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Abstract: The automated and precise classification of lung and colon cancer from
histopathological photos continues to pose a significant challenge in medical diagnosis,
as current computer-aided diagnosis (CAD) systems are frequently constrained by their
dependence on singular deep learning architectures, elevated computational complexity,
and their ineffectiveness in utilising multiscale features. To this end, the present research
introduces a CAD system that integrates several lightweight convolutional neural net-
works (CNNs) with dual-layer feature extraction and feature selection to overcome the
aforementioned constraints. Initially, it extracts deep attributes from two separate layers
(pooling and fully connected) of three pre-trained CNNs (MobileNet, ResNet-18, and Ef-
ficientNetB0). Second, the system uses the benefits of canonical correlation analysis for
dimensionality reduction in pooling layer attributes to reduce complexity. In addition, it
integrates the dual-layer features to encapsulate both high- and low-level representations.
Finally, to benefit from multiple deep network architectures while reducing classification
complexity, the proposed CAD merges dual deep layer variables of the three CNNs and
then applies the analysis of variance (ANOVA) and Chi-Squared for the selection of the
most discriminative features from the integrated CNN architectures. The CAD is assessed
on the LC25000 dataset leveraging eight distinct classifiers, encompassing various Support
Vector Machine (SVM) variants, Decision Trees, Linear Discriminant Analysis, and k-nearest
neighbours. The experimental results exhibited outstanding performance, attaining 99.8%
classification accuracy with cubic SVM classifiers employing merely 50 ANOVA-selected
features, exceeding the performance of individual CNNs while markedly diminishing
computational complexity. The framework’s capacity to sustain exceptional accuracy with
a limited feature set renders it especially advantageous for clinical applications where
diagnostic precision and efficiency are critical. These findings confirm the efficacy of the
multi-CNN, multi-layer methodology in enhancing cancer classification precision while
mitigating the computational constraints of current systems.

Keywords: lung and colon classification; deep learning; convolutional neural networks;
computer-aided diagnosis; canonical correlation analysis; feature selection

1. Introduction
Lung and colon or colorectal (LC) cancers are important factors contributing to global

malignancy-related mortality, highlighting cancer’s status as a major and urgent health
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issue worldwide [1]. LC cancers represent the most prevalent tumours, constituting ap-
proximately 40% of all cancer diagnoses annually [2]. In 2020, LC cancers became the
most prevalent causes of cancer-related mortality between both genders worldwide, with
2.21 million new cases of lung cancer and 1.93 million cases of colorectal cancer documented
worldwide, and 1.80 million mortalities from lung cancer and approximately 1 million
deaths from colorectal cancer [3]. Tobacco consumption elevates the risk of lung cancer,
while an unbalanced diet has the potential to heighten the risk of colon cancer [4]. The
detrimental impact of lung cancer on the guts may result in colon cancer. A patient may
develop LC cancer in this scenario [4]. Consequently, it has become imperative to examine
and identify LC cancer among people concurrently. The rapid detection and accurate diag-
nosis of such cancers are essential for improving patient outcomes, improving strategies
for treatment, and thereby lowering death rates [5].

The early identification of LC cancer is made through the analysis of different kinds
of imaging techniques, including positron emission tomography, computed tomography,
magnetic resonance imaging, and ultrasound, although this is challenging [6]. The manual
inspection of medical photos by professionals is a meticulous and challenging endeavour.
Consequently, it is time-consuming and necessitates intense concentration [7]. Furthermore,
the identification of cases is significantly more challenging during early diagnosis, as the
initial symptoms are often ambiguous and hard to ascertain. Once symptoms manifest, it is
too late for prompt intervention [8]. Moreover, the dependable subtyping of these cancers
may be unattainable through such screening methods [1]. Histopathological imaging is
regarded as the most accurate and reliable technique for cancer detection and subtype
classification [9], in contrast to other diagnostic modalities. Nonetheless, conventional
manual analysis of histological images is susceptible to errors, labour-intensive, expensive,
and significantly dependent on the expertise of pathologists [10]. Therefore, autonomous
image processing techniques for diagnosing LC cancer subcategories are necessary to
alleviate the workload on pathologists [2].

Advances in artificial intelligence (AI) in several industries including health, agricul-
ture, and medicine [11,12] have motivated and enabled computer-aided diagnosis (CAD)
tools to function as a decision support system, promoting early diagnosis and aiding
physicians in the swift identification of various diseases [13–15]. The application of AI
in the analysis of biomedical scans for identifying illnesses has demonstrated significant
potential, exhibiting performance that is in line with, and in certain instances superior
to, that of medical experts [16–18]. This has heightened the necessity to employ machine
learning (ML) and deep learning (DL) methodologies for the detection of cancerous cells in
histopathology images [19–22]. CAD systems used to detect illness alleviate the diagnostic
workload on physicians and healthcare facilities while facilitating effective and trustworthy
identification for patients [23–25]. ML predominantly depends on manually crafted features
derived from expert knowledge to enhance interpretability. In ML, feature extraction is
conducted prior to image classification [26]. Nevertheless, these methods are hindered by
the inadequacy of the feature extraction technique employed and the resultant loss of data
throughout the extraction process [27]. Conversely, DL has gained prominence in medical
diagnostic fields by mitigating these drawbacks and demonstrating robust discriminative
capabilities [28]. Biomedical data typically consist of images; therefore, the Convolutional
Neural Network (CNN) is the prominent DL architecture frequently employed for the anal-
ysis of medical scans [29]. In recent times, predesigned and pre-trained CNN architectures
are often favoured for their convenience and superior effectiveness [29].

CNN models derive high-level attributes from medical images using their deep struc-
tured multi-layers. Thus, intricate and challenging data can be effectively comprehended
through CNNs. The efficacy of the CNN designs is attributable to the intricacy and pro-
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fundity of their construction. As the model’s sophistication escalates, the quantity of
parameters within the model concurrently rises [30]. Several CNN designs necessitate vast
modification of parameters throughout the learning process. Nevertheless, a substantial
amount of CNNs parameters would adversely impact the model’s generalisation capacity
and lead to overfitting [31]. Decreasing the dimension of attributes and employing com-
pact DL models are strategies to mitigate overfitting that may arise from complexities in
models [32]. Generally, the large number of attributes from pre-trained CNN structures
can lead to overfitting, negatively impacting classification performance. Multiple feature
selection and reduction techniques can be employed to prevent overfitting, thereby elim-
inating superfluous and/or redundant attributes [33]. The literature that has employed
CNN to construct CAD systems for LC cancer diagnosis is extensive. Many of these CAD
frameworks relied on CNNs with a massive number of deep layers and parameters. Some
of the existing CAD frameworks depend on lightweight CNN but extract features of huge
dimensions and do not employ feature selection or reduction methods. Even those which
use a feature selection or reduction approach still have feature vectors which are lengthy
and need further reduction. Several current CAD systems utilise a single CNN model either
customised or pre-trained, whereas fusing features of multiple CNNs can improve diagnos-
tic performance. Moreover, transfer learning and pre-trained CNN can boost performance
compared to building a CNN from scratch. Additionally, most of the existing CAD systems
obtain a single-scale feature vector from one deep layer of a DL model. However, acquiring
multiscale features could enhance classification performance.

To overcome the previously mentioned limitations, this study proposes a CAD frame-
work based on multiple pre-trained compact CNNs of different architectures. It employs
transfer learning to extract features from each CNN. In addition, it acquires multiscale
variables from two distinct deep layers of each deep neural network. Furthermore, it adopts
feature reduction and selection approaches, including canonical correlation analysis (CCA),
analysis of variance (ANOVA), and Chi-Squared methods to reduce feature dimensionality
and select the most impactful features. The following is a list of the research’s novelties
and contributions:

• Establishing an efficient CAD leveraging lightweight deep neural network architectures.
• Acquiring deep variables from dual separate layers of each deep neural network model

labelled as Layer I and Layer II features.
• Applying CCA to lower the dimension of Layer I features, thus diminishing classification

complexity.
• Integrating reduced Layer II with Layer I deep variables for each DL model to produce

multiscale features instead of using single-scale deep variables obtained from one layer.
• Merging the dual-layer deep features of the three DL models to incorporate the benefits

of their distinct architectures.
• Applying the ANOVA and Chi-Squared feature selection methods to pick the most

meaningful deep variables and diminishing the dimensionality of feature space, thus
reducing complexity.

The remaining sections of the paper are organised as follows: Section 2 represents
previous works that used deep learning techniques for LC cancer diagnosis. Section 3
demonstrates the methods and materials including the dataset used and the proposed CAD
system, Section 4 illustrates the performance metrics used to evaluate the proposed CAD
and the hyper-parameters finetuning. Section 5 presents the experimental results. Section 6
discusses the key findings of the proposed CAD. Lastly, Section 7 gives a brief conclusion
to the study.
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2. Previous Works
The research of [34] presented a marine predator’s algorithm (MPA) integrated with

DL for the classification of LC cancer. The suggested framework sought to precisely dif-
ferentiate various categories of LC cancer by employing histopathological images. The
framework exploited contrast-limited adaptive histogram equalisation (CLAHE) for con-
trast enhancement. Furthermore, the framework utilised MobileNet for the production of
feature vectors. Simultaneously, the framework employed MPA for optimisation. Addi-
tionally, deep belief networks (DBN) were employed to classify LC tissues. The framework
accomplished an accuracy of 99.28%. Another study [7] established a hybrid classification
method by integrating three separate models: random forest (RF), support vector machine
(SVM), and logistic regression (LR). The ultimate estimates were ascertained through a
majority voting methodology. Deep attributes were derived from LC histopathological
photographs employing VGG16 and local binary pattern (LBP) methods, with the incorpo-
rated attributes functioning as inputs for the hybrid model. The approach was verified on
the LC25000 dataset, exhibiting strong performance with a mean accuracy and precision of
99.00%, and a recall and F1-score of 98.80%.

The research of [35] established a robust and efficient model for the classification of
LC cancer by exploiting advanced deep learning methodologies. ResNet50 and Efficient-
NetB0 have been adjusted through layer modifications and subsequent manually operated
hyperparameter modifications. Subsequently, deep transfer learning was employed for
training the models. Features were derived from both deep models and fused with a
priority-based serial integration technique. The normal distribution-based grey wolf op-
timisation (GWO) method was employed to improve feature reliability by choosing the
most pertinent features as inputs for five classifiers. The ultimate prediction was produced
via a soft voting process, attaining an accuracy of 98.73% on the LC25000 dataset. Another
automatic framework [1] employed EfficientNetV2 models, including large, medium, and
small architectures for LC cancer classification. EfficientNetV2-L demonstrated outstanding
performance, attaining an accuracy of 99.97%. Gradient-weighted class activation mapping
(Grad-CAM) was applied to produce visual saliency maps, emphasising significant areas
in test set photos where the model focused its attention throughout estimations.

One paper [2] introduced a sophisticated structure that integrated DL and meta-
heuristic optimisation methods for precisely predicting colon, lung, or LC malignan-
cies from histopathological photographs. ResNet-18 first served for binary classification,
whereas EfficientNet-b4-wide was applied to multi-class situations with three and five
classes, employing the LC25000 dataset for training. Deep attributes obtained from such
models were subsequently enhanced using a hybrid meta-heuristic technique, AdBet-WOA,
which combines the whale optimisation algorithm (WOA) with adaptive β-Hill Climbing
for efficient feature selection. The chosen attributes were categorised employing SVM,
attaining accuracies of 99.96% for LC combined datasets. Another work [36] introduced an
innovative CNN structure to detect LC cancer. The model that was suggested is compact.
The algorithm efficiently used multiscale feature extraction. Explainable AI methods, in-
volving Grad-CAM and Shapley additive explanation (SHAP), were used to emphasise
significant data regions, thereby improving transparency while recognising possible flaws.
The experimental findings demonstrated that the model attained an accuracy of 99.20% in
multi-class predictions across five categories, exceeding rival methodologies.

One study [37] presented a technique based on DL for the automated categorisation of
LC cancer. A CNN employing a VGG16 construction, in conjunction with CLAHE, was
implemented for classifying the histopathological photos involved in the LC25000 dataset.
The findings indicated that the suggested method attained a peak classification accuracy
of 98.96%. The integration of CLAHE markedly improved identification accuracy relative



Technologies 2025, 13, 54 5 of 28

to the approach lacking CLAHE. The study of [38] introduced a hybrid segmentation and
classification method called ColonNet for the precise identification of mitotic nuclei in
histopathological images of LC tumours. The method enhanced classification robustness
and generalisation by integrating two separate CNN designs. These models were devel-
oped to represent the morphological and textural features of mitotic cells, tackling issues
related to weak annotations via asymmetrical split transform-merge and label optimisation
techniques. A global–local pyramid pattern (GLPP) facilitated feature extraction and model
cooperation, while deep residual blocks improved performance. The suggested model,
ColonNet, surpassed current CNN algorithms, including VGG, ResNet, and DenseNet, in
classification accuracy.

One article [39] delineated a pipeline based on an optimisation method using Al-Biruni
earth radius (BER) for the diagnosis of LC cancer. This pipeline employed a progressed Shuf-
fleNet structure for obtaining features, with its hyperparameters refined by the BER method.
A deep convolutional recurrent neural network (DCRNN) architecture was adopted for
the accurate identification of LC cancer, whereas the coati optimisation algorithm (COA)
was used for choosing the parameters of the DCRNN. Comprehensive experiments on the
LC25000 dataset revealed that the integration of BER and COA techniques markedly en-
hanced cancer identification efficacy relative to current approaches. The study [40] devised
three approaches, each incorporating two CNNs and Artificial neural networks (ANN) for
the detection of LC cancer from the LC25000 dataset. The GoogLeNet and VGG19 models
generated highly dimensional attributes; therefore, irrelevant and superfluous attributes
were eliminated to decrease dimensions and preserve vital attributes using the principal
component analysis (PCA) technique. The initial approach for detecting cancer via ANN
employs essential features from the GoogLeNet and VGG19 models independently. The
subsequent approach employs an ANN that integrates the attributes of GoogLeNet and
VGG-19. Two systems were employed; one system diminished dimensions and integrated
features while the other merged the large dimension of features and subsequently de-
creased large dimensions. The final approach employs an ANN that integrates features
from GoogLeNet and VGG19, along with handcrafted features. The ANN achieved a
sensitivity of 99.85%, precision of 100%, accuracy of 99.64%, specificity of 100%, and an
AUC of 99.86% by integrating VGG19 fusion variables with handcrafted characteristics.

The work [41] combined ResNet-50, InceptionV3, and DenseNet, with Kernel Extreme
Learning Machine (KELM) to facilitate the swift and precise identification of LC cancer
with histopathology scans. A feature fusion technique merged the advantages of such
structures, increasing the technique’s capacity to identify varied attributes and enhance
classification efficacy. KELM effectively handled the multidimensional feature set produced
by the models, facilitating rapid and accurate classification. This holistic methodology
attained remarkable diagnostic efficacy, resulting in an accuracy of 99.0%. The article [42]
employed three pre-trained models including MobileNet, ShuffleNet, and SqueezeNet
as feature extractors followed by different transformation techniques including PCA and
fast Walsh–Hadamard transform (FWHT) to reduce their dimensionality. Next, these re-
duced features of the three CNNs were fused using discrete wavelet transform (DWT) and
then classified using an SVM classifier reaching 99.6% accuracy with 510 features. The
study [43] introduced a framework based on an Inception-ResNetV2 network coupled
with LBP attributes to improve the diagnostic accuracy of LC cancer diagnosis. The frame-
work exhibited exceptional performance with an accuracy of 99.98%. Furthermore, XAI
methodologies, particularly SHAP, were employed to clarify the model’s decision-making
procedure, thereby enhancing the transparency and comprehension of the DL system.

This study employs established CNN and ML models; however, its novelty and
importance stem from the suggested framework’s novel methodology to address the
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limitations typically found in relevant CAD systems for lung and colon cancer classification.
The primary contributions of this study are as follows:

• This research develops an effective CAD framework, exploiting compact deep neural
network architectures to mitigate issues related to computational complexity and
overfitting and to achieve a balance between efficiency and diagnostic performance,
rendering it appropriate for practical clinical applications.

• This framework differentiates itself from numerous existing CAD systems by employing
multiscale feature extraction, obtaining variables from two separate deep layers (Layer I
and Layer II) of each CNN. This method improves the model’s capacity of capturing
both low- and high-level representations, thereby enhancing classification accuracy.

• The system integrates dual-layer features from three disparate pre-trained CNN
architectures—MobileNet, EfficientNetB0, and ResNet-18. By incorporating attributes
from these models, the framework leverages their distinct architectural advantages,
thus improving diagnostic efficacy.

• To overcome the challenges associated with extensive feature dimensions and the
potential for overfitting, canonical correlation analysis (CCA) is utilised to diminish the
dimensionality of Layer I features. The diminished Layer I features are subsequently
combined with Layer II features to generate multiscale feature sets. Feature selection
is applied to identify the most significant features, thereby substantially decreasing
the dimensionality of the feature space and enhancing classification efficiency.

These contributions resolve significant deficiencies observed in current CAD systems,
including a dependence on singular CNN architectures, the extraction of single-scale
features, and inadequate feature selection or dimensionality reduction techniques. This
study advances the establishment of efficient and effective CAD systems for lung and colon
cancer by integrating multiscale features, utilising robust feature selection methods, and
harnessing the complementary strengths of various CNN architectures.

3. Materials and Methods
3.1. Lung and Colon Cancer Histopathology Dataset

The LC25000 database developed by Borkowski, et al. [44] serves as a prominent
benchmark in histopathological image analysis and the classification of LC cancers in medi-
cal imaging. The dataset consists of 25,000 high-resolution histopathological photographs
categorised into five distinct classes: colon adenocarcinoma, colon benign tissue, lung
adenocarcinoma, lung benign tissue, and lung squamous cell carcinoma. Each category
comprises an equal total of 5000 images, thereby guaranteeing equitable distribution across
classifications. Such database photos were cropped and scaled to 768 × 768 pixels, preserv-
ing adequate detail for cellular and morphological feature analysis. The data collection is
annotated and organised to support supervised learning tasks, rendering it appropriate for
the development and assessment of machine learning and DL models. Figure 1 presents an
exemplar for each category of LC photos.

3.2. Canonical Correlation Analysis

The canonical correlation procedure is a statistical approach employed to investigate
the connections among two separate variable sets by determining the linear combinations
of each set that exhibit the greatest correlation with each other. Such a technique finds the
largest correlation between pairs of canonical attributes, which are linear combinations of
the original variables from each set. In mathematical terms, given a pair sets of variables
X = [x1, x2, . . ., xp] and Y = [y1, y2, . . ., yq], canonical correlation analysis (CCA) aims to
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identify linear combinations u = X Wx and v = Y Wy, where Wx and Wy are weight vectors,
such that the correlation ρ between u and v is maximised using the following formula [45].

ρ = max
wx ,wy

wT
x ∑XY wy√

wT
x ∑XX wx

√
wT

y ∑YY wy

(1)

where ∑XX and ∑YY are the covariance matrices of X and Y, respectively, and ∑XY is the
cross-covariance matrix between X and Y.
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CCA reduces features by transforming the original set into a smaller collection of
canonical variables, thereby minimising redundancy and maintaining the interrelationships
among features. By choosing the most significant canonical attributes, CCA diminishes
the data’s dimensionality, thus streamlining the framework while preserving essential
interdependencies. This method has been deployed in numerous ML applications to
alleviate overfitting, decrease computational complexity, and improve model generalisation
by removing unnecessary or duplicate characteristics [46]. CCA is especially useful in
multidimensional datasets where maintaining the latent correlations among feature sets
is essential.

3.3. Suggested System

The suggested research presents a CAD framework aimed at overcoming the defi-
ciencies identified in current systems for identifying types of lung and colon cancer. This
framework employs compact deep neural network designs to attain an acceptable compro-
mise between computational efficiency and diagnostic accuracy, rendering it appropriate
for clinical applications. This framework leverages multiscale feature extraction, collecting
variables from two separate layers, referred to as Layer I and Layer II, of each CNN, in
contrast to many current CAD systems that depend on a singular CNN architecture and
single-scale feature extraction. This method allows the model to acquire both low- and
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high-level representations, thus improving classification accuracy. The introduced CAD
system consists of five stages: LC photo preliminary processing, training compact deep
networks and dual-layer feature extraction, dimensionality reduction and dual-layer fea-
tures merging, multi-deep networks feature incorporation and selection, and ultimately LC
cancer classification. Figure 2 presents a summary of each of those phases. First, the photos
are scaled-down and augmented. Next, compact deep neural network models—MobileNet,
EfficientNetB0, and ResNet-18—are utilised for obtaining attributes from two separate
layers, designated as Layer I and Layer II. Layer I length is large; thus, the dimensionality of
these attributes is diminished through CCA. Afterward, the diminished features of Layer I
are integrated with variables obtained from Layer II.
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Following this, the framework incorporates dual-layer attributes from the three pre-
trained CNN structures. The framework combines features from these models to leverage
their unique architectural benefits, thereby enhancing diagnostic efficacy. CCA helps to
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mitigate the difficulties posed by substantial feature dimensions and the risk of overfitting
by reducing the dimensionality of Layer I features. Afterward, the diminished attributes are
subsequently integrated with Layer II features to produce multiscale feature sets, facilitating
a more resilient representation for classification. Subsequent to the aggregation of features
gathered from the dual-layers of the three CNN models, further processing is conducted,
adopting ANOVA and Chi-Squared feature selection methodologies. These approaches
discern the most essential attributes, significantly reducing the dimensionality of the feature
space while maintaining classification efficacy. The chosen features are then employed to
train various machine learning classifiers, guaranteeing that the system provides precise
and dependable diagnostic outcomes.

3.3.1. Lung and Colon Photos Preliminary Processing

The training procedure for each DL model commences with the input layer neces-
sitating photos of a specified dimension. Accordingly, the sizes of the histopathological
images for LC cancer have been altered to meet the input layer requirements of the three
selected deep learning models, specifically 224 × 224 × 3. Furthermore, data augmentation
strategies are exploited to improve the training effectiveness of such models and reduce
overfitting. Data augmentation enhances the diversity of images within the dataset, facili-
tating the improved generalisation of models throughout learning. This study employs
various augmentation techniques, including scaling in both x and y dimensions between
an interval of [0.5, 2], flipping along both axes, translating photos in x and y using angles
within [−20, 20], and shearing between a range of [−45, 45].

3.3.2. Training Lightweight Deep Networks and Dual-Layer Feature Extraction

The present step employs transfer learning, retaining three lightweight CNNs that
have been pre-trained on the ImageNet database. The choice of MobileNet, EfficientNetB0,
and ResNet-18 for the study was determined by critical factors such as network struc-
ture, computational effectiveness, and performance. The aforementioned designs were
chosen for their synergistic advantages, rendering them appropriate for diverse DL appli-
cations. MobileNet [47] enhances computational efficiency through depthwise separable
convolutions, markedly decreasing model complexity while maintaining accuracy. Effi-
cientNetB0 [48] utilises a hybrid scaling approach that optimises the network’s complexity,
width, and resolution, yielding outstanding performance with minimal computational
expense. ResNet-18 [49], recognised for its deep residual learning architecture, mitigates
the vanishing gradient issue, facilitating the training process of deeper networks and im-
proving feature extraction. Collectively, these networks provide versatility, accommodating
both resource-constrained applications and high-performance tasks, exemplifying their
adaptability in practical scenarios. The architecture of each model is modified to incorpo-
rate five fully connected layers to align with the five categories in the LC25000 database.
Hyperparameters are meticulously adjusted based on the experimental configuration, with
each model trained autonomously on histopathology images, enabling each network to
capitalise on its distinct advantages while guaranteeing consistent learning. Subsequent
to retraining, deep feature extraction is executed. The present research differentiates itself
from traditional methods by extracting attributes from two separate layers of each network:
the pooling layer (Layer I) and the fully connected layer (Layer II), and their lengths are
illustrated in Table 1.
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Table 1. The length of the deep variables acquired from each layer of the three deep neural net-
work models.

Deep Neural Network Model Layer I Layer II

MobileNet 1280 5

ResNet-18 512 5

EfficientNetB0 1280 5

In a CNN, layers are structured to incrementally acquire more intricate features. The
initial layers detect fundamental features like edges and textures, whereas the subsequent
deep layers concentrate on recognising complex, disease-specific structures linked to lung
and colon cancer [50,51]. The last layers of a CNN are essential for feature extraction, as
they yield the most important data for classification tasks. Therefore, the present study
employs the final pooling and fully connected layers as feature extractors. The pooling
layer diminishes the spatial dimensions of feature maps produced by convolutional layers
while preserving the most vital attributes. Pooling methods including average pooling are
used to compress the essential activations within designated areas of the feature map [52].
This decrease in dimension streamlines the feature set, highlighting the most significant
attributes for classification. Subsequent to the pooling layer, the fully connected layers
function as highly sophisticated feature extractors. In contrast to convolutional layers
that examine localised areas, fully connected layers integrate information from the entire
feature map, allowing for the identification of global patterns as well as relations within
features [53]. This method is especially beneficial in the classification of lung and colon
cancer, where comprehending the fundamental characteristics of the disease is crucial. By
integrating attributes from the final pooling layer, which encapsulates spatial details, with
those from the fully connected layers, which denote global patterns and relationships, the
framework attains hierarchical and thorough representations of the input data.

Studies demonstrate that the incorporation of features from various layers typically
enhances classification performance relative to dependence on a singular layer [50,54]. Each
layer captures distinct characteristics of the input picture, and the combination of these
attributes yields a more resilient representation for the classification task. This method
improves the system’s capacity to deliver a comprehensive and precise understanding of
the characteristics of lung and colon cancer.

3.3.3. Dimensionality Reduction and Dual-Layers Merging

Due to the substantial size of the features from Layer I as shown in Table 1, dimen-
sionality reduction is implemented through CCA to efficiently decrease the size of such
attributes. An ablation analysis is carried out to study the effect of varying the number of
canonical variables on the classification performance. Subsequently, the reduced canonical
features of Layer I of each CNN are integrated with the deep features obtained from Layer II.
This step is accomplished to determine whether fusing deep variables from different layers
of each CNN could enhance performance and is superior to using deep attributes from a
single layer of each deep neural network.

CCA was used as it identifies linear combinations of variables from a pair of feature
sets that optimise their mutual correlation. In contrast to principal component analysis
(PCA), which prioritises variance maximisation, CCA explicitly enhances the correlation
among distinct feature sets, rendering it especially appropriate for the proposed method
that integrates dual-layer features from multiple CNNs. Although t-SNE is proficient in
visualisation, it does not maintain the global patterns with the same efficiency as CCA.
Moreover, t-SNE has a non-deterministic nature which limits its use in real-time applications.
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In the experiments, CCA exhibited strong efficacy in dimensionality reduction while
preserving classification accuracy. However, CCA has certain limitations, such as its suscep-
tibility to noise and dependence on linear correlations, which could inadequately represent
intricate relationships within the data. To address these issues, CCA was integrated with
another robust method, ANOVA, to guarantee that the attributes extracted are both dis-
criminatory and computationally effective.

3.3.4. Multi-Deep Networks Feature Incorporation and Selection

At this point, the feature vectors obtained from three separate deep neural networks
are methodically combined to create a holistic multidimensional representation. This com-
bined strategy seeks to investigate the prospect of attaining performance enhancements by
integrating features from various CNN topologies and to evaluate the efficacy of different
combination sets. Nevertheless, managing high-dimensional data presents considerable
computational difficulties, requiring the implementation of an advanced feature selection
(FS) technique. FS is an essential procedure that identifies and preserves the most informa-
tive variables while discarding irrelevant or redundant ones to improve model efficiency
and accuracy. This study employs analysis of variance (ANOVA), a form of statistics
utilised to assess the relative importance of individual features by assessing their variance
among distinct classes. For a feature xi, the ANOVA F-statistic is calculated as follows:

F =
Variance between groups

Variance within group
=

1
c−1 ∑c

k=1 nk(µk − µ)2

1
n−c ∑c

k=1 ∑nk
j=1 nk

(
xk,j − µk

)2 (2)

where c represents the sum of categories, nk denotes the number of observations in category
k, µk is the mean of attribute xi in class k, µ is the overall mean of xi, and n signifies the
whole number of observations. Features exhibiting elevated F-statistics are deemed more
pertinent to the classification task and are prioritised for incorporation into the model.
The present research employs ANOVA-based feature selection in order to minimise the
dimensionality of the fused feature set while retaining the most discriminative variables,
thus enhancing the computational effectiveness and predictive ability.

ANOVA was selected for its efficacy in detecting statistically important features by
assessing variance among classes, rendering it especially appropriate for datasets where
class separation is essential. ANOVA is computationally effective and relatively easy to
implement, which aligns with the lightweight and resource-constrained emphasis of the
suggested approach. To substantiate this selection, a comparative analysis with alternative
FS methodologies was performed, including Chi-Squared.

The Chi-Squared FS approach [55] ranks variables according to their significance to
the classification process by calculating the Chi-Squared statistic for each attribute. This
allows it to assess the dependence among variables and target categories. This technique
compares the actual and projected frequencies of a feature’s values throughout different
categories to determine its statistical independence. Larger Chi-Squared score variables are
ranked for training models since they are regarded to be more significant. The Chi-Squared
method presumes independence among attributes; thus, its efficacy may be restricted, even
if it is good at lowering feature dimensions where interactions across features and classes
are nonlinear.

3.3.5. Lung and Colon Cancer Classification

During the classification phase of LC tissue, eight ML classifiers are applied to cat-
egorise the five different categories in the LC25000 database. The classifiers comprise
decision tree (DT), linear discriminant analysis (LDA), k-nearest neighbour (KNN), and five
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variants of support vector machines (SVMs) employing distinct kernel functions: linear,
cubic, medium Gaussian, coarse Gaussian, and quadratic. Every single classifier has been
developed to employ distinct computational approaches to enhance performance for the
multi-class classification task. Fivefold cross-validation is employed to guarantee rigorous
assessment and reduce overfitting. This validation method partitions the database into
five equal segments, utilising four segments for training and one for testing in each round
of validation, with the test set rotating among the folds. The cross-validation procedure
guarantees that each data instance is employed for both training and testing, yielding a
dependable evaluation of classification performance across all eight models. The compara-
tive evaluation of the above classifiers underlines their efficacy in precisely differentiating
between LC histopathological classes, providing insights into their appropriateness for
medical image analysis tasks.

4. Hyperparameter Refinement and Performance Assessment
By adjusting the learning rate to 0.0001, the batch size to 4, and the quantity of epochs

to 5, the deep neural networks are optimised for the training procedure. Validation was
performed after every 130 iterations to assess the learning error at the completion of each
epoch. The deep models are trained by employing the stochastic gradient descent optimiser
with momentum, while all the other hyperparameters remain at their default settings. The
system is executed utilising MATLAB R2024a.

For assessing the efficacy of the suggested system on the categories included in the
LC25000 dataset, various metrics are employed, offering a thorough evaluation of its
performance. The metrics encompass precision, accuracy, F1-score, sensitivity, specificity,
and Matthew’s correlation coefficient (MCC), all calculated using their corresponding
Formulas (3)–(8). Precision quantifies how many true positive estimations there are out
of all the positive estimations, whereas sensitivity computes the classification algorithm’s
capacity to accurately detect positive cases. Specificity, conversely, denotes the model’s
precision in accurately recognising negative instances. The F1-score delivers a harmonic
mean of precision and sensitivity, serving as a balanced metric for imbalanced datasets.
The MCC assesses the comprehensive quality of classification by evaluating true and false
positives and negatives and is especially valuable in multi-class situations. Furthermore,
the confusion matrix is produced to illustrate the model’s prediction distribution among
the classes, and the receiver operating characteristic (ROC) curve is calculated to evaluate
the trade-off between true positive and false positive rates. Collectively, these metrics
guarantee a comprehensive assessment of the model’s efficacy.

Accuracy =
TP + TN

TN + FP + FN + TP
(3)

Sensitivity =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

F1 − Score =
2 × TP

(2 × TP) + FP + FN
(7)

Speci f icity =
TN

TN + FP
(8)
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In ML classification, true positives (TP) denote occurrences where the ML algorithm
accurately identifies the positive class, such as detecting cancer when it exists, whereas true
negatives (TN) signify instances in which the model correctly recognises the negative class,
such as affirming the absence of cancer when it is not present. Conversely, false positives
(FP) arise when the model erroneously identifies an instance that is negative as belonging
to the positive class, exemplified by diagnosing cancer in the absence of the disease. False
negatives (FN) occur when the model erroneously classifies a positive instance as negative,
exemplified by the failure to identify the presence of cancer.

5. Results
This section will discuss the results of the LC cancer classification step of the presented

system. Initially, it will present the performance measure values of the eight ML classifiers
trained with Layer II deep variables acquired from each deep neural network separately.
Next, it will demonstrate the results of the ablation study, which examines the impact of
changing the number of canonical variables obtained after applying CCA to Layer I deep
features, on the classification performance. After that, the results achieved for each deep
neural network, where the deep variables gathered from Layer II and reduced variables
of Layer II are combined, are presented. The findings demonstrate whether integrating
features from different layers of a CNN could improve performance. Afterwards, the results
after the incorporation of the dual-layer features of the three DL models and the application
of the ANOVA FS approach used to select the most important variables are presented.

5.1. Layer II Deep Features Results

This section presents the results of the eight ML algorithms constructed with deep
variables of Layer II of each CNN model which corresponds to the fully connected layer.
Table 2 illustrates the classification accuracy attained by different ML classifiers using Layer
II features from each CNN model—EfficientNetB0, ResNet-18, and MobileNet. Of the
three models, MobileNet continually displays superior performance, attaining a maximum
accuracy of 99.3% with the LSVM, CGSVM, and MGSVM classifiers, followed by KNN
and QSVM, which achieved 99.2% accuracy, and LDA and DT, which attained an accuracy
of 99.1% and 98.9%, respectively. ResNet-18 closely follows MobileNet, reaching a peak
accuracy of 99.2% across various classifiers, including LSVM, QSVM, CSVM, and MGSVM.
Subsequently, KNN and CGSVM accomplished 99.1% accuracy, and DT and LDA achieved
98.8% accuracy. On the other hand, EfficientNetB0, although marginally inferior to its
counterparts, still achieves commendable results, reaching a maximum accuracy of 98.8%
using LSVM and CSVM followed by 98.7% with MGSVM, CGSVM, QSVM, and KNN.
The results presented highlight the efficacy of Layer II features, obtained from the fully
connected layers, in acquiring discriminatory information for classification tasks. The
uniform performance among classifiers emphasises the dependability and scalability of the
features, with MobileNet’s efficient structure and feature extraction capacities proving to
be the most beneficial in this analysis. These findings validate the feasibility of lightweight
CNNs and their incorporation with ML classifiers for the accurate classification of LC cancer.

Table 2. The classification accuracy (%) of the classifiers fed with Layer II features.

DT LDA KNN LSVM QSVM CSVM MGSVM CGSVM

EfficientNet 98.4 98.6 98.7 98.8 98.7 98.8 98.7 98.7

ResNet-18 98.8 98.8 99.1 99.2 99.2 99.2 99.2 99.1

MobileNet 98.9 99.1 99.2 99.3 99.2 99.2 99.3 99.3
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5.2. Layer I Deep Features Results

This section shows the results of the ablation study, which investigates the effect
of altering the number of reduced canonical variables obtained after applying CCA on
the Layer I features of each CNN on the classification performance. Table 3 displays a
detailed ablation study illustrating classification accuracy outcomes across varying quan-
tities of canonical features (10–50) for three CNN architectures (EfficientNet, ResNet-18,
and MobileNet) employing eight distinct classifiers. The findings indicate that MobileNet
attained the highest overall performance, achieving 99.4% accuracy with QSVM, CSVM,
and MGSVM classifiers utilising 50 canonical features. For all three CNNs, enlarging
the number of canonical variables typically resulted in enhanced classification accuracy,
with the most substantial improvements typically observed between 10 and 30 variables.
EfficientNet achieved its optimal performance of 99.1% using both CSVM and MGSVM
with 50 features, whereas ResNet-18 reached a peak of 99.3% with QSVM at 50 features.
Among the classifiers, SVM variants (notably QSVM, CSVM, and MGSVM) consistently
surpassed DT and LDA across all three networks. The KNN classifier demonstrated ro-
bust performance, particularly with MobileNet features, attaining 99.1% accuracy using
50 features. LSVM and CGSVM exhibited commendable performance, albeit marginally
inferior to their more intricate SVM variants. LDA exhibited the highest sensitivity to the
quantity of canonical features, with its performance significantly enhancing as the number
of attributes raised especially for ResNet-18, where it rose from 94.6% at 10 attributes to
97.4% at 50 variables.

Table 3. The ablation study which shows the classification accuracy (%) of the classifiers fed versus
altering the number of Layer I features after applying CCA.

Number of Canonical Features DT LDA KNN LSVM QSVM CSVM MGSVM CGSVM

EfficientNet

10 97.9 97.8 98.2 98.2 98.3 98.3 98.3 98.2

20 97.9 97.9 98.5 98.4 98.6 98.7 98.7 98.4

30 97.9 97.9 98.6 98.4 98.9 99.0 98.9 98.3

40 97.8 98.2 98.7 98.5 98.9 98.9 99.0 98.5

50 97.8 98.3 98.8 98.6 99.0 99.1 99.1 98.5

ResNet-18

10 97.2 94.6 98.2 98.1 98.4 98.3 98.3 97.9

20 97.4 95.6 98.8 98.7 98.9 99.0 98.9 98.7

30 97.3 96.6 98.9 99.0 99.2 99.1 99.1 98.9

40 97.4 97.4 98.7 98.9 99.1 99.1 99.2 98.9

50 97.5 97.4 98.7 99.1 99.3 99.2 99.2 98.9

MobileNet

10 98.1 97.2 98.7 98.7 98.8 98.8 98.9 98.6

20 98.0 97.8 99 98.9 99.2 99.1 99.2 98.9

30 98.2 97.7 99.0 99.1 99.2 99.3 99.3 99.0

40 98.0 97.9 99.0 99.1 99.3 99.3 99.3 99.0

50 98.0 98.1 99.1 99.2 99.4 99.4 99.4 99.0

5.3. Dual-Layer Deep Features Results

This section illustrates the outcomes of the classifiers fed with the combined Layer
I and Layer II deep features. Table 4 provides an in-depth analysis of classification accu-
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racies obtained by integrating Layer I and Layer II attributes from three neural networks
(EfficientNet, ResNet-18, and MobileNet), indicating that the incorporation of attributes
typically enhanced performance across all models. MobileNet attained the most outstand-
ing overall performance, achieving 99.7% accuracy with its integrated features employing
QSVM, CSVM, and MGSVM classifiers, surpassing the individual outcomes of Layer I
(99.4%) and Layer II (99.3%). Similarly, ResNet-18 demonstrated notable enhancement with
integrated features, attaining 99.6% accuracy with CSVM, in contrast to 99.3% and 99.2%
for Layer I and Layer II, respectively. Furthermore, EfficientNet exhibited incremental
improvements, achieving 99.3% accuracy with combined features utilising CSVM and
MGSVM, surpassing its Layer I (99.1%) and Layer II (98.8%) accuracy. Across the classifiers,
SVM variants (notably QSVM, CSVM, and MGSVM) consistently surpassed other method-
ologies throughout all networks. The DT classifier exhibited the greatest variability in
performance, ranging from 97.8% to 99.0%, whereas LDA demonstrated relatively compe-
tent performance, though mostly inferior to the SVM variants. KNN exhibited exceptional
performance, especially with the integrated features of MobileNet (99.5%). LSVM and
CGSVM exhibited remarkable performance yet were marginally inferior to their more
intricate SVM counterparts. The integration of attributes typically resulted in enhanced
stability in performance across all classifiers, indicating that the multi-layer methodology
yields more resilient feature representations for classification.

Table 4. Classification accuracy (%) of the classifiers fed with the combined Layer I and Layer II deep
variables for each deep neural network.

Features DT LDA KNN LSVM QSVM CSVM MGSVM CGSVM

EfficientNet

Layer I 97.8 98.3 98.8 98.6 99.0 99.1 99.1 98.5

Layer II 98.4 98.6 98.7 98.8 98.7 98.8 98.7 98.7

Combined 98.4 98.7 99.1 99.0 99.2 99.3 99.3 98.8

ResNet-18

Layer I 97.5 97.4 98.7 99.1 99.3 99.2 99.2 98.9

Layer II 98.8 98.8 99.1 99.2 99.2 99.2 99.2 99.1

Combined 98.8 98.6 99.2 99.4 99.5 99.6 99.5 99.3

MobileNet

Layer I 98.0 98.1 99.1 99.2 99.4 99.4 99.4 99.0

Layer II 98.9 99.1 99.2 99.3 99.2 99.2 99.3 99.3

Combined 99.0 98.8 99.5 99.5 99.7 99.7 99.7 99.4

5.4. Feature Selection Results

This section demonstrates the results of the ML classifiers trained with the selected
deep variables after applying the ANOVA FS method to the integrated dual-layer deep
variables of the three deep networks. Table 5 displays the classification accuracy outcomes
following the execution of ANOVA and Chi-Squared FS on the aggregated dual-layer fea-
tures from all three CNNs (MobileNet, ResNet-18, and EfficientNet), indicating substantial
enhancements compared to the individual CNN results presented in Table 4. The peak
classification accuracy increased from 99.7% (attained by MobileNet’s integrated features
with QSVM, CSVM, and MGSVM) to 99.8% through the utilisation of ANOVA-selected
features, concurrently significantly diminishing feature dimensionality. The optimal per-
formance was attained by QSVM, CSVM, and MGSVM classifiers utilising only 50 or
60 selected features, illustrating the efficacy of FS in enhancing performance. Furthermore,



Technologies 2025, 13, 54 16 of 28

while deploying only 20 features, the majority of classifiers attained remarkable accuracy
exceeding 99.7%, demonstrating that ANOVA effectively discerned the most distinguishing
features, whereas CSVM and CGSVM achieved 99.6% accuracy and DT and LDA.

Table 5. Classification accuracy (%) of the classifiers fed with the selected features after applying
ANOVA and Chi-Squared FS on the combined dual-layer variables of the three deep networks.

Number of Features DT LDA KNN LSVM QSVM CSVM MGSVM CGSVM

ANOVA

10 99.0 98.7 99.2 99.5 99.4 99.4 99.5 99.4

20 99.2 99.1 99.7 99.7 99.7 99.6 99.7 99.6

30 99.2 99.1 99.7 99.7 99.7 99.7 99.7 99.7

40 99.2 99.0 99.7 99.7 99.7 99.7 99.7 99.6

50 99.2 99.0 99.7 99.7 99.7 99.8 99.7 99.6

60 99.1 99.0 99.7 99.7 99.8 99.8 99.8 99.6

70 99.1 99.1 99.7 99.7 99.8 99.8 99.8 99.6

80 99.1 99.2 99.7 99.7 99.8 99.8 99.8 99.6

90 99.1 99.1 99.6 99.7 99.8 99.8 99.8 99.6

100 99.1 99.1 99.7 99.7 99.8 99.8 99.8 99.6

Chi-Squared

10 97.7 98.0 98.3 98.3 98.5 98.4 98.5 98.3

20 98.5 98.7 98.9 98.8 99.0 99.1 99.1 98.9

30 98.7 98.8 99.2 99.2 99.3 99.4 99.4 99.0

40 98.6 98.8 99.2 99.4 99.4 99.5 99.4 99.2

50 98.6 98.8 99.4 99.3 99.5 99.5 99.4 99.2

60 98.6 98.8 99.4 99.3 99.4 99.5 99.4 99.2

70 98.9 98.9 99.5 99.5 99.6 99.7 99.6 99.4

80 99.0 99.0 99.6 99.6 99.7 99.7 99.7 99.5

90 98.9 99.0 99.7 99.6 99.7 99.8 99.7 99.5

100 99.1 99.1 99.7 99.7 99.8 99.8 99.8 99.6

Additionally, the enhancement via ANOVA FS was especially significant across all
classifiers in comparison to the individual CNN outcomes presented in Table 4. The DT
classifier enhanced from 99.0% (the optimal performance of MobileNet) to 99.2%, KNN
from 99.5% to 99.7%, and LDA from 98.8% to 99.2%. The LSVM exhibited an enhancement
from 99.5% to 99.7%, sustaining this performance with few features, whereas the CGSVM
attained a maximum of 99.7%, surpassing its prior best of 99.4%. The performance peak
noted after 20 features indicates that this may be the optimal feature set size, as the
inclusion of additional features did not produce substantial enhancements. On the other
hand, all classifiers produced somewhat smaller classification accuracies when using the
Chi-Squared FS technique. The CSVM attained a peak accuracy of 99.5% using Chi-Squared
with feature sizes of 50–60, in contrast to 99.8% with ANOVA. Comparable patterns were
noted for classifiers such as DT, LDA, and KNN, wherein Chi-Squared attained accuracies
0.2–0.5% inferior to ANOVA throughout the majority of feature numbers. These distinctions
highlight ANOVA’s superiority in improving classifier efficacy by concentrating on features
with greater discriminative strength.

The findings also demonstrate the influence of feature count on classification accuracy.
Both ANOVA and Chi-Squared demonstrated consistent or marginally enhanced accuracy
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trends as the quantity of selected features escalated from 10 to 100. Nonetheless, ANOVA
optimised this enhancement more efficiently, consistently attaining superior accuracies
across all classifiers. This suggests that although both FS techniques gain from expanded
feature sets, ANOVA optimises the use of the supplementary information more effectively.

More performance metrics are calculated for the eight classifiers fed with the optimal
set of features. These measures involve sensitivity, precision, F1-score, MCC, and specificity.
Table 6 delineates the assessment measures for the eight classifiers trained with optimally
chosen attributes subsequent to the deployment of the ANOVA FS technique on the inte-
grated dual-layer deep variables of the three CNN architectures (EfficientNet, ResNet-18,
MobileNet). The findings indicate that CSVM achieved the highest performance, exhibiting
a sensitivity of 0.9978, specificity of 0.9995, precision of 0.9978, F1-score of 0.9978, and MCC
of 0.9973. QSVM and MGSVM exhibited outstanding performance, attaining a sensitivity of
0.9975 and 0.9976, specificity of 0.9994, precision of 0.9975 and 0.9976, F1-score of 0.9975 and
0.9976, and MCC of 0.9969 and 0.9970, respectively. KNN and LSVM demonstrated robust
performance, with KNN realising a sensitivity of 0.9968, specificity of 0.9992, precision of
0.9968, F1-score of 0.9968, and MCC of 0.9960. LSVM exhibited comparable metrics, with a
sensitivity of 0.9967, specificity of 0.9992, precision of 0.9967, F1-score of 0.9967, and MCC
of 0.9959. The results highlight the efficacy of the ANOVA feature selection method in
improving classification performance across all classifiers, with CSVM attaining the highest
overall performance. The findings illustrate the accuracy and reliability of the suggested
CAD framework to identify LC cancer.

Table 6. Evaluation metrics of the classifiers fed with the optimal selected features after applying the
ANOVA feature selection.

Classifier Sensitivity Specificity Precision F1-Score MCC

DT 0.9916 0.9979 0.9916 0.9916 0.9896

LDA 0.9911 0.9978 0.9911 0.9911 0.9889

KNN 0.9968 0.9992 0.9968 0.9968 0.9960

LSVM 0.9967 0.9992 0.9967 0.9967 0.9959

QSVM 0.9975 0.9994 0.9975 0.9975 0.9969

CSVM 0.9978 0.9995 0.9978 0.9978 0.9973

MGSVM 0.9976 0.9994 0.9976 0.9976 0.9970

CQSVM 0.9965 0.9991 0.9965 0.9965 0.9957

The confusion matrices of the highest-performing classifiers including QSVM, CSVM,
and MGSVM are also determined. Figure 3 presents confusion matrices illustrating the
proportions of the right and wrong classifications for each class. The confusion matrices
indicate that the categories of colon adenocarcinoma, colon benign tissue, and lung benign
tissue have been accurately identified with sensitivity values equal to 100% using CSVM,
QSVM, and MGSVM algorithms. The lung squamous cancer subtype is the most frequently
incorrectly categorised among these three classifiers. Figure 3 illustrates that QSVM is the
classifier with the highest rate of incorrect classifications among the three classifiers for
photos in the lung squamous category.

In contrast to these metrics, ROC curves are also illustrated in Figure 4 for QSVM,
CSVM, and MGSVM, which attained the highest performance. This curve is generated by
graphing the true positive rate in relation to the false positive rate. For effective classifi-
cation, it is preferable for the Area Under the Curve (AUC) to approach 1 [56]. Figure 4
illustrates that the AUC value is determined to be 1 for all curves. The findings indicate that
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the suggested CAD offers a cost-effective, impartial, and considerably precise identification
of LC cancer.
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6. Discussion
The experimental findings illustrate the efficacy of the proposed multi-CNN frame-

work, which incorporates dual-layer feature extraction, reduction, and selection for identi-
fying different types of LC cancers. The examination of distinct layers and their integration,
along with FS, uncovers numerous critical insights regarding classification efficacy. Prelimi-
nary experiments with Layer II variables (Table 2) demonstrated encouraging outcomes,
with MobileNet attaining 99.3% accuracy using LSVM and MGSVM classifiers. The ablation
study on Layer I features (Table 3) demonstrated that expanding the quantity of canonical
variables typically enhanced classification performance, with MobileNet achieving the
highest accuracy score of 99.4% employing QSVM, CSVM, and MGSVM classifiers when
employing 50 canonical variables. This indicates that the elevated attributes from both
layers possess comparable discriminatory capabilities.

The integration of Layer I and Layer II attributes (Table 4) illustrated the efficacy of
multiscale feature representation, with MobileNet’s aggregated features attaining 99.7% ac-
curacy leveraging QSVM, CSVM, and MGSVM classifiers. This significant enhancement
compared to single-layer performance (99.4% for Layer I and 99.3% for Layer II) substan-
tiates the assumption that attributes from various network depths encapsulate comple-
mentary information beneficial for classification. ResNet-18 demonstrated comparable
advantages from feature incorporation, attaining 99.6% accuracy with CSVM, whereas
EfficientNet achieved 99.3% using both CSVM and MGSVM.

Notable performance improvements were evident following the deployment of
ANOVA feature selection on the aggregated dual-layer features from all three CNNs
(Table 5). This method attained an overall accuracy of 99.8%, utilising QSVM, CSVM, and
MGSVM classifiers with only 50 and 60 selected features. Remarkably, despite employ-
ing merely 20 selected features, the system achieved outstanding performance (99.7%),
illustrating the efficacy of ANOVA in pinpointing the most discriminating attributes while
significantly diminishing computational complexity.

Among the evaluated classifiers, SVM variants, especially the QSVM, CSVM, and
MGSVM, consistently exhibited outstanding results owing to their capacity to adeptly
manage nonlinear relationships within the data. Distinct patterns emerged during the
assessment. The classifiers employing diminished feature sets derived from CCA and
ANOVA demonstrated enhanced computational efficiency and generalisation, with negligi-
ble loss in accuracy. The QSVM, CSVM, and MGSVM classifiers performed exceptionally
well in situations where the dimensionality of the feature vectors was markedly diminished,
as it could take advantage of the most distinctive attributes for optimal classification. This
pattern highlights the significance of effective feature selection in optimising classifier per-
formance while considering the trade-offs between accuracy and computational expense.
These results demonstrate the versatility of SVMs in accommodating diverse feature sets
and their appropriateness for resource-limited contexts.

The outcomes of the proposed CAD underline numerous pivotal findings: (1) the
beneficial nature of features across various network layers and architectures, (2) the efficacy
of FS in sustaining or enhancing performance while minimising dimensionality, and (3) the
improved accuracy of SVM variants, especially with nonlinear kernels, in managing the
intricate feature spaces generated by deep networks. The uniform enhancement observed in
all classifiers exploiting the chosen attributes indicates that the suggested system effectively
harnesses the advantages of various CNN structures while reducing redundant data.
The performance peak noted after 20 chosen attributes signifies an optimal equilibrium
among feature dimension and classification accuracy, implying that additional feature
inclusion may not produce substantial enhancements. This discovery has significant
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implications for practical applications, enabling efficient implementation while preserving
high diagnostic accuracy.

A complexity analysis has been conducted to demonstrate the computational effi-
ciency of the proposed CAD. As shown in Table 7, by selecting merely 50 features through
sophisticated feature selection technique, our model substantially diminishes the parameter
count in comparison to complex deep learning models. It includes compact CNN structures
such as ResNet-18 (11 million parameters) and EfficientNetB0 (5.3 million parameters). The
decreased number of parameters of such deep models, combined with a reduced number of
layers (82 layers for EfficientNetB0, 28 Layers for MobileNet, and 18 for ResNet-18), leads
to diminished memory and storage requirements. The proposed system facilitates quicker
inference times which is especially beneficial for real-time applications. The computational
complexity of the classification phase of the proposed model, denoted as O(m2p + m3), illus-
trates its efficiency, particularly in systems with constrained computational resources. This
is because the classification complexity signifies that the computational expense correlates
with the quantity of features and samples yet stays feasible owing to the diminished feature
set (50 features). This design guarantees adaptability as well as effectiveness in situations
with constrained computing resources, guaranteeing expedited inference times without
sacrificing performance.

Table 7. A complexity study of the proposed CAD.

Model
Input Data Size to

Classifier

Amount of Deep
Network

Parameters
Amount of Layers Classification Complexity

(O)

ResNet-18 224 × 224 × 3 11 M 18 O
(
k·n·d2) [57]

k: kernel length
n: the overall length of the

pattern (the amount of
input entries)

d: dimensionality of
presentation

MobileNet 224 × 224 × 3 3.5M 28

EfficientNetB0 224 × 224 × 3 5.3 M 82

Classification Phase of
the CAD 50 Attributes

CSVM
C: regularisation

constraint
Gamma: kernel’s length

-

O
(
m2 p + m3 ) [58]

p: number of features
m: number of
input samples

6.1. State-of-the-Art Comparisons

Table 8 delineates a comprehensive comparison comparing the suggested CAD system
and various cutting-edge frameworks for identifying different types of LC cancer employ-
ing the LC25000 dataset. The suggested framework integrates ResNet-18, MobileNet, and
EfficientNetB0 with CCA for dimensionality reduction and ANOVA for FS, attaining an
accuracy of 99.78%, sensitivity of 99.78%, specificity of 99.95%, precision of 99.78%, and
an F1-score of 99.78%. This performance illustrates the system’s resilience and efficacy in
classification tasks. Compared to current CAD systems, EfficientNet with GradCAM [1]
attains the highest accuracy and sensitivity at 99.97%, marginally exceeding the proposed
system. This approach does not incorporate the FS and reduction techniques employed
in the suggested CAD system, which diminishes the feature set to merely 50 attributes,
thereby substantially diminishing computational requirements. Likewise, EfficientNet
with AdBet-WOA [2] attains an accuracy of 99.96% and a specificity of 99.96%, employing
445 features. The dependence on an extensive feature set, although effective, heightens
complexity in contrast to the streamlined nature of the proposed system. Although the
proposed system’s performance on specific metrics is marginally inferior to the method
cited in reference [2], these improvements render the proposed approach more versatile and
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efficient, especially in contexts with constrained computational resources. The proposed
system utilises merely 50 features, whereas reference [2] employs 445 features to attain a
comparable level of performance. These factors offer a significant trade-off and a crucial
contribution to the domain of CAD systems.

Table 8. State of art comparisons with existing CAD frameworks for LC cancer identification based
on the LC25000 dataset.

Article Methods
Feature

Selection/
Reduction

Accuracy Sensitivity Specificity Precision F1-Score

[34] CLAHE+ MobileNet +
DBN No 0.9927 0.9817 0.9818 0.9817

[7] VGG16 + LBP + Majority
Voting (SVM + RF + LR) No 0.9900 0.9880 0.9900 0.9880

[35]
ResNet + EfficientNetB0 +
GWO + Soft Voting (LR +
SVM + DT + KNN + RF)

Yes 0.9873 0.9873 0.9873 0.9873

[1] EfficientNet Large +
GradCAM No 0.9997 0.9997

[2] EfficientNet + AdBet-WOA Yes
(445 features) 0.9996 0.9997 0.9996 0.9996

[36] Customized CNN +
GradCAM and SHAP No 0.9920 0.9936 0.9916 0.9916

[37] CLAHE + VGG16 No 0.9896

[38] ColonNet + GLPP No 0.9631 0.9567 0.9497 0.9611 0.9488

[39] ShuffleNet + DCRNN +
BER + COA No 0.9922 0.9806 0.9807 0.9806

[40]
VGG19 +PCA +

Handcrafted Features
(DWT, LBP, FCH, GLCM)

Yes
(699 features) 0.9964 0.9985 1.000 1.00

[41] ResNet-50, InceptionV3,
DenseNet + KELM No 0.9900 0.9650 0.9670 0.9770 0.9820

[42]
MobileNet + ShuffleNet +

SqueezeNet + FWHT +
DWT +SVM

Yes
(510 features) 0.9960 0.9960 0.9990 0.9960 0.9960

[43] InceptionResNet + LBP +
SHAP No 0.9988 0.9942 0.9946 0.9976

Presented
ResNet-18 + MobileNet +

EfficinetB0 + CCA +
ANOVA + CSVM

Yes (50) 0.9978 0.9978 0.9995 0.9978 0.9978

The VGG19 integrated with PCA and manually crafted features (e.g., DWT, LBP,
GLCM) [40] accomplishes an accuracy of 99.64%, sensitivity of 99.85%, and flawless speci-
ficity and precision of 100%. This approach depends on manually crafted features, which
can be labour-intensive and less flexible for varied datasets than DL methods. Inception-
ResNet, utilising LBP and SHAP [43], realises an accuracy of 99.88%, sensitivity of 99.42%,
and specificity of 99.46%, demonstrating robust performance, albeit with diminished speci-
ficity relative to the proposed method. Alternative frameworks, including MobileNet and
DBN (99.27% accuracy) [34] and ShuffleNet with DCRNN + BER (99.22% accuracy) [39],
demonstrate adequate performance but are inferior to the proposed system regarding sensi-
tivity, specificity, and F1-score. Moreover, approaches leveraging multiple classifiers, such
as VGG16 + LBP with majority voting (accuracy 99.00%) [7] or ResNet + EfficientNetB0
with soft voting (accuracy 98.73%) [35], demonstrate inferior overall results relative to the
proposed system.
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The main benefit of the presented CAD system is the combination of multiscale
features from different CNN structures (ResNet-18, MobileNet, and EfficientNetB0), along
with effective feature reduction and selection methods (CCA and ANOVA), resulting in
a concise and informative feature set comprising 50 attributes. This yields a lightweight,
computationally efficient model whose performance matches or surpasses that of most
current frameworks. The system attains an exceptional specificity of 99.95%, thereby
reducing false positives, which is crucial in medical diagnostics to prevent unneeded
treatments. The implementation of compact CNNs guarantees adaptability in resource-
limited settings, rendering the proposed system a viable solution for practical medical
image analysis tasks.

The research study emphasises computational effectiveness via feature dimensionality
reduction, resulting in a minor compromise in classification accuracy. Lowering the feature
set to 50 attributes yielded an accuracy around 0.002 less than the approach described in
reference [2], which employs 445 features. Nonetheless, this trade-off is negligible and is
surpassed by the substantial enhancement in computational effectiveness and the dimin-
ished risk of overfitting. Furthermore, the proposed CAD achieved higher performance
with only 50 features than other studies [40,42] which employed 699 and 510 features,
respectively. The chosen 50 features were refined to preserve the most distinguishing
information, guaranteeing that the system sustains competitive performance while being
appropriately adapted for implementation in resource-limited settings. This equilibrium
demonstrates the significance of the methodology for practical applications constrained by
computational resources.

6.2. Constraints and Upcoming Areas of Improvement

Considering the promising findings of the presented CAD system, various constraints
and prospective avenues for future research must be admitted. Initially, while the system
exhibited outstanding performance on the LC25000 dataset, additional validation on varied,
multi-centre datasets is necessary to confirm its generalisability across different patient
populations and imaging protocols. The present study was confined to histopathological
photos, and the system’s efficacy for alternative medical imaging modalities, such as CT
scans or MRI, has yet to be investigated. A further limitation is that although the ANOVA-
based FS strategy proved effective, alternative approaches, such as mutual information
or correlation-based methodologies, could possibly improve performance. Moreover, the
present system comprises distinct processing phases for feature extraction, dimensionality
reduction, and FS. Upcoming efforts may concentrate on creating a unified, comprehen-
sive trainable architecture to optimise these procedures. Additionally, investigating the
interpretability and biological relevance of the chosen features is crucial, as this may yield
significant insights for clinical applications. Enhancing the framework to accommodate
multi-modal data integration, encompassing clinical metadata, involving different patient
populations, and establishing real-time processing capabilities for medical decision support
represent additional promising avenues for future research. Integrating explainable AI
methodologies may enhance the system’s clinical acceptability by providing interpretable
results for healthcare professionals. Furthermore, expanding the framework to encompass
additional cancer types and medical conditions could enhance its clinical relevance and
influence. Future clinical trials would be crucial in evaluating the system’s influence on
clinical decision-making and patient outcomes in practical environments.
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7. Conclusions
This research introduced an innovative CAD system for identifying types of LC cancer,

leveraging numerous compact CNNs with dual-layer feature extraction, reduction, and se-
lection. The suggested framework harnesses the complementary advantages of MobileNet,
ResNet-18, and EfficientNetB0 structures, employing variables from both pooling and fully
connected layers to obtain multiscale representations. The experimental findings evidenced
the efficacy of the proposed methodology, attaining an exceptional classification accuracy of
99.8% with QSVM, CSVM, and MGSVM classifiers employing ANOVA-selected attributes,
surpassing the individual CNN performances of 99.7% (MobileNet), 99.6% (ResNet-18),
and 99.3% (EfficientNet). This performance was sustained with only 50 chosen attributes,
emphasising the efficacy of the feature selection methodology. The systematic assess-
ment of feature combination and selection techniques demonstrated that the integration of
multi-layer attributes from multiple CNN structures, coupled with feature selection, yields
enhanced classification performance relative to single-network or single-layer methods.
The framework’s capacity to attain high accuracy with a diminished feature set renders
it especially appropriate for medical applications where diagnostic precision and com-
putational efficiency are essential. Although the suggested framework shows promise
in creating a powerful and effective CAD system for the identification of colon and lung
cancer, some drawbacks should be noted. Since the study mainly assesses the framework’s
effectiveness on particular datasets, one possible drawback is its generalisability to other
datasets. Future research may concentrate on verifying the methodology across varied
datasets to strengthen its resilience. Furthermore, while the framework leverages compact
CNN designs to diminish computational complexity, deploying the system in resource-
limited environments may still present difficulties. Examining these factors in subsequent
research could enhance the system’s relevance and efficacy in practical clinical settings.
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