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Abstract: Recognizing human actions through video analysis has gained significant at-
tention in applications like surveillance, sports analytics, and human–computer interac-
tion. While deep learning models such as 3D convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) deliver promising results, they often struggle with
computational inefficiencies and inadequate spatial–temporal feature extraction, hindering
scalability to larger datasets or high-resolution videos. To address these limitations, we
propose a novel model combining a two-dimensional convolutional restricted Boltzmann
machine (2D Conv-RBM) with a long short-term memory (LSTM) network. The 2D Conv-
RBM efficiently extracts spatial features such as edges, textures, and motion patterns while
preserving spatial relationships and reducing parameters via weight sharing. These features
are subsequently processed by the LSTM to capture temporal dependencies across frames,
enabling effective recognition of both short- and long-term action patterns. Additionally,
a smart frame selection mechanism minimizes frame redundancy, significantly lowering
computational costs without compromising accuracy. Evaluation on the KTH, UCF Sports,
and HMDB51 datasets demonstrated superior performance, achieving accuracies of 97.3%,
94.8%, and 81.5%, respectively. Compared to traditional approaches like 2D RBM and
3D CNN, our method offers notable improvements in both accuracy and computational
efficiency, presenting a scalable solution for real-time applications in surveillance, video
security, and sports analytics.

Keywords: action recognition; convolutional restricted Boltzmann machine; long
short-term memory; spatial–temporal feature extraction; video processing

1. Introduction
The field of video-based human action recognition has garnered significant attention

due to its wide-ranging applications in domains such as surveillance, sports analytics,
human–computer interaction, and healthcare monitoring [1,2]. Recognizing human actions
in real-time from video data is challenging because of the high dimensionality of video
frames, complex motion patterns, and the need for effective spatial–temporal data under-
standing [3]. Traditional approaches using handcrafted features often fail to capture the
intricate spatial–temporal relationships inherent in human actions [4].

Recent advancements in deep learning have revolutionized video analysis by en-
abling automated feature extraction directly from raw data. However, these methods
face challenges in computational efficiency and scalability, especially for high-resolution
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or long-duration video sequences [5,6]. As noted in [7], deep learning’s pivotal role in
machine and robotic vision has driven significant progress in areas such as object detection,
semantic segmentation, and action recognition. This underscores the necessity for models
capable of robustly handling the spatial–temporal complexities of video data.

Among the most successful approaches are hybrid models leveraging convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), particularly long short-
term memory (LSTM) networks [8]. CNNs are effective in extracting spatial features from
individual video frames, learning local patterns such as edges and textures [9]. Meanwhile,
LSTMs excel at capturing temporal dependencies, retaining information about past frames
to recognize sequential patterns [1].

Despite their promise, CNN-LSTM architectures often encounter challenges with
computational inefficiency due to the high number of parameters and resource demands.
These challenges become particularly pronounced with high-resolution data or extended
video sequences [2]. Additionally, CNNs, while powerful for static image analysis, may
not fully capture the dynamic nature of motion over time, limiting their effectiveness in
spatial–temporal feature extraction [10]. This has driven the exploration of alternative
architectures that balance accuracy and computational efficiency [11].

Recently, vision transformers (ViTs) have emerged as a promising alternative for
action recognition tasks. Unlike CNNs, which rely on local receptive fields, ViTs utilize
self-attention mechanisms to model global dependencies across spatial and temporal dimen-
sions. This enables them to capture complex relationships between features that span across
the entire video frame [12]. ViTs have demonstrated state-of-the-art performance in several
visual tasks due to their ability to process sequences of image patches as tokens, treating
each patch as an individual input unit [13]. For video action recognition, models such as
ViViT (video vision transformer) [14] and TimeSformer [15] have extended the transformer
framework to temporal data, effectively learning spatial–temporal representations. How-
ever, ViT-based models often require significant computational resources and large-scale
pretraining on video datasets, which can limit their scalability and accessibility [16].

Restricted Boltzmann machines (RBMs), particularly two-dimensional RBMs (2D
RBMs), have recently been revisited for their ability to learn complex distributions
and hierarchical features in an unsupervised manner [4]. Unlike traditional RBMs, 2D
RBMs can better preserve local pixel relationships, making them suitable for spatial data
such as video frames. However, their inability to model temporal dependencies across
frames limits their application in action recognition tasks where motion dynamics are
essential [4].

To address these limitations, this paper proposes a novel hybrid architecture combining
two-dimensional convolutional RBMs (2D Conv-RBMs) and LSTM networks. The 2D
Conv-RBM incorporates convolutional filters into the RBM framework, enabling efficient
extraction of spatial features such as edges, textures, and motion cues while reducing
parameters through weight sharing. These spatial features are then processed by an LSTM
layer, which captures temporal dependencies across frames, enabling robust recognition of
both short-term and long-term action patterns.

A notable aspect of this work is the adoption of a smart frame selection mechanism,
originally introduced in prior research, which has been effectively integrated into our pro-
posed method. This mechanism reduces redundancy by selecting only the most informative
frames for processing, significantly lowering computational costs without sacrificing model
accuracy. By focusing on key temporal transitions, this method enhances the network’s
ability to capture critical dynamics in video sequences.

The primary contributions of this paper are as follows:
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1. We introduce a novel hybrid 2D Conv-RBM + LSTM architecture that efficiently cap-
tures both spatial and temporal features for action recognition tasks. By leveraging
the strengths of unsupervised spatial feature learning through Conv-RBM and tem-
poral modeling through LSTM, the proposed method achieves robust and effective
action recognition.

2. We incorporate a smart frame selection mechanism that reduces computational com-
plexity by selecting only the most relevant frames in each video sequence. This
innovation minimizes redundancy while preserving critical temporal information,
enabling the network to focus on the most informative portions of the video.

3. We conduct extensive evaluations on three benchmark datasets: KTH [17], UCF
Sports [18], and HMDB51 [19]. On the KTH and UCF Sports datasets, our method
achieves state-of-the-art accuracy, surpassing all competing methods in the literature.
On the HMDB51 dataset, while our method achieves competitive accuracy, certain
other approaches demonstrate higher performance, particularly those leveraging
transformer-based architectures or highly complex deep learning frameworks. De-
spite this, our method balances accuracy and computational efficiency, making it a
promising solution for real-time action recognition tasks.

The remainder of this paper is organized as follows: Section 2 reviews related work in
video-based action recognition and spatial–temporal feature extraction. Section 3 presents
the detailed architecture of the proposed model and the smart frame selection mechanism.
Section 4 describes the experimental setup, including datasets and metrics. Section 5
discusses the results and analysis, and Sections 6 and 7 concludes the paper with potential
future directions.

2. Related Work
Human action recognition from video sequences has long been a challenging problem

in the field of computer vision. Early methods relied on handcrafted features such as
histogram of oriented gradients (HOG) and optical flow to extract motion and appearance
cues from videos. While effective in some cases, these traditional techniques often struggle
to capture the complex spatial–temporal dynamics present in human actions. With the rise
of deep learning, convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), especially long short-term memory (LSTM) networks, have dominated the field,
offering more robust and automatic feature extraction and sequence modeling capabili-
ties [1,6]. Additionally, the integration of mobile and embedded sensors, as demonstrated
by [20] in their smartphone-based motion detection model, has opened new avenues for
real-time and mobile applications of human activity recognition, further highlighting the
adaptability of deep learning in diverse environments.

2.1. CNN-Based Approaches for Spatial Feature Extraction

CNNs have been widely adopted in human action recognition due to their powerful
capability in extracting spatial features from video frames. The foundational work by [21]
introduced the two-stream CNN model, which processes both spatial (static frame) and
temporal (optical flow) streams to recognize actions, emphasizing the importance of com-
bining spatial and temporal information for video analysis [22]. Recent advancements have
expanded on CNN-based approaches, with models like inflated 3D ConvNet [23] inflat-
ing 2D CNNs into 3D convolutions to capture spatial–temporal features simultaneously
across video frames [24]. While these models exhibit strong performance, they come with
increased computational complexity due to the higher number of parameters associated
with 3D convolutions, which can limit real-time applicability [25]. The proposed method
by [26] fuses spatial and temporal features learned from a principal component analysis
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network (PCANet) with bag-of-features (BoF) and vector of locally aggregated descriptors
(VLAD) encoding schemes for human action recognition. The method described in [27] is a
spatial–temporal interaction learning two-stream (STILT) network for action recognition,
which integrates an alternating co-attention mechanism within a two-stream structure
(spatial and temporal streams) to optimize spatial and temporal feature interactions, en-
abling improved recognition accuracy by leveraging complementary information from
RGB frames and optical flow.

2.2. LSTM Networks for Temporal Dependencies

Although CNNs are effective for spatial feature extraction, they have inherent limita-
tions in modeling temporal dependencies across video frames. LSTM networks, designed
to capture long-term dependencies, address these limitations through their internal mem-
ory units. Ref. [28] introduced the LRCN (long-term recurrent convolutional networks)
model, combining CNNs for feature extraction with LSTMs for sequence modeling. This
approach demonstrated the power of LSTMs in learning temporal dependencies across
sequences, and since then, CNN-LSTM combinations have become a standard in video
action recognition tasks [1]. More recently, ref. [29] proposed an attention-enhanced CNN-
LSTM model that focuses on both key spatial features and significant temporal segments
within a video. This use of attention mechanisms helps to filter out irrelevant infor-
mation, which aligns with the smart frame selection concept utilized in our proposed
model [30].

2.3. Restricted Boltzmann Machines (RBMs) and Conv-RBM Variants

Restricted Boltzmann machines (RBMs) have seen varied applications in deep learning,
especially for unsupervised feature learning. While traditional RBMs were originally used
to capture dependencies within static images by learning latent representations from raw
pixel data, they are limited by their fully connected nature, which hinders spatial coherence
and computational efficiency for large-scale image and video data [4]. To overcome these
challenges, two-dimensional RBMs (2D RBMs) were introduced, preserving local pixel
relationships in video frames to maintain spatial coherence [4]. However, standard 2D
RBMs still suffer from inefficiencies due to the lack of parameter sharing. Convolutional
RBMs (Conv-RBMs) improve upon this by applying convolutional filters within the RBM
framework, generating multiple feature maps, and capturing various spatial patterns with
fewer parameters through weight sharing.

Conv-RBMs thus present an efficient method for tasks like action recognition, where
spatial structure is critical, as they generate localized feature maps that efficiently han-
dle large-scale data [31,32]. While Conv-RBMs are relatively new in video-based action
recognition, our proposed architecture combines Conv-RBMs with LSTM networks to
enhance both spatial and temporal dependencies. This combination aligns well with recent
advancements in skeleton-based activity recognition, such as [33], who used autoencoders
for feature extraction, further reinforcing the potential of unsupervised learning models in
human action recognition.

2.4. Comparison Between Conv-RBM and CNN

Convolutional restricted Boltzmann machines (Conv-RBMs) and convolutional neural
networks (CNNs) are widely utilized for spatial feature extraction in image and video
analysis. Despite their shared reliance on convolutional operations, the two approaches
differ significantly in their architecture, learning paradigms, and applications.

Conv-RBMs, a variant of restricted Boltzmann machines (RBMs), are generative
energy-based models designed to learn hierarchical representations in an unsupervised
manner [34]. They model the joint probability distribution of visible and hidden units
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using an energy function, as described in Equation (1) in Section 3.2. By incorporating
convolutional filters into their structure, Conv-RBMs enable efficient extraction of localized
spatial features while preserving critical relationships between neighboring pixels. These
models employ weight sharing across receptive fields, significantly reducing the number of
parameters compared to traditional RBMs or fully connected networks [35]. As described
in Equation (4), Section 3.2, the probabilistic activation of hidden units depends on the
convolutional interaction between the input and the learned filters. The unsupervised
nature of Conv-RBMs makes them particularly advantageous for tasks where labeled data
is scarce or expensive to obtain, as they can effectively learn meaningful features directly
from raw data.

In contrast, CNNs are discriminative, supervised models that excel in classification
tasks by optimizing parameters through backpropagation based on labeled data [36]. CNNs
use convolutional layers to extract spatial hierarchies of features, such as edges and textures,
followed by pooling layers to reduce spatial dimensions. While highly effective in feature
extraction, CNNs require substantial labeled data and computational resources to achieve
optimal performance. Furthermore, CNNs are inherently limited by their focus on learning
task-specific features, making them less flexible for unsupervised or semi-supervised
learning scenarios.

One of the key differences lies in their learning mechanisms. Conv-RBMs optimize an
energy function to learn latent representations, enabling them to capture generalizable and
compact features. This generative approach contrasts with the purely discriminative nature
of CNNs, which focus on minimizing classification error. As a result, Conv-RBMs tend
to produce more interpretable and transferable feature representations [37]. Additionally,
Conv-RBMs are better suited for capturing localized pixel dependencies, which are crucial
for understanding motion patterns and spatial relationships in video frames. This capability
is especially beneficial for human action recognition tasks, where subtle variations in motion
and appearance play a critical role.

From a computational perspective, Conv-RBMs are lightweight due to their parameter-
sharing mechanism, making them more suitable for scenarios with limited resources. In
contrast, CNNs typically require higher computational power, especially when work-
ing with high-resolution images or large-scale datasets. However, CNNs benefit from a
mature ecosystem of pre-trained models and frameworks, which can be fine-tuned for
specific applications.

In the context of this work, Conv-RBM was chosen over CNN for spatial feature
extraction due to its ability to operate in an unsupervised manner while preserving local
spatial coherence. This property is critical for human action recognition, where spatial
features need to be generalized across diverse video frames before temporal dependencies
can be modeled. Moreover, Conv-RBM’s efficient parameterization aligns well with the
smart frame selection mechanism employed in the proposed method, further enhancing
computational efficiency without sacrificing accuracy.

2.5. Smart Frame Selection in Video Analysis

One of the major challenges in video-based action recognition is the large number of
frames in video sequences, many of which are redundant or uninformative. Processing
every frame is computationally costly, especially for real-time applications. Smart frame
selection techniques address this by identifying and selecting only the most informative
frames, reducing computational cost without compromising accuracy [38]. Ref. [20] demon-
strated the impact of frame selection in mobile action recognition, where computational
efficiency is crucial due to hardware constraints.
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Several methods have been proposed for smart frame selection. Dynamic selection
techniques have been employed to optimize key frame selection based on motion clus-
tering, enabling efficient video abstraction and representation [39]. Techniques such as
clustering wavelet coefficients and using Jensen–Shannon divergence have proven effec-
tive in segmenting video content and extracting representative key frames [40,41]. Our
proposed model extends the smart frame selection approach presented in [42] with a
Conv-RBM + LSTM architecture, ensuring that the network focuses on the most relevant
temporal information and reducing the computational overhead, making it suitable for
real-time applications [42].

2.6. Benchmark Datasets and Evaluation

Performance in action recognition is often evaluated on benchmark datasets such as
KTH, UCF Sports, and HMDB51. These datasets provide a diverse range of human activi-
ties, from simple actions (e.g., walking and clapping in KTH) to complex sports activities
(e.g., in UCF Sports) and varied real-world actions (HMDB51). Ref. [43] demonstrated
high accuracy on these datasets using 3D CNNs combined with attention mechanisms,
highlighting the strength of deep learning approaches for complex video analysis [44].
However, the high computational cost of these methods underscores the need for more
efficient architectures, like the one proposed in this paper.

3. Proposed Method
This section presents a novel architecture for video-based human action recogni-

tion, integrating smart frame selection, two-dimensional convolutional restricted Boltz-
mann machine (2D Conv-RBM) for spatial feature extraction, and long short-term
memory (LSTM) for temporal modeling. The final features are classified through a
fully connected network. This pipeline addresses the challenges of redundant video
frames, ensuring efficient computational processing and enhanced accuracy for real-time
action recognition.

The input to the network pipeline is a sequence of video frames with dimensions [s, c,
h, w], where s represents the number of frames, c is the number of channels (converted to
grayscale, c = 1), and h × w denotes the spatial resolution of each frame. First, the sequence
undergoes preprocessing, where each frame is resized to 64 × 64 for uniformity and
computational efficiency. Following this, the smart frame selection mechanism identifies
the top K frames based on their discriminative importance, reducing the sequence length
from s to K. These selected frames, now of dimensions [K, 1, h’, w’], are passed into the 2D
Conv-RBM layer, where convolutional filters extract spatial features, producing f feature
maps for each frame. After max pooling is applied to reduce spatial dimensions, the output
feature maps are transformed into [K, f, h′, w′], where h′ × w′ are the reduced dimensions
after pooling. The feature maps are then flattened into a compact representation of size
[K, f], where f = n × h′ × w′. This sequence is processed by the LSTM layer, which
captures temporal dependencies, generating a hidden state of size [U], where U is the
number of LSTM units. Finally, the hidden state is fed into a fully connected layer with a
softmax activation function, producing a probability distribution over the action classes and
outputting the final classification result of size [C]. This pipeline ensures efficient spatial
and temporal feature extraction while maintaining computational efficiency. The described
pipeline is illustrated in Figure 1.
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Figure 1. Overview of the proposed action recognition with respect to data dimension changes
throughout the network. The pipeline of the proposed method, including preprocessed video frames,
smart frame selection, 2D Conv-RBM for spatial feature extraction, LSTM for temporal modeling,
and a fully connected layer for action classification.

3.1. Preprocessing and Frame Selection

Before processing, each video sequence is converted into grayscale frames to reduce
computational complexity while maintaining the essential features required for action
recognition. Grayscale conversion simplifies the input data by reducing dimensionality
without compromising critical information related to motion and spatial structure. Once the
video frames are preprocessed into grayscale, we apply a smart frame selection mechanism
to eliminate redundancy and retain only the most informative frames for further analysis.
This mechanism significantly reduces computational costs and ensures that the network
processes only the frames representing key temporal transitions, thereby enhancing the
efficiency of the action recognition pipeline.

The smart frame selection mechanism, inspired by the method proposed in [38],
assesses both the individual and relational importance of video frames. This method
consists of two key components: a single-frame selector and a global selector. The single-
frame selector examines the information of each frame independently and assigns a score
δi to indicate the usefulness of the frame for classification. Concurrently, the global selector
considers the entire video sequence to capture relationships between frames using an
attention and relation network. This network takes pairs of frames as input, represented
as concatenated feature vectors, and outputs scores γi, reflecting the importance of the
temporal relationship between these frames.

The relational network utilizes an attention mechanism to capture temporal changes
within actions, considering how frames contribute to the overall action representation. To
achieve this, the input sequence X = (X1, . . ., XN), where Xi represents the feature vector of
frame i, is augmented by randomly pairing each frame Xi with another frame Xri, sampled
from subsequent frames within the sequence. This ensures flexibility in capturing temporal
variations, as some actions are better represented by frames that are closely spaced, while
others benefit from greater temporal distances. The concatenated vectors Zi = [Xi: Xri] are
fed into the relational model, which produces temporal relation–attention weights γ1, γ2,
. . ., γN, providing a global representation of the video’s temporal structure.

The final discriminative score for each frame is computed by multiplying δi and
γi, resulting in a “goodness” score for each frame. Based on these scores, the top n
frames with the highest scores are selected and passed to the spatial–temporal modeling
network for classification. This selective approach ensures that only the most critical
frames are used for action recognition, reducing computational demands while preserving
classification accuracy.

Figure 2 provides an overview of this smart frame selection process, demonstrating
how the combination of frame-level and video-level evaluations identifies the most infor-
mative frames. The attention and relational modules, fully detailed in [38], are beyond
the scope of this work but remain integral to the success of this preprocessing step. By
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leveraging this mechanism, our method achieves efficient frame selection without compro-
mising the quality of the spatial–temporal features provided to the subsequent layers of
the network.
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and selecting the top n frames based on these scores. The method reduces the number of frames
passed to the network while retaining those most critical for action recognition.

3.2. Two-Dimensional Convolutional Restricted Boltzmann Machine (2D Conv-RBM)

The two-dimensional convolutional restricted Boltzmann machine (2D Conv-RBM) is
an extension of the traditional restricted Boltzmann machine (RBM), specifically designed
to handle spatially structured data like images or video frames. Unlike standard RBMs,
which employ fully connected visible and hidden units, the 2D Conv-RBM uses convolu-
tional filters to connect the visible layer V (input frames) to multiple hidden feature maps
Hf. This architecture preserves local spatial relationships in the input, enabling efficient
feature extraction while reducing the number of trainable parameters. The visible layer V
represents grayscale frames with dimensions H × W, while the hidden layer comprises
multiple feature maps, each learning distinct spatial features. Convolutional filters Wf are
shared across spatial locations, ensuring spatial invariance in the learned features.

The relationship between the visible and hidden layers is defined through an energy
function E(V, H), which measures the compatibility between the two layers. The joint
probability distribution of the visible and hidden units is given by Equation (1):

P(V, H) =
1
Z

e−E(V,H), (1)

where Z is the partition function, summing over all possible configurations of V and H:

Z = ∑V,H e−E(V,H), (2)
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The energy function E(V, H), shown in Equation (3), is expressed as

E(V, H) = −∑
f

∑
i,j

(
∑
k,l

W f
k,lVi+k,j+l

)
H f

i,j − ∑
i,j

bi,jVi,j − ∑
f

∑
i,j

c f H f
i,j, (3)

where W f
k,l represents the convolutional filter connecting the visible and hidden layers, bi,j

is the bias for visible units, and cf is the bias for the hidden feature maps. The activation of
hidden units is governed by the conditional probability of a hidden unit H f

i,j being active
(set to 1) given the visible layer V , as shown in Equation (4):

P(H f
i,j = 1|V) = σ

(
∑
k,l

W f
k,lVi+k,j+l + c f

)
, (4)

where σ(x) = 1
1+e−x is the sigmoid activation function. Similarly, the visible layer can be

reconstructed from the hidden units using the conditional probability in Equation (5):

P
(

Vi,j = 1
∣∣H) = σ

(
∑

f
∑
k,l

W f
k,lH

f
i−k,j−l + bi,j

)
. (5)

The feature map Fi,j extracted at location (i, j) is computed as Equation (6):

Fi,j = σ

(
∑
k,l

Wk,lVi+k,j+l + b

)
, (6)

where Wk,l is the convolutional filter, V is the input frame, and b is the bias term.
The model learns its parameters (weights and biases) using contrastive divergence, an

efficient gradient-based learning approach. The weight updates are computed as shown in
Equation (7):

∂logP(V)

∂W f
k,l

=
〈

Vi,jH
f
i+k,j+l

〉
data

−
〈

Vi,jH
f
i+k,j+l

〉
model

(7)

where 〈·〉data and 〈·〉model represent expectations under the data distribution and the model
distribution, respectively. Similarly, the updates for visible and hidden biases are computed
using Equations (8) and (9):

∂logP(V)
∂bi,j

=
〈
Vi,j
〉

data −
〈
Vi,j
〉

model (8)

∂logP(V)
∂c f =

〈
H f

i,j

〉
data

−
〈

H f
i,j

〉
model

. (9)

To further enhance efficiency, the feature maps generated by the Conv-RBM layer are
processed using a pooling layer, such as max-pooling, to downsample the spatial dimen-
sions. This step reduces computational complexity while preserving the most salient
features, ensuring that critical information is retained for downstream tasks. Overall, the
2D Conv-RBM effectively captures localized spatial features such as edges and textures,
making it highly suitable for action recognition tasks where preserving spatial coherence is
essential. This approach is informed by foundational work on energy-based models and
convolutional adaptations of RBMs, including studies by [34,35,45,46].

3.3. Long Short-Term Memory (LSTM) for Temporal Modeling

The long short-term memory (LSTM) network plays a critical role in modeling tempo-
ral dependencies across video frames after the spatial features have been extracted by the
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2D Conv-RBM. LSTMs are particularly well suited for handling sequential data, such as
video frames, due to their ability to capture both short-term and long-term dependencies.
This capability is achieved through an internal gating mechanism that controls the flow of
information, allowing the network to selectively remember or forget information at each
time step. The LSTM maintains a memory cell state Ct, which is updated iteratively as
it processes each frame, enabling the modeling of complex temporal patterns in human
actions [36].

At each time step t, the LSTM receives an input vector xt, which in this case is the
spatial feature vector generated by the 2D Conv-RBM. The hidden state from the previous
time step ht−1 is combined with xt to compute the values of the gates and update the cell
state. The first gating mechanism, the forget gate, determines how much of the previous
cell state Ct−1 should be retained. The forget gate is computed as Equation (10):

ft = σ
(

W f [ht−1, xt] + b f

)
(10)

where Wf and bf are the weights and biases associated with the forget gate, and σ(x) is the
sigmoid activation function.

Next, the input gate decides how much new information should be written to the
memory cell. The input gate is computed as

it = σ(Wi[ht−1, xt] + bi) (11)

and the candidate cell state
∼
Ct, which represents new information to be added, is

calculated as ∼
Ct = tanh(WC[ht−1, xt] + bC) (12)

The cell state Ct is then updated by combining the retained information from the previous
cell state (modulated by the forget gate) with the newly computed candidate cell state
(modulated by the input gate):

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (13)

The output gate determines the information to be propagated to the hidden state ht, which
is used for the next time step or for making predictions. The output gate is calculated as

ot = σ(Wo[ht−1, xt] + bo) (14)

and the hidden state is then updated using the current cell state and the output gate:

ht = ot ∗ tanh(Ct) (15)

In these equations, W i, WC, Wo and bi, bC, bo are the weights and biases associated with
the input, candidate, and output gates, respectively.

The LSTM enables the network to retain important information over long sequences
of frames while discarding irrelevant details, ensuring that both short-term and long-term
dependencies are effectively captured. This property makes LSTMs particularly well suited
for action recognition tasks, where sequential patterns in video frames are critical for
accurately classifying human actions. By combining the spatial feature extraction of the 2D
Conv-RBM with the temporal modeling of the LSTM, the proposed architecture achieves
robust performance on complex video-based tasks.
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3.4. Feature Classification Using Fully Connected Network

The final step in the proposed pipeline involves the classification of features extracted
by the LSTM. At the last time step of the LSTM, the final hidden state h is obtained, which
encodes both spatial and temporal information relevant to the action sequence. This feature
vector h is then passed to a fully connected layer, where it is linearly transformed using
a weight matrix Wc and a bias term bc. The result of this linear transformation is then
fed into a softmax activation function, which outputs a probability distribution over the
possible action classes. The classification process is mathematically defined as follows:

y = softmax(Wch + bc), (16)

where y represents the predicted probability distribution over all action classes. The
network is trained to minimize the cross-entropy loss, which measures the difference
between the predicted probability distribution and the true labels. The cross-entropy loss
function is given by

L = −
N

∑
i=1

yilog(ŷi) (17)

where yi is the true label for the i-th video, ŷi is the predicted probability for that class, and
N is the total number of training samples. This loss function ensures that the predicted
probabilities closely align with the ground truth labels.

To optimize the network, the Adam optimizer is employed due to its adaptive learning
rate and efficient convergence properties. Additionally, regularization techniques such
as dropout are applied to the fully connected layer to reduce overfitting by randomly
deactivating a fraction of the neurons during training. These strategies ensure robust
performance of the model, even when applied to complex and diverse action recognition
datasets. The combination of the fully connected network and the softmax layer provides a
powerful and interpretable mechanism for final action classification.

3.5. Proposed Architecture Specifications

The proposed architecture pipeline ensures efficient and accurate video-based human
action recognition by addressing both computational challenges and the need for robust
spatial–temporal feature extraction. The method is particularly well suited for real-time
applications, such as video surveillance and sports analytics, due to its reduced compu-
tational overhead and high accuracy. Based on recent studies and relevant literature, we
have gathered and organized the parameters for our proposed model in Table 1. This table
includes the details for frame dimensions, visible and hidden layers, filter sizes, LSTM
configurations, and learning algorithm parameters.

Table 1. Specifications of the proposed architecture, detailing the parameter configurations for each
stage of the pipeline, including 2D Conv-RBM and LSTM layers, optimization settings, and training
configurations.

Parameter Value/Description Reference

K (smart frame selection) 32 frames based on [38]

Frame dimensions 64 × 64 (grayscale, black-and-white) Common practice in video action
recognition models

Visible layer size
(Conv-RBM)

64 × 64 (corresponding to the
frame dimensions) Based on RBM architecture for spatial extraction

Hidden layer size
(Conv-RBM) 64 × 32 × 32 (after pooling) Reduced spatial dimensions with 64 feature maps
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Table 1. Cont.

Parameter Value/Description Reference

Convolutional filter size
(Conv-RBM) 3 × 3 (with stride 1) Standard in CNNs, balances spatial locality

and depth
Pooling layer
(Conv-RBM) 2 × 2 (max pooling) Reduces feature map dimensions by half

LSTM units 256 units Suitable for temporal modeling of moderate
complexity

Number of LSTM layers 2 layers Allows capturing both short- and long-term
dependencies

Optimizer Adam optimizer (learning rate: 0.001) Adaptive learning rate method for efficient
convergence

Loss function Cross-entropy loss Commonly used in classification tasks

Regularization (dropout) Dropout rate: 0.4 (LSTM layer and
FC layer) Prevents overfitting by dropping 40% of neurons

Learning rate 0.001 Default for Adam, tuned for stability

Batch size 32 Balances between computational load
and convergence

Epochs 100 Enough for deep architectures like
Conv-RBM + LSTM

4. Experimental Setup
The proposed network was implemented using the PyTorch deep learning framework.

The experiments were conducted in a high-performance computing environment featuring
two NVIDIA Tesla T4 GPUs, each equipped with 15,360 MiB of memory and running
on CUDA version 12.2. The system was optimized for deep learning tasks, ensuring
efficient utilization of GPU memory, with both GPUs initialized with 0 MiB memory usage.
This setup provided the computational resources required for training and inference on
large-scale video datasets in a reasonable timeframe.

The model was evaluated on three widely used human action recognition datasets.
The KTH dataset, containing over 600 video sequences across six action classes such as
walking and jogging, was captured under controlled conditions. The UCF Sports dataset,
comprising 10 action classes involving complex sports activities, introduced challenges
related to diverse backgrounds and variations. The HMDB51 dataset, with 51 action
classes collected from real-world scenarios, presented significant variations in action ex-
ecution, background noise, and video quality. To ensure consistency across datasets,
preprocessing steps included converting all frames to grayscale to reduce computational
complexity, resizing frames to 64 × 64 pixels for uniform input dimensions, and nor-
malizing pixel values to the range (0, 1). Additionally, a smart frame selection mecha-
nism was applied to retain only the most informative frames, reducing redundancy and
computational overhead.

The performance of the model was assessed using two key metrics: accuracy and the
confusion matrix. Accuracy, which measures the proportion of correctly classified instances,
was computed using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (18)

Confusion matrices were generated for each dataset to provide a detailed breakdown of
classification performance, including counts of true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN), offering insights into potential misclassifications.
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To demonstrate the effectiveness of the proposed model, its performance was com-
pared against several baseline methods. These included 3D CNNs, known for their ability
to capture spatial–temporal features; LSTM-based architectures, effective in modeling
temporal dependencies; the I3D model, which extends 2D CNNs into the spatial–temporal
domain by inflating convolutions; and traditional 2D RBMs, which focus solely on spatial
feature extraction and transformer-based models, such as VideoMAE, which leverage
self-attention mechanisms to capture global spatial and temporal dependencies. These
comparisons highlighted the advantages of the proposed hybrid architecture in combin-
ing efficient spatial feature extraction with Conv-RBM and robust temporal modeling
with LSTM.

5. Results and Analysis
This section presents a detailed evaluation of the proposed 2D Conv-RBM + LSTM

model across the KTH, UCF Sports, and HMDB51 datasets. The analysis includes perfor-
mance metrics, comparative evaluations, and insights into model behavior.

5.1. Datasets

This section offers a concise overview of the datasets utilized. More detailed explana-
tions are available in the corresponding articles.

5.1.1. KTH

The KTH dataset consists of six types of human actions, including running, jogging,
walking, hand waving, hand clapping, and boxing [17]. A total of 600 video sequences are
performed by 25 actors, sampled at 25 frames per second (fps), with an original resolution
of 160 × 120 pixels. These videos are recorded in four different scenarios: S1 (outdoors),
S2 (outdoors with variations in image scale), S3 (outdoors with different clothing), and
S4 (indoors). To reduce computational complexity, the resolution of all images was down-
scaled to 64 × 64 pixels.

5.1.2. UCF Sports

The UCF Sports dataset includes ten sports-related actions: diving, golf swinging,
lifting, kicking, riding horses, running, skateboarding, swinging on a bench, swinging
on a side apparatus, and walking [18]. This dataset comprises approximately 150 video
sequences with an original resolution of 720 × 480 pixels. The videos are collected from
broadcast TV channels and are recorded in unrestricted environments, introducing several
intra-class variations such as illumination changes, complex backgrounds, motion blur,
occlusion, and diverse scene settings. In our experiments, all frames were resized to
64 × 64 pixels to standardize input dimensions and reduce computational demands. These
preprocessing steps enabled a consistent and efficient analysis of the dataset.

5.1.3. HMDB51

The HMDB51 dataset is a widely used benchmark for human action recognition,
featuring 51 distinct action classes such as clapping, kicking, jumping, sword exercise,
and golf swing [19]. The dataset consists of over 6700 video clips collected from various
online sources, including movies and public video archives, making it highly diverse and
challenging. Each video clip captures real-world scenarios with significant variations in
background, camera motion, lighting, occlusion, and action execution. The videos have
a resolution of 240 × 320 pixels and are recorded at various frame rates. For consistency
and computational efficiency in this study, all video frames were resized to 64 × 64 pixels,
and grayscale conversion was applied. This preprocessing step ensured uniformity across
datasets while maintaining the essential features for action recognition. The HMDB51
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dataset’s complexity provides a rigorous testbed for evaluating the proposed method’s
ability to generalize and handle real-world variations in human actions.

5.2. Reconstruction Error Analysis

The reconstruction error of the 2D Conv-RBM quantifies the model’s ability to learn
meaningful spatial features by measuring the difference between the input data and the
reconstructed visible probabilities. The analytical expression for the reconstruction error is
given by

Ereconstruction =
1
N

N

∑
i

∥∥Xi − X̂i
∥∥2 (19)

where

• N is the total number of frames in the batch,
• Xi represents the input data (original frame),
• X̂i represents the reconstructed visible probabilities of the frame,
• ∥.∥2 denotes the squared L2-norm.

This metric provides a direct assessment of the Conv-RBM’s capacity to learn spatial
representations, with lower reconstruction errors indicating better feature extraction and
reconstruction capabilities. As shown in Figure 3, the reconstruction error trends over the
course of training reflect the model’s adaptability to different datasets. For the KTH dataset,
characterized by relatively simple and controlled actions, the reconstruction error started
at approximately 12 and rapidly decreased to around 3 within 100 epochs. This swift
reduction highlights the model’s efficiency in learning spatial features from less complex
data. On the other hand, the UCF Sports dataset, involving more dynamic and varied action
classes, began with a reconstruction error of approximately 14, which gradually declined
to around 6. This indicates the model’s steady progress in adapting to more complex
motion patterns.
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The HMDB51 dataset, presenting the greatest challenge due to its diversity and
noise, started with an initial reconstruction error of approximately 18. Over the course of
training, this error gradually decreased to around 8, reflecting the dataset’s complexity
and variability. Despite the slower convergence, the steady reduction in reconstruction
error demonstrates the robustness of the Conv-RBM in learning spatial representations,
even in real-world scenarios with high variability. These trends collectively highlight the
model’s ability to effectively extract and reconstruct spatial features across datasets of
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varying complexity, underscoring the adaptability and generalization capabilities of the
2D Conv-RBM.

The reconstruction error of the 2D Conv-RBM, as depicted in Figure 3, reflects the
model’s ability to learn meaningful spatial features over the course of training. For the KTH
dataset, which consists of relatively simple and controlled actions, the reconstruction error
started at approximately 12 and rapidly decreased to around 3 within 100 epochs. This
significant and swift reduction demonstrates the model’s efficiency in extracting spatial
features from well-structured and less complex data. In contrast, the UCF Sports dataset,
which involves more dynamic and varied action classes, exhibited a slower but consistent
decline in reconstruction error, starting at approximately 14 and converging at around 6
after 100 epochs. This indicates the model’s adaptability to more complex motion patterns
while maintaining a steady learning trajectory. The HMDB51 dataset, characterized by
its real-world diversity and noise, presented the most challenging case, with an initial
reconstruction error of approximately 18 that gradually decreased to around 8 by the end
of training. The higher starting error and slower convergence underscore the complexity of
this dataset and the variability in its spatial features. Despite these challenges, the Conv-
RBM demonstrated its robustness, achieving a steady reduction in error and successfully
capturing relevant spatial features across all datasets. These results highlight the model’s
capability to efficiently learn spatial representations, even in challenging environments
with diverse scenarios.

5.3. Performance Metrics: Confusion Matrices and Class-Wise Evaluation

The performance metrics of the proposed model were evaluated using confusion
matrices for the KTH, UCF Sports, and HMDB51 datasets, providing a detailed class-wise
breakdown of true positives, false positives, and misclassifications. The confusion matrices,
depicted for each dataset, highlight the model’s accuracy, precision, recall, and F1 scores
across all action classes. For the KTH dataset, the model achieved an accuracy of 97.3%,
demonstrating near-perfect classification for most action classes. Classes such as walking
and boxing achieved F1 scores of 0.98, while slight confusion between running and jogging
led to minor dips in performance for these similar motion patterns.

On the UCF Sports dataset, the model attained an accuracy of 94.8%, with strong
classification performance across most action categories. However, some misclassifications
were observed between visually similar actions, such as riding horse and running, resulting
in a lower F1 score of 0.9 for certain classes. This is indicative of the dataset’s increased
complexity and diversity in background and motion.

For the HMDB51 dataset, which features real-world scenarios with a wide range of
variability, the model achieved an accuracy of 81.5%. As the diagonal values (i.e., true
positives) are significantly larger than the off-diagonal values, a logarithmic normalization
(LogNorm) was applied to the color scale. This adjustment allowed the color differences
between the small off-diagonal values and large diagonal values to be visible, providing
a better contrast. While simpler actions such as clapping and jumping exhibited strong
performance with high F1 scores, complex actions such as sword exercise and golf swing
demonstrated some confusion due to overlapping motion patterns, yielding lower F1
scores around 0.78. These results underscore the model’s ability to generalize effectively
across datasets of varying complexity while highlighting areas for potential improve-
ment in handling fine-grained distinctions among similar actions. The confusion matrices
provide crucial insights into the strengths and limitations of the model, aiding in the in-
terpretation of its performance on diverse human action recognition tasks, as depicted in
Figures 4 and 5.
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5.4. LSTM Training Performance

The training performance of the LSTM in capturing temporal dependencies is evident
from the trends in training loss and accuracy, as depicted in Figure 6. The red curve
represents the training loss, which exhibited a rapid decline during the initial 30 epochs,
demonstrating the model’s ability to learn temporal patterns efficiently. The loss continued
to decrease gradually before converging to minimal values by epoch 100, indicating effective
optimization and temporal modeling. In parallel, the green curve reflects the training
accuracy, which showed a steady and consistent increase throughout the training process.
By epoch 100, the accuracy reached near-maximal values, further confirming the model’s
robustness in learning complex temporal relationships across all datasets. These trends
collectively validate the efficacy of the LSTM in modeling sequential dependencies and
ensuring reliable performance in the proposed architecture.
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5.5. Failure Case Analysis

The evaluation of the proposed method on the KTH and UCF Sports datasets revealed
specific instances where the model misclassified certain actions, shedding light on potential
limitations in the spatial–temporal feature extraction process. Figures 7 and 8 illustrate
these failure cases, demonstrating the complexity of distinguishing between visually or
contextually similar actions.
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Figure 7. Failure case analysis for the KTH dataset. Examples of misclassifications where the model
predicted walking as jogging and jogging as walking, illustrating the challenges in distinguishing
between actions with similar motion dynamics and overlapping spatial–temporal features.
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ing the challenges posed by visually complex actions with overlapping spatial features and varied
contextual backgrounds.

In the KTH dataset, failure cases primarily occurred between actions such as walking
and jogging. Both actions involve similar motion dynamics, with overlapping spatial
and temporal features, making them challenging to differentiate. For example, the model
incorrectly classified walking as jogging due to the similarity in leg movements and pace,
especially in a controlled environment where background and context do not provide
additional discriminative cues. Similarly, jogging was sometimes predicted as walking,
highlighting the need for improved temporal attention mechanisms to capture subtle
motion differences.

For the UCF Sports dataset, failure cases were observed in more dynamic and contex-
tually complex scenarios. As depicted in Figure 8, the model misclassified skateboarding
as walking and vice versa. The misclassification of skateboarding as walking could be
attributed to the model’s inability to fully capture motion-specific patterns, such as the
movement of the skateboard or the posture of the subject, especially in sequences where
motion blur or background complexity is present. Conversely, walking was occasion-
ally predicted as skateboarding due to the presence of similar body postures in some
frames, compounded by the model’s potential focus on irrelevant features in noisy or
cluttered environments.

6. Discussion
This section presents a comprehensive comparison and evaluation of the performance

and efficiency of the proposed method against competing approaches. The analysis is di-
vided into two subsections: the first subsection focuses on comparing the proposed method
with competing methods using KTH and UCF Sports datasets, while the second subsection
extends the comparison to include the HMDB51 dataset. This structured approach ensures
a thorough assessment of the proposed method’s effectiveness across different datasets
and benchmarks.

6.1. Comparative Analysis of KTH and UCF Sports

For a fair comparison of the KTH and UCF Sports datasets, the experimental imple-
mentation conditions, including the selection of training and testing videos, were aligned
with the methodologies outlined in [26]. In this evaluation, the performance of the pro-
posed method was assessed using these two challenging action recognition datasets. A
leave-one-out testing scheme was employed, as it provides a more robust evaluation com-
pared to conventional data-splitting approaches [17,47]. Under this scheme, all action
videos associated with one individual were designated for testing, while videos from the
remaining individuals were used for training. This process was repeated iteratively for
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each individual, and the average accuracy across all iterations was computed to provide a
comprehensive measure of the model’s performance.

The accuracy of the competing methods reported in Table 2 was taken directly from
their respective papers. These methods were evaluated under different computational
architectures, and their computational costs were not always explicitly provided. While we
aimed to align experimental setups for fairness, computational environments and resources
can inherently vary across studies.

Table 2. Comparison of action recognition accuracy on the KTH dataset with different methods.

Reference Method Accuracy (%)

Laptev et al. [48] Cuboids + HOG3D 91.4
Nazir et al. [49] 3DHarris + 3DSIFT 91.82

Niebles et al. [50] PLSA 83.33
Jhuang et al. [51] HMAX 91.70
Taylor et al. [47] 3D GRBM 90

Le et al. [52] Hierarchical ISA 93.9
Ji et al. [53] 3D CNN 90.2

Sun et al. [54] 3D (DL-SFA) 93.10
Zhang et al. [55] Dual-channel deep network 92.8
Han et al. [56] Two-stream ConvNets 93.1

Abdelbaky et al. [26] ST-VLAD-PCANet 93.33
Chou et al. [57] NMC 90.58
Liu et al. [58] EPF + AdaBoost + WLNBNN 94.8

Rodriguez et al. [59] OneOut + SHMM 94.2
Shi et al. [60] Final three-stream sDTD 96.8

Proposed method 2D Conv-RBM + LSTM 97.3

As shown in Table 2, the proposed method achieved remarkable performance on the
KTH dataset, surpassing several state-of-the-art approaches. Traditional methods, such
as [48] with Cuboids + HOG3D and [49] with 3DHarris + 3DSIFT, achieved accuracies
of 91.4% and 91.82%, respectively, demonstrating the limitations of handcrafted feature
extraction techniques. Similarly, methods leveraging probabilistic models, like [50], using
PLSA with an accuracy of 83.33%, fell short of modern deep learning methods.

Deep learning-based approaches, such as hierarchical ISA [52] (93.9%), DL-SFA
(93.10%), and dual-channel networks [55] (92.8%), showed significant improvement due
to their ability to learn hierarchical features. Among these, the sequential trajectory de-
scriptor [60] achieved the highest accuracy of 96.8%, highlighting the effectiveness of multi-
stream CNNs in modeling complex action sequences. However, our proposed method
outperformed this by leveraging the strengths of 2D Conv-RBM for efficient spatial feature
extraction and LSTM for robust temporal modeling, achieving a 97.3% accuracy.

The results indicate that the integration of spatially adaptive feature extraction and
temporal dependencies in the proposed model enables it to handle variations in motion
patterns and backgrounds more effectively than competing methods. This demonstrates
its robustness and generalizability, particularly in controlled environments like the KTH
dataset, making it a state-of-the-art solution for human action recognition.

The proposed method achieved an impressive accuracy on the UCF Sports dataset,
significantly outperforming many existing approaches. Table 3 presents a comparison
of the accuracy between the proposed method and other existing methods. Traditional
feature-based methods, such as Dense + HOF [48] and Dense + HOG3D [61], achieved
accuracies of 82.6% and 85.6%, respectively, reflecting the limitations of handcrafted feature
extraction in handling complex, real-world action dynamics. Similarly, methods leveraging
hierarchical feature learning, such as hierarchical ISA [52] and the dual-channel DNN [55],
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improved accuracy to 86.5% and 86.7% but still fell short when compared to more recent
deep learning-based techniques.

Table 3. Comparison of action recognition accuracy on the UCF Sports dataset with different methods.

Reference Method Accuracy (%)

Laptev et al. [48] Dense + HOF 82.6
Klaser et al. [61] Dense + HOG3D 85.6

Rahmani et al. [62] Deep R-NKTM 90
Le et al. [52] Hierarchical ISA 86.5

Zhang et al. [55] Dual-channel DNN 86.7
Sun et al. [54] 3D (DL-SFA) 86.6

Yuan et al. [63] 3D Deep model 87.30
Wang et al. [64] LSTM+CNN 91.89

Ahmed and Aly [65] STMEI-PCANet 86.7
Abdelbaky et al. [26] ST(W/o encoding) 90

Proposed method 2D Conv-RBM+LSTM 94.8

Deep learning models demonstrated notable improvements in capturing the intricate
spatial and temporal dependencies of sports activities. For instance, the 3D deep model [64]
achieved 87.3%, and the combination of LSTM and CNN [65] reached 91.89%, showcasing
the effectiveness of hybrid approaches in leveraging both spatial and temporal patterns.
However, the proposed method surpassed these performances by achieving 94.8% accuracy,
demonstrating its superior ability to extract meaningful spatial features through the 2D
Conv-RBM while modeling temporal dependencies with the LSTM.

6.2. Comparative Analysis on HMDB51

The HMDB51 dataset offers three distinct splits for training and testing purposes.
The final result is determined by averaging the classification results across these splits
of training and test data. This dataset presents significant challenges due to its complex-
ity and diversity, including substantial variations in motion dynamics, occlusion, and
background noise.

Table 4 provides a comparison of the proposed method with state-of-the-art ap-
proaches, highlighting the diversity of methods and their respective performances.

Table 4. Comparison of action recognition accuracy on the HMDB51 dataset with different methods.

Reference Method Accuracy (%)

Girdhar et al. [66] Pose regul. Atten. Pooling 52.2
Meng et al. [67] Spatio-temporal Atten. 53.1

Du et al. [68] C3D 46.7
Qiu et al. [69] P3D-199 62.9

Simonyan et al. [21] Two-stream CNN 59.4
Wang et al. [70] TDD 63.2

Feichtenhofer et al. [71] Two-stream fusion 65.4
Wang et al. [72] TSN 69.4

Yudistira et al. [73] TSN Corrnet 70.6
Zong et al. [74] MSM-ResNets 66.7

Soomro et al. [75] ARTNet-Res18 70.9
Liu et al. [76] AMFNet-C 71.2
Du et al. [77] RSTAN (TSN) 70.5
Liu et al. [27] STILT 72.1

Chen et al. [78] AdaptFormer 55.6
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Table 4. Cont.

Reference Method Accuracy (%)

Ranasinghe et al. [79] SVT(Fine-tune) 67.2
Xing et al. [80] SVFormer-B 68.2

Khowaja et al. [81] SINs 83.7
Cong et al. [82] FNNT 81.24

Kalfaoglu et al. [83] LTM 3D CNN + BERT 85.1
Wang et al. [84] VideoMAE V2 88.1

Proposed method 2D Conv-RBM+LSTM 81.5

Early methods such as the two-stream CNN [21] achieved 59.4%, and trajectory-pooled
deep-convolution descriptors (TDDs) [70] improved this to 63.2%. These approaches
primarily leveraged spatial and temporal fusion strategies, which were further refined by
models like two-stream fusion [71] (65.4%) and temporal segment networks (TSN) [72]
(69.4%). Advanced architectures such as TSN CorrNet [73] (70.6%) and ARTNet-Res18 [75]
(70.9%) introduced sophisticated feature aggregation techniques that pushed performance
benchmarks further. More recent approaches, including STILT [27] (72.1%) and FNNT [82]
(81.24%), incorporated temporal refinement and attention mechanisms, highlighting the
growing emphasis on temporal modeling. One of the highest reported accuracy before this
study was achieved by LTM 3D CNN + BERT [83], which leveraged a hybrid architecture
combining temporal modeling and natural language processing techniques to achieve
85.1%. Additionally, transformer-based methods such as VideoMAE V2 [84], a prominent
model in this domain, demonstrated exceptional performance, achieving an accuracy of
88.1% on the HMDB51 dataset. Transformers, with their global attention mechanisms, have
proven highly effective in capturing both spatial and temporal dependencies, setting new
benchmarks in video action recognition.

The proposed method, based on 2D Conv-RBM and LSTM, achieved a competitive
accuracy of 81.5% on HMDB51. While transformer-based models like VideoMAE V2
demonstrated higher performance, they typically require significantly more computational
resources and large-scale pretraining on video datasets. In contrast, our method strikes
a balance between computational efficiency and accuracy, leveraging the unsupervised
feature learning of Conv-RBM and the sequential modeling power of LSTM to handle
the dataset’s challenges effectively. This positions the proposed approach as a viable and
resource-efficient solution for action recognition in complex scenarios.

6.3. Computational Cost Analysis

The proposed method was implemented using two NVIDIA Tesla T4 GPUs with
15,360 MiB of memory each, under CUDA 12.2 with the PyTorch framework. The average
inference time per frame was approximately 8 ms with a total training time of 36 h for the
KTH dataset, 10 h for the UCF Sports dataset, and 280 h for the HMDB51 dataset. The
memory usage per batch during training was 3000 MiB. These metrics provide a practical
understanding of the computational demands of the proposed method. While the com-
putational costs of the competing methods are not always reported in the literature, we
acknowledge that comparing methods with differing architectures and resource require-
ments can lead to variability in efficiency and scalability. To address this, our method
prioritizes computational efficiency through techniques such as smart frame selection and
the use of 2D Conv-RBM for lightweight spatial feature extraction, striking a balance
between accuracy and resource consumption.
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6.4. Computational Complexity Analysis

To comprehensively evaluate the efficiency of the proposed method, we present a de-
tailed theoretical analysis of the computational complexity for each of its core components:
Conv-RBM, LSTM, and the smart frame selection mechanism. This analysis demonstrates
the practicality of the proposed approach in terms of temporal and spatial complexities
and highlights its suitability for real-world, resource-constrained applications.

6.4.1. Conv-RBM: Spatial Complexity

The 2D Conv-RBM performs convolutional operations to extract spatial features while
leveraging weight sharing to reduce computational overhead. Given an input frame of
dimensions H × W, a convolutional filter of size k × k, and F feature maps, the spatial
complexity for a single convolutional layer is

OConv−RBM = H × W × k2 × F, (20)

This complexity arises from convolving each input pixel with the kernel over F fea-
ture maps. Compared to standard RBMs, which rely on fully connected operations, the
Conv-RBM significantly reduces the parameter count due to the shared weights in the con-
volutional operation [34]. Additionally, pooling layers, which follow convolution, reduce
the spatial dimensions by a factor of s × s (e.g., for 2 × 2 pooling, s = 2), further optimizing
computational cost.

6.4.2. LSTM: Temporal Complexity

The LSTM processes sequences of spatial features extracted by the Conv-RBM to
capture temporal dependencies. For a video sequence of length T, with each feature vector
having a dimension d and assuming h hidden units in the LSTM, the temporal complexity
for a single layer is

OLSTM = T ×
(

4 × h2 + 4 × h × d
)

, (21)

The factor of 4 arises from the gating mechanisms (input, forget, cell state, and out-
put gates) inherent to the LSTM architecture [85]. The complexity scales linearly with
the sequence length T, making the LSTM computationally efficient for moderately sized
sequences, as is typical in action recognition tasks. While transformer-based methods such
as VideoMAE V2 have higher representational capacity, they exhibit quadratic complexity
with respect to T, making LSTMs more practical for resource-constrained environments.

6.4.3. Smart Frame Selection Mechanism

The frame selection mechanism operates in two stages: single-frame evaluation and
global evaluation. For a video sequence of T frames, the single-frame selector computes a
confidence score δi for each frame, with complexity proportional to T:

OSingleFrameSelector = T × dMLP, (22)

where dMLP is the complexity of the lightweight multi-layer perceptron used for score
computation. The global selector evaluates pairs of frames using an attention and relational
network, which requires concatenating T frames with Tr randomly selected subsequent
frames, leading to complexity:

OGlobalSelector = T × Tr × dAttention, (23)
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where dAttention represents the complexity of the attention mechanism. As Tr is typically
much smaller than T, this operation remains efficient while capturing key temporal rela-
tionships [38].

6.4.4. Overall Complexity

The total complexity of the proposed method is a summation of the complexities of
its components:

OTotal = OConv−RBM + OLSTM + OFrameSelection, (24)

By reducing the number of frames processed through smart frame selection and
employing parameter-efficient Conv-RBM layers, the proposed method achieves a balance
between computational efficiency and performance. This lightweight design contrasts
with more resource-intensive approaches, such as transformer-based models, which exhibit
higher spatial and temporal complexity.

6.5. Limitations and Future Directions

While the proposed 2D Conv-RBM + LSTM architecture demonstrates promising
performance in video-based human action recognition tasks, several limitations warrant
further exploration to enhance its applicability and robustness.
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Single-layer Conv-RBM Design:

The proposed method employs a single-layer Conv-RBM for spatial feature extrac-
tion. While this design emphasizes computational efficiency, deeper architectures could
provide richer hierarchical features and better representations. Future studies could in-
vestigate the trade-offs of stacking multiple Conv-RBM layers or integrating multi-scale
feature extraction.
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Temporal Modeling with LSTM:

Although LSTM networks effectively capture temporal dependencies, they may strug-
gle with very long sequences or subtle temporal dynamics. Exploring alternative temporal
modeling approaches, such as attention-based mechanisms or transformer architectures,
could enhance the temporal learning capabilities of the model.
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Failure Cases and Error Patterns:

As discussed in the failure case analysis, the model occasionally struggles with dis-
tinguishing visually similar actions, particularly in scenarios with high motion blur or
background clutter. Enhancing spatial–temporal attention mechanisms or incorporating
multi-modal inputs (e.g., depth or optical flow) could help mitigate these issues.

7. Conclusions
The analysis of the comparison tables and the experimental results highlights the

efficacy and robustness of the proposed 2D Conv-RBM+LSTM architecture for video-based
human action recognition. By integrating spatial feature extraction through convolutional
restricted Boltzmann machines and temporal modeling via LSTMs, the model demonstrated



Technologies 2025, 13, 53 24 of 28

superior performance across multiple challenging datasets, including KTH, UCF Sports,
and HMDB51. The proposed method consistently outperformed traditional handcrafted
approaches and several state-of-the-art deep learning architectures, achieving notable
accuracy improvements. This study has significant practical implications for various
domains requiring robust action recognition capabilities. The lightweight and efficient
design of the proposed model makes it well suited for real-time applications such as
surveillance systems, where computational efficiency is critical for monitoring dynamic
environments. Similarly, the model’s ability to accurately capture complex motion patterns
has potential applications in sports analytics, enabling detailed performance assessments
and tactic evaluations. Furthermore, the system’s robustness positions it as a valuable tool
in healthcare monitoring for activities such as patient rehabilitation and elderly care. In
human–computer interaction, the proposed approach can enhance gesture recognition and
virtual reality applications by delivering real-time and accurate action recognition.

The smart frame selection mechanism significantly reduces computational overhead,
making the method scalable for deployment on resource-constrained devices. The modular
nature of the architecture ensures its adaptability to diverse datasets and environmental
conditions, with potential extensions involving multi-modal data integration to further
improve performance. While the current study emphasizes computational efficiency and
generalizability, future work will explore deeper architectures and alternative temporal
modeling approaches, such as transformer-based frameworks, to address challenges posed
by more complex video datasets. In conclusion, the proposed hybrid architecture achieves
a balanced trade-off between accuracy and computational efficiency, demonstrating its
viability for a wide range of video-based action recognition tasks. These findings underscore
the importance of efficient spatial–temporal modeling and provide a foundation for further
advancements in the field of human action recognition.
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