenance and repair costs while extending the robot’s
lifespan by efficiently redistributing loads.

The proposed system stands out for its hybrid approach, which does not rely exclu-
sively on artificial intelligence techniques or complex algorithms. It ensures an immediate
response to failures without requiring the system to stop. This feature is particularly rele-
vant in cooperative environments where the interruption of one robot can cause a domino
effect, impacting other robots that depend on it to complete interdependent tasks. By
ensuring that each SCARA robot can continue operating without interruption, the overall
system’s robustness and reliability are significantly enhanced.

For this purpose, the main objective of this study is to implement a fault-tolerant
system for cooperative robots based on active actuator redundancy. To achieve this, the
robots are designed in SolidWorks, and a virtual scenario is developed in MATLAB R2024a,
where various tests are conducted by simulating actuator failures. Additionally, the sys-
tem’s performance is analyzed under different scenarios to ensure operational continuity,
precision, and robustness in industrial environments.
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To achieve this, this document is structured into six sections:
Section 1 presents the introduction and state of the art, highlighting the relevance of

cooperative robotics systems and the challenges they face when performing tasks, especially
in the event of a failure.

Section 2 describes the materials and methods used in the study.
Section 3 details the kinematic and dynamic modeling of the SCARA robots, focusing

on the design of prototypes in SolidWorks 2022 and the mechanical components: servomo-
tors, differential gears, and torque limiters.

Section 4 implements the fault-tolerant control system and describes the simulations
carried out in a virtual environment using MATLAB R2024a.

Section 5 analyzes the results obtained in Section 3.
Section 6 presents the conclusions and future projections for this study.

2. Materials and Methods
This section details the materials and methods used in this study. An ASUS TUF

GAMING A15 laptop (Taipei, Taiwan) was employed with the following specifications:
AMD Ryzen 7 6800H processor with Radeon Graphics at 3.2 GHz, 8 GB of RAM, and an
NVIDIA GeForce RTX 3050 Ti Laptop GPU.

Additionally, the following software was used:

• SolidWorks 2022: Design of the various robotic prototypes and their components, such
as motors, torque limiters, and the differential gear system.

• MATLAB R2024a: Validation of the SCARA cooperative system through various
virtual tests involving actuator failures.

The experimental design focuses on developing a hybrid fault-tolerant SCARA robotic
system that combines mechanical components, such as differential gears and torque limiters,
with an algorithm to maintain constant coordination between robots while performing a
task. The system’s objective is to sustain operation in the presence of various failures in
the robot’s primary actuators by utilizing a redundant actuator. To validate the design,
simulations are conducted in a virtual environment, evaluating the effectiveness of the
fault detection, diagnosis, and reconfiguration algorithms.

For the experimental development, the following variables must be considered:

• Independent variables: Cooperative task, primary actuators with and without faults,
numerical sensitivity threshold configuration, fault detection parameters, and the
coordination algorithm.

• Dependent variables: Efficiency of the cooperative system in the presence of faults
(response time, trajectory accuracy, coordination between robots).

• Controlled variables: Physical parameters of the robots, mechanical and electrical
characteristics of the actuators, and the logic of the algorithms.

The simulations are carried out in a virtual environment developed in the MATLAB
R2024a software, where the kinematic and dynamic models of the robots are first defined.
The prototypes designed in SolidWorks are exported, and the cooperative task is pro-
grammed in a complex scenario. To validate each of the variables mentioned above, total
failures in the primary actuators of the robots are simulated, and the system’s behavior
is analyzed using the following metrics: system response time, measured from fault de-
tection to system reconfiguration; precision, which is the deviation in the trajectory of the
end effector; and efficiency, analyzed through operational continuity and synchronization
between the robots during the task. To analyze the system’s ability to detect, diagnose, and
reconfigure without interruptions, performance indices are used.
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The system incorporates three algorithms to ensure the proper functioning of the
robots in the event of actuator failures. The first algorithm detects failures in the robots by
comparing the deviation between the desired and measured Cartesian positions of the end
effector, while the diagnostic determines the faulty actuator through joint error analysis.
The second algorithm handles the reconfiguration of the robots by deactivating the faulty
actuator and activating the redundant actuator in real time. The third algorithm manages
coordination between robots to avoid collisions and ensure the correct execution of the
cooperative task.

3. Fault-Tolerant System
This section addresses the methodology used for the implementation of the fault-

tolerant system, whose main objective is to monitor and ensure that the robots continue to
operate correctly, even when some of their components fail. This capability is crucial in
SCARA robots, used for executing cooperative tasks, as a failure in one of the robots could
compromise the entire system, affecting the precision, synchronization, and quality of the
task performed.

This study proposes a novel approach with redundant actuators in each joint of the
robot. In the event of a failure in the primary actuator, the secondary actuator replaces it,
allowing the process to continue correctly. For this purpose, the system is structured in
several stages: fault detection, diagnosis, reconfiguration, and control, as shown in Figure 1.
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Figure 1. Fault-tolerant system diagram for the cooperative SCARA system.

3.1. Selective Compliance Assembly Robot Arm with Actuator Redundancy

The robotic system consists of two SCARA robots configured to perform cooperative
tasks. Each is structured with four joints that enable movements in the three-dimensional
plane. To ensure operational continuity in case of failures, each joint is equipped with a
primary actuator responsible for movement during normal operation and a redundant
actuator that remains inactive until the primary actuator fails (see Figure 2).
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where:
Joint 1 and Joint 2: Rotational joints controlling the horizontal movement of the arm.
Joint 3: Regulates the vertical displacement of the end-effector.
Joint 4: Regulates the orientation of the end-effector.

A1, A2, A3, A4: Primary actuators corresponding to the first, second, third, and fourth
joints of Robot 1, respectively.

A1R, A2R, A3R, A4R: Redundant actuators corresponding to the first, second, third,
and fourth joints of Robot 1, respectively.

A5, A6, A7, A8: Primary actuators corresponding to the first, second, third, and fourth
joints of Robot 2, respectively.

A5R, A6R, A7R, A8R: Redundant actuators corresponding to the first, second, third,
and fourth joints of Robot 2, respectively.

3.1.1. 3D Modeling and Design of SCARA Robots in SolidWorks 2022 Software

The design of the SCARA robots is carried out in SolidWorks 2022 software (Solid-
Works: https://www.solidworks.com/ (accessed on 29 November 2024)), where the main
components were modeled to replicate the characteristic mobility of this type of robot
(see Figure 3). The design ensures that the robots can perform precise movements in the
three-dimensional plane, essential for cooperative tasks.
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Once all the individual components are modeled in 3D, the robot assembly is per-
formed using SolidWorks assembly tools:

https://www.solidworks.com/
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Position relations: Constraints such as aligning axes, inserting pivots, and limiting
degrees of freedom are applied to replicate the robot’s real movement.

Motion simulation: To validate the design, the motion simulation tool in SolidWorks
2022 is used, allowing verification of the arm’s range of motion and the accuracy of the
end-effector positioning.

Figure 4 shows the SCARA system prototype.
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The different mechanical components developed in SolidWorks are available at the
following link: https://zenodo.org/records/14214239.

The SolidWorks 2022 software includes a tool called physical properties, which allows
obtaining the characteristics of the robot’s links, such as their masses, dimensions, and
moments of inertia, as shown in Table 2.

Table 2. Dimensions and weights of the SCARA robot links.

Parameter Value Unit of Measure

Robot 1 and Robot 2

a1 0.2 m
a2 0.2259 m
d1 0.1916 m
d4 0.02 m

Izz1 0.1 kg·m2

Izz2 1.33 kg·m2

Izz3 0.02 kg·m2

Izz4 0.01 kg·m2

m1 2.29 kg
m2 9.71 kg
m3 1.9 kg
m4 0.14 kg

where:
a1, a2, d1, d4: Length of the robot arms.
m1, m2, m3, m4: Masses of links 1, 2, 3, and 4, respectively.
Izz1, Izz2, Izz3, Izz4: Moments of inertia of links 1, 2, 3, and 4, respectively, along the z-axis.

The physical parameters of the robot were obtained directly from SolidWorks 2022,
using the MMGS unit system (millimeter, gram, second), with precision set to four decimal
places (±0.0001 mm). This precision was selected to ensure a high level of accuracy in the
robot’s kinematic and dynamic calculations.

https://zenodo.org/records/14214239
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3.1.2. Mathematical Modeling of Selective Compliance Assembly Robots Arm

The mathematical modeling of SCARA robots is important as it allows for analyzing
their kinematic and dynamic behavior. In this study, since both robots share the same
characteristics and dimensions, only one robot will be analyzed, although the complete
system is composed of two. The procedure follows the one outlined in [50]. Figure 5
shows the kinematic diagram of the SCARA robot, from which the Denavit–Hartenberg
parameters are determined and presented in Table 3.
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where:
a1: Length of the first arm.
a2: Length of the second arm.
d1: Height from the base to the first rotation axis (axis Z0).
d3: Linear displacement of the end-effector along the axis Z3.
d4: Height of the end-effector.
θ1: Rotation angle of the first link (rotation around the axis Z0).
θ2: Rotation angle of the second link (rotation around the axis Z1).
θ4: Rotation angle of the end-effector (rotation around the axis Z3).

Table 3. Denavit–Hartenberg parameters.

Jointi θi di ai ∝i

1 θ1 0.1916 0.2 0
2 θ2 0 0.2259 π
3 0 d3 0 0
4 θ4 0.02 0 0

The forward kinematics allow calculating the position and orientation of the end-
effector from the joint angles [60].

P =

px
py

pz

 =

0.2 cos(θ 1) + 0.2259 cos(θ 1 + θ2)

0.2 sin(θ1) + 0.2259 sin(θ 1 + θ2)

0.1716 − d3

 (1)

where:

px, py, pz: Positions of the end-effector on the x, y, and z axes, respectively.
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In contrast, inverse kinematics determine the joint angles required to reach a desired
position of the end-effector in the three-dimensional plane [50]. To determine the different
parameters, it is based on the geometric analysis of the robot, considering a projection on
the XY plane axis. From the desired position of the end-effector, a trigonometric relationship
is established to determine the orientation of the links.

In Equation (2), the term arctan
(py

px

)
, calculates the direct angle toward the target

position in the XY plane. The second term arctan
(

0.2259sin(θ2)
0.2+0.2259cos(θ2)

)
introduces a geometric

correction that considers the additional displacement generated by the second link, whose
length is 0.2259 m and whose orientation depends on θ2.

The following are the equations to determine each of the different parameters of
inverse kinematics:

θ1 = arctan
(py

px

)
− arctan

(
0.2259sin(θ2)

0.2 + 0.2259cos(θ2)

)
(2)

θ2 = arccos

(
px

2 + py
2 − 0.0910

0.0904

)
(3)

d3 = 0.1716 − pz (4)

θ4 = ∅+ θ1 + θ2 (5)

where:

∅: Desired angle of the end-effector in the X, Y plane.

For the dynamic analysis, the inertia, Coriolis, and gravitational forces acting on the
robot’s joints are considered, as they allow analyzing its behavior during task execution.
The equations used for this analysis have been taken directly from [50]:

Mi(qi)
..
qi + Ci

(
qi,

.
qi
) .
qi + Gi(qi) = τi (6)

Mi =


0.1843cos(θ2) + 2.034 0.0922cos(θ2) + 1.464 −0.03 0
0.0922 cos(θ2) + 1.464 1.464 −0.03 0

0 0 −0.03 0
0 0 0 0.14

 (7)

Ci =


0 0.0461 sin(θ2)(2

.
θ1 +

.
θ2

)
0 0

0.0922 sin(θ2)(2
.
θ1 +

.
θ2

)
0.0461

.
θ1 sin(θ2) 0 0

0 0 0 0
0 0 0 0

 (8)

Gi =


0
0

−20.01
0

 (9)

qi =


θ1

θ2

d3

θ4

;
.
qi =


.
θ1.
θ2.

d3.
θ4

;
..
qi =


..
θ1..
θ2..

d3..
θ4

 (10)

where:

Ci: Coriolis matrix.
Gi: Gravitational forces matrix.
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Mi: Inertia matrix.
qi: Position vector.
.
qi: Velocity vector.
..
qi : Acceleration vector.
τi: Torque vector.
.
θ1,

.
θ2,

.
d3,

.
θ4: Angular velocities of θ1, θ2, θ4 and linear velocity d3.

..
θ1,

..
θ2,

..
d3,

..
θ4: Angular accelerations of θ1, θ2, θ4 and linear acceleration of d3.

3.2. Fault Tolerance in Selective Compliance Assembly Robots

Currently, robotic systems have a significant impact on the industry, making it crucial
to implement the concept of fault tolerance so that robots can continue operating without
interruption, even in the presence of internal and external failures. This study focuses on
actuator failures in cooperative SCARA robots, as these components are extremely critical
for the precise and efficient movement of the robots. Such failures could severely compro-
mise the performance of joint tasks, as the robot might lose precision and coordination in
its movements. This issue is particularly critical in cooperative environments where strict
synchronization is required: multiple robots performing complex tasks together, such as in
assembly or part-handling chains.

The fault-tolerant strategy consists of three stages:

1. Fault detection.
2. Diagnosis.
3. Automatic system reconfiguration.

3.2.1. Fault Detection

The fault detection process is based on an algorithm that continuously compares the
actual positions with the expected positions of the end-effector, which are calculated using
forward kinematics. The logic is as follows:

1. Calculation of desired Cartesian positions: The position of the end-effector (pxd, pyd,
pzd) in the three-dimensional plane is obtained using forward kinematics based on
the desired joint angles (θ 1d, θd2d, d3d, θ4d) and the geometric characteristics of
the robots.

2. Obtaining actual Cartesian positions: To determine the actual positions (pxm, pym, pzm)
of the robots’ end-effectors, the transform sensor from the Simulink library is used.
This sensor measures the positions (pxd, pyd, pzd) of the end-effectors in real time,
enabling continuous and precise measurement during system operation.

3. Comparison and calculation of Cartesian error (ex, ey, ez): The error is calculated
as the difference between the actual position measured by the sensors and the de-
sired position.

ex = pxd − pxm;ey = pyd − pym; ez = pzd − pzm (11)

E =

ex

ey

ez

 (12)

where:

pxd, pyd, pzd: Desired x, y, and z position of the end-effector.

pxm, pym, pzm: Measured x, y, and z position of the end-effector.

θ1d, θd2d, d3d, θ4d: Desired position of joints 1, 2, 3, and 4, respectively.
ex, ey, ez: Cartesian error in x, y, and z.
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E: Cartesian error vector.

4. Evaluation against a threshold: If the error ∥E∥ exceeds a defined margin ϵ, the system
detects a fault. This threshold is adjusted to avoid false detections caused by noise or
other minor disturbances in the system.

∥E∥ =
√

ex2 + ey2 + ez2 (13)

If

{
∥E∥ > ϵ a fault has occurred
∥E∥ < ϵ no fault has occurred

}
(14)

This flowchart is presented in Figure 6, detailing how the desired and actual positions
are processed to detect anomalies.
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3.2.2. Fault Diagnosis

Once a fault is detected in the system, it is crucial to determine the cause and identify
which actuator or joint is generating the error. An algorithm analyzes the joint errors in
each joint following this logic:

1. Calculation of desired joint positions: The desired positions (θ 1d, θd2d, d3d, θ4d) for
each joint are obtained from the trajectories previously defined in the control system.

2. Obtaining actual joint positions (θ 1m, θ2m, d3m, θ4m): These are measured in real time
using the Joint Sensor in Simulink, integrated into the revolute joints of the model.
This sensor provides the current angular values of each joint.

3. Comparison and calculation of joint error: The error is calculated as the difference
between the real position measured by the sensors and the desired position.

eθ1 = θ1d − θ1m; eθ2 = θ2d − θ2m; ed3 = d3d − d3m; eθ4 = θ4d − θ4m; (15)

where:

θ1m, θ2m, d3m, θ4m: Measured position of joints 1, 2, 3, and 4, respectively.
eθ1 , eθ2 , ed3 , eθ4 : Errors in joints 1, 2, 3, and 4, respectively.

4. Evaluation against a threshold: Each joint error is compared with a specific threshold
defined for each joint. This threshold is set based on the allowed tolerances for
the correct operation of the system. If the error exceeds the threshold, the system
diagnoses that the corresponding actuator is failing.

If

{∥∥eθi

∥∥ > ϵ actuator is defective∥∥eθi

∥∥ < ϵ actuator is in good condition

}
(16)

where:

ϵ: Threshold.
eθi : Error in joint i.
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This flowchart is presented in Figure 7, where it details how the desired and actual
positions are processed to detect a faulty actuator.
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3.2.3. System Reconfiguration

System reconfiguration begins immediately after diagnosing the failed actuator. Since
the system is designed with a redundant configuration, each robot joint has two actuators: a
primary actuator and a redundant actuator. This setup ensures that in the event of a critical
failure in the primary actuator, the system can continue operating without interruptions.
When a failure in the primary actuator is detected, the system automatically switches to the
redundant actuator. This process involves:

1. Deactivating the failed actuator: The defective actuator is deactivated to prevent
interference with system operation.

Ai= 0 (17)

2. Activating the redundant actuator: The redundant actuator is activated and takes
control of the affected joint, dynamically adjusting to the current operating conditions.

Air= 1 (18)

where:

Ai: Primary actuator i.
Air: Redundant actuator i.

3. Parameter adjustment: The redundant actuator adapts its settings to maintain
system accuracy, performance, and stability within the previously established
operational limits.

θir = θid − θAi (19)

where:

θir: Redundant joint i position.
θAi: Position where the primary actuator i failed.
θid: Desired position of joint i.

Automatic and real-time reconfiguration minimizes productivity loss and eliminates
major impacts on the process. The reconfiguration strategy ensures that the robotic system
continues operating without performance loss, maintaining work quality by avoiding
serious errors that could result from a failure in the primary actuator (see Figure 8).
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3.3. Gear System for Activation and Deactivation of Actuators in the Different Joints

To equip SCARA robots with redundant actuators, differential gears are used to enable
controlled distribution of torque and movement to the actuators. This type of mechanism
is employed in applications where combining mechanical efforts is necessary to ensure
precise synchronization of the actuators.

The differential gear is a planetary gear system with a central gear that helps distribute
torque among the other connected gears. The main advantage of this system is that
it allows the shafts to rotate at different speeds while maintaining proportional torque
distribution. This is particularly useful in systems where a primary actuator performs the
work, and a redundant actuator remains inactive until a failure in the primary actuator is
detected. Figure 9 shows the differential gear system to be used, which was designed in
SolidWorks 2022.
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The differential gears in SCARA robots allow two actuators to be connected to the
same joint. Under normal conditions, the primary actuator moves the joint, while the
redundant actuator remains inactive. If the primary actuator fails, the control system
activates the redundant actuator to take full control of the joint. This ensures that the robot
continues operating without interruptions, even in the event of mechanical failures in one
of its primary actuators.

3.3.1. Servomotor

A servomotor is an electromechanical device designed to control the position, speed,
and acceleration of a mechanical system. In SCARA robots and their differential system,
servomotors are used to drive the planetary gears, enabling efficient torque distribution
and precise joint control.

Servomotors are composed of several key elements:
DC Motor: Provides rotational movement.
Gear System: Multiplies torque and reduces speed to achieve high precision.
Position Sensor: Measures the shaft’s position and transmits this information to

the controller.
Controller: Adjusts the motor’s movement to correct deviations from the desired position.
Feedback Circuit: Maintains closed-loop control between input and output, ensuring

instant corrections for precise positioning.
The primary importance of servomotors in differential gear systems lies in controlling

the movement of the planetary gears with the precision needed to ensure the system’s
proper operation. Servomotors enable continuous adjustments and real-time feedback,
ensuring that, even in the event of a failure in one of the actuators, SCARA robots maintain
synchronization and joint control. The servomotor prototype design is created using
SolidWorks 2022 software (see Figure 10).
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Servomotors can exhibit errors that significantly affect the system and are sometimes
difficult to diagnose. One of the most common issues is overheating. This occurs when the
motor is overworked or when there are problems with ventilation or the cooling system.
Excessive heat can impair the motor’s performance and potentially cause permanent
damage to the device.

Another frequent fault is the wear and tear of mechanical components such as gears,
bearings, and other moving parts, which deteriorate over time and usage. This can result
in vibrations, noise, or even cause the motor to operate unevenly or imprecisely. Electronic-
related failures can also occur, specifically in the internal circuits, which may be damaged
by voltage issues, short circuits, or electrical interference. If a servomotor’s controller
fails, the motor might stop functioning correctly or become uncontrolled, which can be
hazardous in sensitive applications.

The differential gear system prototype design is shown in Figure 11, created with
SolidWorks 2022 software.
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3.3.2. Torque Limiter

A torque limiter is a device engineered to safeguard machinery and motors from
damage caused by overloads. Its core function is to disengage the torque once a preset limit
is surpassed, thereby preventing overheating or component failure.

The torque limiter connects to the shaft through a pin, facilitating power transfer. This
pin, which may be either a parallel pin or a spring pin, fits into both the shaft and the
groove-shaped resin part within the torque limiter’s housing.

The driving end of the system is linked to the torque limiter’s plastic sleeve, while the
output side attaches to the aluminum casing. When the torque on the output side is below
the designated limit, power flows seamlessly, with no internal slippage occurring within
the limiter.

If the torque on the output side exceeds the threshold, the torque limiter activates by
slipping internally, interrupting the power from the motor. This mechanism shields the
system, minimizing the risk of damage to the motor and related mechanical parts. Once the
torque falls back within safe levels, the torque limiter restores power transmission without
internal slipping.

These devices are commonly used in automatic doors, electric windows, motorized cur-
tains, and other motor-driven systems. A notable example is the TOK TLEU torque limiter.
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The TOK TLEU stands out for its compact and lightweight design, high durability, and
stable torque output. Unlike conventional friction-based limiters, this model uses magnetic
coupling to generate torque, ensuring quiet operation. It offers adjustable torque settings
ranging from 5 to 40 Nm, in 5 Nm increments, and can operate at a maximum speed of
2000 rpm.

Torque limiters provide three major advantages: protects components and motor dur-
ing overloads, operates quietly due to magnetic force rather than friction., and automatically
restores power transmission once torque returns to safe levels.

The design of the torque limiter used in the SCARA robot is shown in Figure 12,
created with SolidWorks 2022 software.
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3.3.3. Mathematical Analysis of the Servomotor System with Differential Gear

The mathematical analysis of the behavior of the servomotors, along with the differen-
tial gear system, is presented below. This system enables the distribution of torque between
the primary and redundant actuators in SCARA robots. Figure 13 illustrates the electrical
and mechanical model of two servomotors, each represented by an armature circuit and a
dynamic model that includes inertia, friction, and torque.
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These servomotors act on a differential gear, which distributes movement and effort
among the robot’s joints, ensuring efficient and precise control. A detailed analysis of
this system is essential to understand how the servomotors interact with the differential
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gear and how variations in torque and speed are managed to ensure synchronized and
fault-free operation.

To analyze the system, the electrical and mechanical equations of each motor
are formulated:

ea1 = Ra1ia1+L di
dt + vb1

ea2 = Ra2ia2+L di
dt + vb2

(20)

Tm1 = kt1ia1

Tm2 = kt2ia2
(21)

vb1 = kb1
.
θm1

vb2 = kb1
.
θm2

(22)

The torque in each motor is calculated using the following formulae:

Tm1 = Jm1
..
θm1 + bm1

.
θm1

Tm2 = Jm2
..
θm2 + bm2

.
θm2

(23)

where:

Tm1, Tm2: Torque generated by motor 1 and motor 2.
vb1, vb2: Back electromotive force of motor 1 and motor 2.
kt1, kt2: Torque constant of motor 1 and motor 2.
.
θm1,

.
θm2: Angular velocity wm1 and wm2.

Jm1, Jm2: Rotor’s moment of inertia.
bm1, bm2: Viscous friction coefficient.

To determine the relationship between the actuators and the gear system, the following
equations are used:

Je1 = −Jm1 − JL

(
θL
θm1

)2

Je2 = −Jm2 − JL

(
θL
θm2

)2 (24)

Tm1 = Je1
..
θL + be1

.
θL

Tm2 = Je2
..
θL + be2

.
θL

(25)

Tm1 =

[
−Jm1 − JL

(
θL
θm1

)2
]

..
θL

Tm2 =

[
−Jm2 − JL

(
θL
θm2

)2
]

..
θL

(26)

ea1= L

[
−Jm1− JL

(
θL
θm1

)2
]

kt1

..
θL− R

[
−Jm1− JL

(
θL
θm1

)2
]

kt1

..
θL + kb1

.
θL

ea2= L

[
−Jm2− JL

(
θL
θm2

)2
]

kt2

..
θL− R

[
−Jm2− JL

(
θL
θm2

)2
]

kt2

..
θL + kb1

.
θL

(27)

The characteristics of the servomotor are as follows:

Torque constant: 0.056 [Nm/A].
Voltage constant: 0.0554 [Nm/A].

To calculate the value of the friction coefficient b in both motors, the no-load speed
and current values are used.

b =
Te

wr
(28)
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wr =
Va − R ia

kt
=

24 − (1.15)(0.5)
0.056

= 418.30 [rad/seg.] (29)

The torque generated solely by the rotation of the shaft is known.

Te =
ktia
kt

= 0.0280 [Nm] (30)

b =
Te

wr
= 6.6937 × 10−5 [Nm] (31)

To analyze the operation of the actuators, it is important to examine their energy
performance, which is defined by the relationship between the electrical and mechanical
power in each motor.

Pe1 = ea1ia1

Pe2 = ea2ia2
(32)

Pm1 = Tm1
.
θm1

Pm2 = Tm2
.
θm2

(33)

n1 = Pe1
Pm1

× 100%
n2 = Pe2

Pm2
× 100%

(34)

where:

Pe1, Pe2: Electrical power of motor 1 and motor 2.
Pm1, Pm2: Mechanical power of motor 1 and motor 2.
n1, n2: Efficiency of motor 1 and motor 2.

3.4. Coordination Algorithm

In a robotic system where, multiple robots collaborate on the same task, it is crucial
to implement a coordination algorithm that ensures the efficient and safe operation of the
robotic cell. This algorithm must manage each robot’s movements to maintain coordination
and prevent collisions, which could severely affect system performance and durability. To
achieve proper coordination, it is essential to have detailed knowledge of the different
positions and working areas each robot can reach. Assigning a task outside the reach of its
end-effector could compromise execution, causing delays or system failures.

This study focuses on a complex scenario where the robots must collect objects of
different colors located within their respective working areas and transport them to the
common working area, where both robots can operate together. Real-time communication
between the robots is vital in this context. They must exchange information about their
positions and plan their movements in a coordinated manner to avoid collisions while
transporting or manipulating objects in the common area. Figure 14 shows the working
areas: Robot 1’s area is in red, Robot 2’s area is in green, and the common working area is
in light blue.
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Continuing with the cooperative task, Figure 15 shows the collisions in position and
orientation that can occur due to poor communication between robots when they need to
jointly transport a large object, such as a table. In this case, it is critically important for the
robots to constantly exchange information about the positions and orientations of their
end-effectors. Without this precise communication, they would be unable to move the
object correctly at the same time, jeopardizing both the task and the integrity of the system.
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Figure 16 shows the proposed algorithm for coordinating the robots in performing a
cooperative task.
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The process begins with determining the object’s position and the Cartesian positions
the robots must adopt. Next, joint positions are assigned to the robots so that their end-
effectors are properly positioned over the object. It is then verified whether both robots have
gripped the object; if the response is affirmative, the robots transport it in a coordinated
manner. Otherwise, the process enters a delay until the object is secured.
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During transport, Robot 1 sends the position and orientation of its end-effector to
Robot 2, which adjusts its parameters accordingly. The process continues until the transport
is completed.

3.5. Controllers

The robots, in addition to having good coordination among themselves when per-
forming a task, must also use controllers capable of minimizing the different failures that
may arise during the task, such as disturbances and vibrations. Therefore, the following
controllers are used:

3.5.1. Nonlinear Model Predictive Controller

Nonlinear Model Predictive Controller (NLMPC) is an advanced controller used to
handle systems with complex nonlinearities in their dynamics. Its main objective is to
optimize the system’s behavior over time by anticipating possible deviations and adjusting
control actions optimally within a prediction horizon.

Starting from the dynamic equation presented in Equation (6), the control law is
formulated, where the state vector x consists of the four joint positions q, the four velocities
.
q, and the four control torques, represented by τ.

.
x= f(x, τ)

x =

[
q
.
q

]
(35)

The cost function is represented by

J =
Np

∑
K=0

⌈(
qk − qref,k

)T
Q(

.
qk −

.
qref,k)+τk

TRτk

⌉
(36)

where:

qk: Predicted joint position at step k.
qref,k: Reference joint position at step k.
.
qk: Predicted joint velocity at step k.
.
qref,k: Reference joint velocity at step k.
τk: Control torques at step paso k.
Q y R: Weighting matrices 4 × 4.

Constraints are established for positions, velocities, and torques.

qmin ≤ qk ≤ qmax.
qmin ≤ .

qk ≤ .
qmax

τmin ≤ τk ≤ τmax

(37)

The NLMPC solves the following optimization problem at each time step, applying
the first torque of the optimal sequence to the robot inputs, and the process repeats at the
next time step.

min
τ0, −−− , τNp−1

J (38)

Due to its advantages, this type of controller is widely used in applications
with critical constraints, such as advanced robotics, complex chemical processes, and
autonomous vehicles.
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3.5.2. Sliding Mode Controller

The Sliding Mode Controller (SMC) is a control technique specifically used in robotic
manipulators due to its robustness against uncertainties and external disturbances. Its
operation forces the system to slide over a sliding surface, thus ensuring accurate and
precise trajectory tracking.

This technique is based on the general dynamics of the robot, expressed in Equation (6).
For this study, the following control equation is proposed:

M(q)(
..
qref − Λ(qref − q) + C(q,

.
q
) .
q+G(q) + k·sign(s) = τ (39)

The term M(q)(
..
qref − Λ(qref − q) is used to compensate for the natural dynamics of

the robot and adjust the reference acceleration, ensuring that the system responds correctly
to changes in the desired trajectory. On the other hand, the term k·sign(s) introduces
robustness against disturbances and variations in the dynamic parameters of the robots.

The sliding surface s is defined as a function of the joint positions q and velocities
.
q, where

s =
.
q − .

qref + Λ(q − qref) (40)

where:
..
qref: Reference acceleration.
k: Control gain vector that determines the magnitude of the discontinuity to ensure robust-
ness.
sign(s): Sign function applied component-wise. If s > 0, its value is 1; otherwise, it is −1.
s: Sliding surface vector.
Λ: Positive gain matrix to adjust convergence toward the surface.
qref: Desired joint position vector.

The main objective of the controller is to force s = 0 to ensure that q converges to qref,
thereby minimizing tracking error.

To reduce errors caused by chattering, the sign function is smoothed using the follow-
ing equation:

sign(s) =
s

∈ +|s| (41)

where:

∈: is a small value that smooths the sign function, preventing abrupt changes in the control
signal.

4. Simulations in the Virtual Environment of the Selective Compliance
Assembly Robot Arm Cooperative System

A virtual environment is designed in MATLAB 2024a with the aim of evaluating
and perfecting the performance of the two SCARA robots when performing cooperative
tasks, as shown in Figure 17. The robots are programmed to manipulate and transport
cube-shaped objects, which are initially placed on tables located to the right and left of the
robots. Finally, the cubes must be placed on a common table situated within the shared
workspace of the robots. The initial and final positions of the centers of the objects are
shown in Tables 4 and 5.

To address this scenario and analyze the behavior of the robots in the event of a
potential failure in one of their actuators, five cases are proposed:
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Figure 17. Virtual environment of the SCARA cooperative system.

First case: The robots are studied under normal operating conditions, meaning no
actuator fails, and both robots’ function with all their primary actuators while the redundant
actuators remain idle. In this case, it is evaluated whether the robots can correctly perform
the assigned task in the following order: first, the robots pick up the green objects and
transport them to the box located in the shared workspace area; then, they perform the
same operation with the red objects, and finally with the blue objects. This process is shown
in Figure 18.

Table 4. Initial positions in the three-dimensional plane of the objects to be transported.

Robot 1 Robot 2

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

Green Objects 0.2 0.1 0.1 −0.2 0.1 0.1
Red Objects 0.2 0.15 0.1 −0.2 0.15 0.1
Blue Objects 0.2 0.2 0.1 −0.2 0.2 0.1

Table 5. Final positions in the three-dimensional plane of the objects to be transported.

Robot 1 Robot 2

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

Green Objects 0.25 0.1 0.1 0.2 0.1 0.1
Red Objects 0.25 0.15 0.1 0.2 0.15 0.1
Blue Objects 0.25 0.2 0.1 0.2 0.2 0.1

Second case: The cooperative system is evaluated by applying total failures in the
robots’ actuators. First, a total failure is induced in the first actuator of Robot 1 while it is
transporting the red object to Robot 2, and later, a failure occurs in the second actuator of
Robot 2 while it is transporting the blue object at 20 s. The goal is to analyze how these
failures affect the robots’ ability to complete the task accurately and cooperatively.

In this case, the robots can still move the objects, but due to the loss of control in
the affected actuators, they fail to position them in the correct location within the shared
workspace. This scenario allows for the evaluation of the system’s robustness in the face
of critical failures and observes the robots’ behavior in degraded operating conditions.
Additionally, the coordination algorithm’s performance is verified; although the robots do
not place the objects in the correct location, the algorithm prevents collisions between them,
ensuring they do not interfere or collide with each other. These processes are shown in
Figures 19 and 20. Meanwhile, Figures 21 and 22 show the joint positions of the primary
and redundant actuators, where it is verified that a failure occurred in the actuator.



Technologies 2025, 13, 47 23 of 36Technologies 2025, 13, x FOR PEER REVIEW 23 of 38 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 18. Cooperative object manipulation process by the SCARA robots: (a) movement of green 
objects; (b) movement of red objects; (c) movement of blue objects; (d) completion of the cooperative 
task. 

Second case: The cooperative system is evaluated by applying total failures in the 
robots’ actuators. First, a total failure is induced in the first actuator of Robot 1 while it is 
transporting the red object to Robot 2, and later, a failure occurs in the second actuator of 
Robot 2 while it is transporting the blue object at 20 s. The goal is to analyze how these 
failures affect the robots’ ability to complete the task accurately and cooperatively. 

In this case, the robots can still move the objects, but due to the loss of control in the 
affected actuators, they fail to position them in the correct location within the shared 
workspace. This scenario allows for the evaluation of the system’s robustness in the face 
of critical failures and observes the robots’ behavior in degraded operating conditions. 
Additionally, the coordination algorithm’s performance is verified; although the robots 
do not place the objects in the correct location, the algorithm prevents collisions between 
them, ensuring they do not interfere or collide with each other. These processes are shown 
in Figures 19 and 20. Meanwhile, Figures 21 and 22 show the joint positions of the primary 
and redundant actuators, where it is verified that a failure occurred in the actuator. 

Figure 18. Cooperative object manipulation process by the SCARA robots: (a) movement of green
objects; (b) movement of red objects; (c) movement of blue objects; (d) completion of the coopera-
tive task.

Technologies 2025, 13, x FOR PEER REVIEW 24 of 38 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 19. Cooperative object manipulation process by the SCARA robots with a failure in Actuator 
1 of Robot 1: (a) movement of green objects; (b) the robots transport red objects with the first actuator 
of Robot 1 defective; (c) movement of blue objects with the first actuator of Robot 1 defective; (d) 
completion of the inefficient cooperative task. 

  
(a) (b) 

Figure 19. Cooperative object manipulation process by the SCARA robots with a failure in Actuator
1 of Robot 1: (a) movement of green objects; (b) the robots transport red objects with the first
actuator of Robot 1 defective; (c) movement of blue objects with the first actuator of Robot 1 defective;
(d) completion of the inefficient cooperative task.
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Third case: The system is evaluated with the fault-tolerant mechanism, adding the
task from the first and second cases. The same failures as in the second case are induced
(failure in the first actuator of Robot 1 and the second actuator of Robot 2), but now the
fault-tolerant system is active. Upon detecting a failure, the system immediately deactivates
the faulty primary actuator and activates the redundant actuator, allowing the robots to
continue with their tasks.

Although there is a slight deviation in the robots’ trajectory before the redundant
actuator is activated, the system responds correctly, adjusting the positions and trajectories
to complete the movement of the objects without compromising precision or coordination.
This scenario demonstrates the system’s adaptability to adverse conditions and evaluates
how the fault-tolerance mechanism maintains stability in cooperative tasks, avoiding
collisions and completing the task without interference between the robots or critical errors
in the final positioning of the objects. Figure 23 shows the measured and performed
trajectories of the robots, and Figure 24 illustrates the activation of redundant actuators
when the primary actuators fail.

Fourth case: The behavior of the SCARA robotic system is evaluated in the presence
of multiple actuator failures in both robots, with the aim of analyzing how the system
responds and adapts to these simultaneous failures.

For this, the following failures are induced in Robot 1:

1. At 8 s, Actuator 1 fails while the robot is heading towards the red box.
2. At 14 s, Actuator 2 fails during the transport of the red box.
3. At 25 s, Actuator 3 fails while the robot is transporting the blue box.
4. At 11 s, Actuator 4 fails while the robot continues transporting the red box.
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In Robot 2, the following failures are induced:

1. At 14 s, Actuator 1 fails while transporting the red box.
2. At 19 s, simultaneous failures are induced in actuators 2 and 3 while the robot is

heading towards the blue box.
3. At 4 s, actuator 4 fails while transporting the green box.

The fault tolerance system is active, which allows observing in Figure 25 how failures
are managed in real time while the robots perform the tasks.

When the failures are induced, the system reacts quickly, as shown in Figure 26, i.e.:,

• Deactivation of the defective actuator: When an actuator fails, the system automatically
deactivates it to prevent the failure from affecting the robot’s performance.
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• Activation of redundant actuators: The system activates the corresponding redun-
dant actuator to maintain the continuous operation of the robots, minimizing any
interruption in the task.
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Fifth case: A new stage is added to the cooperative task. Once the robots have
finished collecting the objects of different colors, they must collaborate to transport the
box containing these objects together. Table 6 presents the initial and final positions of
the box, indicating where the robots must move it. Figure 27 shows the task in which the
robots coordinate to pick up the box, lift it, and transport it to the final position. They then
carefully place it down and release it before returning to their initial (home) position.
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Table 6. Initial and final positions of the box to be transported by both robots.

Table

X (m) Y (m) Z (m)

Initial position 0.2 0.1 0.1
Final position 0.2 0.35 0.1
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Figure 27. Cooperative process for transporting a table between both robots: (a) robots hold the table;
(b) robots lift the table; (c) robots transport the table; (d) completion of the cooperative task.

Figure 28 shows the trajectories performed by the robots using the fault-tolerant
system in combination with the NLMPC and ASMC position controllers under actuator
failure conditions. The reference trajectory, corresponding to the case without actuator
failures, is shown in red. Meanwhile, the trajectories obtained with the fault-tolerant system
are illustrated in green for the NLMPC controller and blue for the ASMC controller.

Figure 29 shows the trajectory error on the different axes, comparing the deviations
observed for each configuration.

In this study, the focus is specifically on the analysis of actuator failures, without con-
sidering other factors that may affect the proper functioning of the SCARA robotic system,
such as external disturbances, vibrations, thermal changes, or sensor interference. While
these conditions reflect a controlled simulation environment, in real industrial scenarios,
external disturbances can also significantly influence robot performance. In future studies,
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the incorporation of models that include these disturbances will be considered to evaluate
the system’s response more accurately under operating conditions closer to reality.
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5. Results Analysis
This section analyzes the results obtained from simulations conducted in the virtual

environment developed in MATLAB R2024a. These simulations demonstrate the effec-
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tiveness of the proposed fault-tolerant control system for SCARA robots, evaluated in five
different scenarios:

Normal operation scenario: The robots successfully performed the tasks of collecting
and transporting objects of different colors, maintaining high precision and synchronization.
This confirms that the initial system design is suitable for cooperative operations without
interruptions or collisions.

Scenario with actuator failures without reconfiguration: When total failures were
introduced in the robots’ actuators, their ability to position objects accurately was noticeably
affected. Although the robots transported the objects, deviations in the trajectories caused
significant errors in their final placement. This scenario validated the need for a fault-
tolerant system, as active desynchronization due to failures jeopardizes the process.

Scenario with active reconfiguration in redundant actuators: When the fault-tolerant
system was activated, the redundant actuators automatically took over the functions of
the faulty primary actuators. Although there was a slight initial deviation in the robots’
trajectories, the system responded efficiently within 0.5 s of the fault occurrence, adjusting
positions and maintaining task precision. This result highlights the robustness of the
proposed approach and its ability to maintain operational continuity without interference
between the robots. Figure 30 shows the error produced when one of the actuators fails in
Robot 1 and Robot 2.
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When analyzing the performance of Robot 1 and Robot 2 with the different controllers
(NLMPC and SMC), some significant differences in terms of efficiency and precision are
observed, Table 7. For Robot 1, the NLMPC controller clearly outperforms SMC in almost
all aspects: the steady-state error ess is lower with NLMPC (0.0214 compared to 0.0348),
suggesting that NLMPC maintains better final stability. Additionally, the Integral of
Squared Error (ISE) is much lower with NLMPC (0.00612 compared to 0.0815), indicating
that this controller achieves better overall performance in terms of precision.

Table 7. Initial and final positions of the box to be transported.

Robot 1 Robot 2

NLMPC SMC NLMPC SMC

ess 0.0214 0.0348 0.0014 0.0056
ISE 0.00612 0.0815 0.0002 0.00036
IAE 0.5948 0.65478 0.8741 1.0215

ITAE 4.2148 14.2147 8.2306 9.8745
IA 0.9574 1.0324 1.5474 1.8945
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With Robot 2, the results follow a similar trend. NLMPC once again demonstrates
superior performance, with a very low ess= 0.0014, compared to 0.0056 for SMC. This
indicates that NLMPC is more effective at minimizing small errors and quickly adjusting to
changes. Furthermore, the ISE for Robot 2 with NLMPC (0.0002) is significantly lower than
that of SMC (0.00036), reinforcing the idea that NLMPC provides better overall control.

However, when observing other indicators such as the Integral of Absolute Error
(IAE) and the Integral of Time-weighted Absolute Error (ITAE), the differences are not as
pronounced or, in some cases, SMC even approaches NLMPC in terms of performance. For
example, the ITAE for Robot 2 is higher with SMC (9.8745) than with NLMPC (8.2306), but
the gap is not as significant as in the previous errors. The Index of Agreement (IA) also
shows that SMC tends to require more control effort in both robots.

By inducing multiple actuator failures in both robots, the SCARA robotic system
manages them effectively. Despite failures occurring at different times and during critical
tasks, the system maintains operational continuity thanks to the rapid deactivation of
defective actuators and the activation of redundant ones. The measured trajectories show
slight deviations that do not significantly affect overall performance, validating the system’s
ability to adapt and minimize the impact of failures in real time.

Cooperative task of transporting a box with both robots: The robots collaborated to
lift and transport a box with the collected objects. The simulation showed that even after
reconfigurations due to failures, the system was able to coordinate the movements of both
robots, completing the task without critical errors. This validates the mechanical design and
control strategy, ensuring that joint operation is possible even under adverse conditions.
When analyzing the errors observed during robot failures (see Figure 31), it was noted
that Robot 1 with the NLMPC controller showed average errors of 0.0054 m on the X-axis,
0.0128 m on the Y-axis, and 0.0118 m on the Z-axis. These errors were reduced to 0.0042 m,
0.0040 m, and 0.0017 m, respectively, when using the ASMC controller.
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Robot 2, on the other hand, showed average errors with the NLMPC controller of
0.0053 m on the X-axis, 0.0112 m on the Y-axis, and 0.0118 m on the Z-axis, which were
reduced to 0.0037 m, 0.0034 m, and 0.0017 m when using the ASMC controller. These results
demonstrate that the ASMC controller significantly improves performance in the presence
of faults, reducing errors across all axes and ensuring accuracy in the desired trajectories.

When evaluating the efficiency in the cooperative task (see Figure 32), it is observed
that the system achieved a remarkable success rate in all scenarios. For Robot 1 operating
with the NLMPC controller, the efficiency was 99.00%, while with ASMC it reached 99.67%.
Robot 2, meanwhile, showed an efficiency of 99.06% with NLMPC and 99.71% with ASMC.
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6. Conclusions and Future Perspectives
In conclusion, this study has validated that the fault-tolerant control system for SCARA

robots with redundant actuators is an effective and robust solution for maintaining opera-
tional continuity and coordination in cooperative tasks, even in the event of critical failures
in the primary actuators. Simulations conducted in a virtual environment developed in
MATLAB R2024a confirmed that the system can detect faults, diagnose the problem, and
activate redundant actuators within a reconfiguration time of 0.5 s, ensuring that tasks are
executed correctly.

Regarding precision, the results showed minimal trajectory errors for the robots, with
average values ranging between 0.0042 m and 0.0054 m, depending on the controller used.
The ASMC controller stood out for its ability to reduce errors across all axes and ensure
greater accuracy compared to NLMPC. Additionally, the overall system efficiency reached
levels above 99%, demonstrating its capability to perform complex cooperative tasks, such
as object collection and synchronized box transport, without interruptions or errors that
could impact the task.

When multiple failures are applied, it is observed that although they temporarily
affect movement accuracy, the system recovers quickly, allowing the robots to complete
the assigned tasks without significant interruptions. The coordination between both robots
is maintained, highlighting the system’s ability to manage failures efficiently without
compromising overall performance.

The integration of mechanical components, such as differential gears and torque
limiters, along with advanced reconfiguration algorithms, minimized the impact of system
failures, validating its applicability in high-demand industrial scenarios. Performance
indicators such as ISE, IAE, and ITAE confirmed that the system maintains a high level of
stability and control, optimizing overall performance. This makes it particularly valuable in
sectors like advanced manufacturing, precision assembly, and logistics, where operational
interruptions can lead to high costs and delays. Its optimized design reduces maintenance
costs and improves sustainability, establishing it as a key tool for modern automation.

As future work, the incorporation of artificial intelligence and machine learning tech-
niques is proposed to further enhance the system’s response and adaptability to unexpected
failures. The implementation of prediction algorithms based on neural networks could
optimize early anomaly detection and enable proactive adjustments to control parameters.
Additionally, integrating online learning models could facilitate continuous adaptation to
changing conditions in industrial environments, increasing the system’s overall efficiency
and precision.
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