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Abstract: We developed a wearable sensor algorithm to determine the number of arm movement
bouts an infant produces across a full day in the natural environment. Full-day infant arm
movement was recorded from 33 infants (22 infants with typical development and 11 infants at
risk of atypical development) across multiple days and months by placing wearable sensors on each
wrist. Twenty second sections of synchronized video data were used to compare the algorithm against
visual observation as the gold standard for counting the number of arm movement bouts. Overall,
the algorithm counted 173 bouts and the observer identified 180, resulting in a sensitivity of 90%.
For each bout produced across the day, we then calculated the following kinematic characteristics:
duration, average and peak acceleration, average and peak angular velocity, and type of movement
(one arm only, both arms for some portion of the bout, or both arms for the entire bout). As the first
step toward developing norms, we present average values of full-day arm movement kinematic
characteristics across the first months of infancy for infants with typical development. Identifying and
quantifying infant arm movement characteristics produced across a full day has potential application
in early identification of developmental delays and the provision of early intervention therapies to
support optimal infant development.
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1. Introduction

Infancy is a period of exploration and learning characterized by the development of motor skills.
At least some of these skills arise from changes in synaptic connectivity that occur in response to
recurring patterns of neural activity, as suggested by Hebb in the 1960s [1]. Profound behavioral
changes can occur in infants as a result of both enriched [2] and deprived [3] motor experience.
Extensive research demonstrates a striking relationship between the acquisition of new motor skills
and subsequent cognitive development in infancy (for example [4–6]), implying that intervention to
promote motor skills could be used to enhance the overall infant developmental rate. One of the biggest
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current challenges in this area, however, is accurately measuring the amount and type of movement
practice infants are producing in order to identify relationships between movement practice and motor
skill development. We do not currently know how much or what type of practice is necessary for an
infant to learn a motor skill, for example reaching using their arms.

Wearable sensors record tri-axial accelerometer and/or gyroscope data at many samples
per second, allowing us to record movement data unobtrusively across many continuous hours.
We propose that wearable sensors should allow for the measurement of the amount and type of infant
movement practice across days and months, unobtrusively across many continuous hours in the
natural environment. To date, however, researchers have only recorded this type of data from infants
for up to an hour, in a laboratory or clinical environment [7–13]. Another option is commercially
available activity monitors such as Actigraph [14] and Actical [15], but they do not identify specific
movement characteristics and only report relative intensity of physical activity. Although relative
intensity of physical activity could be informative for certain research questions, their use has not been
validated in infants. We are the first to validate the use of wearable sensors to identify and describe
kinematic characteristics of infant arm movements from full-day data.

Our purpose here is to describe the development of an algorithm to identify and classify bouts of
infant arm movement from wearable sensor data. To develop the algorithm, we included 33 infants
(22 infants with typical development (TD) and 11 infants at risk of atypical development (AR)).
We included infants with TD and AR in the development of the algorithm as our goal is to be able
to use it in both populations. Some of the infants AR will eventually receive a diagnosis reflecting
motor impairment, while others will not. They may or may not have detectable movement differences
at this stage. We wanted to develop the algorithm to detect the movement of infants with a broad,
representative range of movement characteristics to ensure that we could use one consistent algorithm
process across both groups. Next, as the first step toward developing norms, we quantified full-day
arm movement bouts and kinematic characteristics across the first months of infancy for infants with
TD. Kinematic characteristics included duration, average and peak acceleration, average and peak
angular velocity, and type of movement (one arm only, both arms for some portion of the bout, or both
arms for the entire bout). Identifying and quantifying infant arm movement characteristics produced
across a full day has potential applications in early identification of developmental delays and in the
development and clinical testing of early intervention therapies.

2. Materials and Methods

2.1. Participants

Twenty-two infants with TD and eleven infants AR were included in this study. Infants with
TD and AR were included in the algorithm development portion of the study in order to create an
algorithm that is useful and accurate for both groups. Infants AR are not included in the presentation
of average full-day values of arm movement bout characteristics. The infants AR are a small and broad
group of infants with various risk levels for atypical development and a variety of developmental
challenges. Their data do not lend themselves to pooling but will instead be correlated with
individual future developmental outcomes. Infants with TD were from singleton, full-term (38 weeks
minimum gestation) births. Infants experiencing complications during birth, or with any known
visual, orthopedic, or neurologic impairment, or a score at or below the 5th percentile for their age
on the Bayley Scales of Infant Development (3rd edition) [16] at the time of testing were excluded
from the TD group. Infants in this group were between 38 and 203 days of age. Infants AR were born
before 36 weeks of gestation or defined as at high risk for developmental delay per the definition
of the state of California [17]. Infants AR were a broad group and included infants who were born
small for gestational age, had congenital heart defects, or had known neurologic malformations,
for example. Infants in this group were between 40 and 230 days (adjusted for prematurity). This study
was approved by the Institutional Review Board of the University of Southern California. Infants
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were recruited at health care clinics and by word of mouth in the Los Angeles area. A parent or legal
guardian signed an informed consent form for their infants’ participation.

2.2. Procedures

Infants were measured once per month, from 1 to 6 visits each. We traveled to the infants’ home in
the morning. Continuous full day arm movement was recorded using two battery-powered wearable
sensors (Opals, APDM, Inc., Portland, OR, USA), one on each wrist. Each sensor contains a tri-axial
accelerometer, gyroscope, and magnetometer, and was placed inside a pocket in a custom wrist band
(see Figure 1). The sensors were actively synchronized to each other, recording at 20 samples per
second. Recordings began in the morning and continued until the infant was put to bed for the night.
At this point, the caregiver removed the sensors, resulting in anywhere from 8 to 13 h of continuous
data. Caregivers were encouraged to perform their typical daily activities.
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Figure 1. Infant with typical development (104 days of age) with sensors on right and left arms. Sensors
are shown in inset with a U.S. quarter for reference.

Once the wearable sensors were on for each assessment, we recorded five minutes of video
of the infants’ spontaneous movements in the supine position. We assessed development using
the Bayley Scales of Infant Development (3rd edition) [16] and the Alberta Infant Motor Scale [18].
We also measured weight, length, head circumference, and upper and lower extremity lengths and
circumferences. We also collected approximately 10 min of electroencephalography data during an
assessment of arm reaching skill, however those results are not presented here.

2.3. Algorithm Development

We developed a threshold-based algorithm in Matlab to identify infant arm movement bouts from
the wearable sensor data for acceleration and angular velocity. The first step was to define general
rejection thresholds for the acceleration and angular velocity values, which were the same for all
infants. Then thresholds indicative of movement bouts were determined separately and uniquely
for each infant according to a standard formula that identified local maxima within the complete
sensor record. These thresholds should be computed from the data from each infant to compensate
for differences in infant size and sensor placement. They assure that bouts reflect real, purposeful
movements by the infant rather than background noise and small movements such as positional shifts.
Movement bouts were identified as periods when both the acceleration and velocity exceeded these
unique thresholds.
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2.4. Acceleration Rejection Threshold Determination. Detrending and Rectification

First, we calculated resultant linear acceleration as the square root squared sum of each axis (x,y,z)
as follows:

Accelmag =
√

Ax2 + Ay2 + Az2 (1)

Next, the resultant acceleration was detrended by subtracting the median to remove the gravity
component and any steady noise or offsets embedded in the signal. Then we used synchronized video
and sensor data (for randomly selected infants) to empirically determine a general rejection threshold
for acceleration values. The detrended acceleration signal was then rectified by applying the general
rejection threshold of a = [−1.02,1.32] m/s2 (Figure 2 top).
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distinguish potentially bout-related acceleration values from smaller movements, and we identified 
local maxima for the filtered signal by disregarding maxima below values of 1.0 m/s2 (Figure 2 
middle). We then set the infant’s unique acceleration threshold as the mean of all such local maxima 
minus half standard deviation for both positive and negative values (Figure 2 bottom). Both positive 
and negative values of detrended acceleration that exceeded this bout threshold were used to decide 
when a bout had occurred. The range of unique acceleration thresholds across infants was from 
−2.3604 to −1.3113 m/s2 and 1.3113 to 2.3604 m/s2, for negative and positive thresholds, respectively.  

Figure 2. The top panel shows a representative detrended Accelmag signal (solid black line) and the
general rejection thresholds (black dashed lines a = [−1.02,1.32] m/s2) for a 20 s section from the
right arm of a 3-month-old infant with typical development. The middle panel shows the residual
acceleration signal after full-wave rectification and smoothing (moving average with a 0.5 s window,
solid black line) and the identification of local maxima (asterisk) for the filtered signal by disregarding
maxima below values of 1.0 m/s2 (dashed black line). The bottom panel shows the same representative
detrended acceleration signal (solid black line) with this participant’s unique acceleration threshold
±1.4972 m/s2 (dashed black lines).

2.5. Filtering and Threshold Determination

The signal remaining after rejection was full-wave rectified and smoothed with a moving average
filter (0.5 s window). We computed a unique bout threshold for each participant to distinguish
potentially bout-related acceleration values from smaller movements, and we identified local maxima
for the filtered signal by disregarding maxima below values of 1.0 m/s2 (Figure 2 middle). We then set
the infant’s unique acceleration threshold as the mean of all such local maxima minus half standard



Technologies 2017, 5, 39 5 of 16

deviation for both positive and negative values (Figure 2 bottom). Both positive and negative values of
detrended acceleration that exceeded this bout threshold were used to decide when a bout had occurred.
The range of unique acceleration thresholds across infants was from −2.3604 to −1.3113 m/s2 and
1.3113 to 2.3604 m/s2, for negative and positive thresholds, respectively.

2.6. Angular Velocity Rejection Threshold Determination. Detrending and Rectification

Similar to the acceleration signal, first, we calculated the angular velocity (ω) magnitude:

Ang velmag =
√

ωx2 +ωy2 +ωz2 (2)

Next, the resultant angular velocity was detrended with the median to remove steady background
noise embedded in the signal. We used synchronized video and sensor data (for randomly selected
infants) to empirically determine a general rejection threshold for angular velocity as w = 0.32 rad/s
(Figure 3 top).
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Figure 3. The top panel shows a representative Ang velmag signal (red solid line) and the general
angular velocity rejection threshold (red dashed line at w = 0.32 rad/s) for a 20 s section of data from the
right arm of a 3-month-old infant with typical development. The middle panel shows a representative
filtered angular velocity signal (moving average filter with a 0.5 s window, solid red line) and angular
velocity maxima rejection threshold of 0.01 rad/s (dashed red light line). The red asterisks represent the
identified local maxima. The bottom panel shows the same representative detrended angular velocity
signal (solid red line) and the participant’s unique angular velocity threshold of 0.6200 rad/s (dashed
red line).

2.7. Filtering and Bout Threshold Determination

The detrended angular velocity signal was rectified with the rejection threshold w, and then
filtered with a 0.5 s window moving average filter. To determine the unique participant-based angular
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velocity threshold, we identified local maxima for the filtered signal by disregarding maxima below
values of 0.01 rad/s (Figure 3 middle). We then set the unique angular velocity threshold for each
participant as the mean of these local maxima minus half standard deviation (Figure 3 bottom).
The range of unique angular velocity thresholds was from 0.4208 to 1.0515 rad/s.

2.8. Arm Movement Bout Detection

A bout was defined as the period between the start and stop of significant arm movement
regardless of the position, orientation, or direction of the arm and movement. The start of a bout of
movement was defined as when both detrended Accelmag and Ang velmag were above each signals’
unique bout threshold. The end of a bout of movement was defined once the angular velocity
magnitude went below its threshold (See Figure 4). To compare between visits, we normalized the
number of bouts to the number of hours that the infant was awake and wearing the sensors. We visually
estimated the amount of sleep time by identifying sleep time as periods of less than 3 movement bouts
in 5 min. This adjusted for the different lengths of sensor wear and different amounts of nap time at
each visit.
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Figure 4. Top panel shows 20 s of the angular velocity detrended signal (rad/s solid dark red line),
and the identification of values above the angular velocity threshold (light red circles; threshold dashed
red line). Middle panel shows 20 s of the detrended acceleration signal (m/s2 solid black line), and the
identification of values above the acceleration threshold (light black circles; acceleration thresholds
dashed black lines). Bottom panel shows the arm movement bout count from 20 s of representative
acceleration (m/s2; solid black line) and angular velocity (rad/s; solid red line) data. There are two arm
movement bouts identified by the algorithm. The start of each bout is identified by a green triangle
pointing up in the figure when the acceleration and angular velocity each went above their unique
thresholds (dashed lines). Green triangles pointing down represent the end of an arm movement bout,
when the angular velocity magnitude went below its threshold. All figures are from data of the right
arm of a 3-month-old infant with typical development.
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2.9. Algorithm Performance: Counting Number of Bouts of Arm Movement

The algorithm was compared to visual observation as the gold standard. For 10 visits from
10 different infants in each group, an interval of 20 s of infant arm movement was selected.
We compared the number of bouts counted by the algorithm to the number identified by one expert
observer (Beth A. Smith). Frame-by-frame video coding software (ELAN, The Language Archive,
Nijmegen, The Netherlands) was used for the counting of movements, however for a new bout of
movement to be counted each time the arm paused, the pause had to be observed in real time.

2.10. Type of Movement

For each arm separately, we compared the start and stop samples of each bout to those of the
other arm to determine if only one arm was moving, both arms were moving for some portion of the
bout, or both arms were moving for the entire bout.

2.11. Kinematic Characteristics

Duration (s), was determined by counting the number of samples for each bout and dividing
that number by 20, as data were collected at 20 samples per second. Average Acceleration (m/s2) was
calculated as the sum of the absolute values of acceleration divided by the number of samples of the
bout. Peak Acceleration (m/s2) was calculated as the maximum absolute value of acceleration within
a bout.

2.12. Acceleration Area

As a general calculation of overall arm “activity”, we also calculated the area under the absolute
value of the resultant acceleration curve (Acceleration Area) across the time period that the sensors
were worn by the infant. To compare between visits, we normalized the area to the number of hours
that the infant was awake and wearing the sensors, rounded to the nearest five minutes. A larger
normalized acceleration area value indicates that the infant was moving the arm more frequently
and/or faster than a smaller value.

2.13. Statistical Analyses

To examine the characteristics of full-day arm movement bouts across the first months of infancy
for infants with TD, trends were developed using longitudinal linear effects modeling centered at
mean age. Random differences in level were estimated. There was insufficient data to allow for
the estimation of individual differences in slopes, so average slopes were estimated. Models were
compared using measures of fit (BIC, -2Ln Likelihood difference) in order to determine if a linear or
quadratic model fit better for any given variable.

3. Results

3.1. Algorithm Performance

The algorithm was compared to visual observation as the gold standard from 20 video segments
of 20 s each, as described previously in Section 2.9. Overall, the algorithm counted 173 bouts and the
observer identified 180, resulting in a sensitivity of 90% (sensitivity = true positive/(true positive + false
negative)). For the infants with TD, the algorithm counted 93 bouts of arm movement and the observer
identified 90. The algorithm undercounted (did not identify a movement the observer did) by 10 and
overcounted (identified a movement the observer did not) by 13 bouts. For infants AR, the algorithm
counted 80 bouts of arm movement and the observer identified 90. The algorithm undercounted by 11
and overcounted by 1 bout. Algorithm overcounting most often occurs because the algorithm is able
to identify pauses in arm motion that can be as short as 1/20 of a second, so the algorithm identifies
2 bouts when an observer only sees 1. Algorithm undercounting most often happens when an infant
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produces a very long, slow arm movement (e.g., lowering one arm very slowly while focusing attention
on the other arm). We did not actively identify periods of no movement, we assumed the infant was
not moving if no active movement was identified by the algorithm, and therefore only report the
ability of our algorithm to count movements and not its ability to count non-movement.

3.2. Number of Bouts

Table 1 shows the total number of bouts for the right and left arms across a full day at each visit
for infants with TD. A full day ranged from 8 to 13 h, and included variable amounts of nap time,
therefore each infants’ hours of awake time at each visit is also provided. To allow for the comparison
of movement rates between infants and across visits, Figure 5 shows the average number of bouts per
hour of awake time for the right and left arms, by age, for infants with TD. For the number of bouts per
hour of awake time, infants generally move their arms more as they get older. For each arm a linear
trend fit best.
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Figure 5. Average number of bouts per hour of awake time for the left and right arms, by age, for infants
with typical development. Each colored line represents a different infant across 3 to 6 visits. Two single
assessments are represented by dots. Thick black line is the mean and shaded area bordered by dashed
black line is one standard deviation. For each arm, a linear trend across time best fit the data.
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Table 1. Overall arm movement activity, number of bouts, and type of bouts, by infant and visit.

Infant Visit Age
(Days)

Awake
Time

(Hours)

Acceleration
Area Left

Acceleration
Area Right

Total
Bouts Left
(Number)

Bout Type:
Left Only
(Number)

Bout Type: Left
with Right for
Portion of Bout

(Number)

Bout Type: Left
with Right for

Entire Bout
(Number)

Total
Bouts
Right

(Number)

Bout Type:
Right Only
(Number)

Bout Type:
Right with Left
for Portion of

Bout (Number)

Bout Type:
Right with Left
for Entire Bout

(Number)

1

1 60 9.3 55,715 55,419 2326 1126 790 410 2491 1288 781 422
2 94 6.1 109,295 101,822 2783 1195 987 601 2758 1216 1034 508
3 126 9.3 102,163 110,379 3242 1443 1169 630 3591 1774 1201 616
4 161 8.4 243,714 154,263 4019 1584 1695 740 4140 1568 1595 977
5 191 9.0 204,974 176,775 4001 1662 1512 827 4002 1656 1555 791

2
1 113 8.0 194,156 172,301 4224 1648 1750 826 4308 1654 1597 1057
2 138 7.2 164,813 185,299 3919 1358 1596 965 3939 1482 1617 840
3 173 7.2 194,881 151,906 3904 1674 1314 916 3558 1389 1438 731

3
1 128 8.6 296,547 310,820 5382 1887 2113 1382 5112 1753 2290 1069
2 160 8.2 296,786 280,371 4636 1870 1860 906 3820 1133 1778 909
3 189 8.1 332,616 297,343 4885 2147 1832 906 4604 1866 1754 984

4
1 130 8.0 216,062 255,311 4372 1712 1698 962 4410 1799 1726 885
2 158 5.9 122,224 102,956 2166 874 877 415 2196 811 858 527
3 192 5.0 139,128 97,527 2030 775 857 398 2355 1066 803 486

5
1 131 8.0 152,452 164,041 3944 1555 1379 1010 3537 1396 1490 651
2 165 5.9 184,351 132,371 3051 1114 1279 658 3099 1165 1242 692
3 194 8.4 233,834 167,870 5020 2201 1666 1153 4266 1664 1802 800

6
1 94 8.1 214,226 162,435 3917 1444 1632 841 3746 1314 1596 836
2 128 8.1 373,701 240,609 6320 2393 2674 1253 5902 1965 2483 1454
3 155 8.7 329,202 344,689 5921 2740 1909 1272 4860 1874 2029 957

7
1 79 6.4 259,136 224,860 1790 588 697 505 2050 868 805 377
2 104 5.5 145,214 95,116 2148 828 849 471 2260 986 886 388
3 139 7.0 132,645 117,248 2672 1099 950 623 2382 915 1052 415

8
1 49 7.3 212,830 146,430 3138 1628 928 582 2794 1299 930 565
2 78 7.9 175,388 166,622 3229 1527 1169 533 3762 1943 1186 633
3 108 8.6 316,156 315,490 3913 1694 1417 802 4377 2137 1477 763

9
1 132 5.7 207,620 181,761 2618 1004 1128 486 2704 965 1021 718
2 168 9.3 301,681 381,848 4439 1697 1658 1084 4867 1966 1694 1207
3 203 7.0 157,550 125,030 2723 1300 820 603 2727 1345 928 454

10

1 40 8.1 144,204 154,457 2963 1302 1001 660 2769 1141 1003 625
2 70 8.8 281,301 326,961 4204 1659 1604 941 4397 1895 1638 864
3 97 8.1 257,067 274,005 3676 1397 1420 859 3677 1403 1432 842
4 135 7.5 137,842 166,236 2734 956 1094 684 2899 1138 1128 633
5 162 7.5 194,881 225,728 2842 1187 957 698 3262 1652 1118 492
6 196 8.5 368,220 311,846 4006 1635 1503 868 4220 1813 1604 803

11
1 131 8.4 223,325 153,311 3267 1188 1426 653 3658 1487 1396 775
2 160 8.9 350,880 319,955 5857 2871 1948 1038 5025 2063 1936 1026
3 193 8.8 202,446 185,489 4376 2102 1429 845 4207 2004 1548 655
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Table 1. Cont.

Infant Visit Age
(Days)

Awake
Time

(Hours)

Acceleration
Area Left

Acceleration
Area Right

Total
Bouts Left
(Number)

Bout Type:
Left Only
(Number)

Bout Type: Left
with Right for
Portion of Bout

(Number)

Bout Type: Left
with Right for

Entire Bout
(Number)

Total
Bouts
Right

(Number)

Bout Type:
Right Only
(Number)

Bout Type:
Right with Left
for Portion of

Bout (Number)

Bout Type:
Right with Left
for Entire Bout

(Number)

12
1 91 6.5 164,559 133,873 3767 1159 1518 1090 3894 1193 1627 1074
2 126 6.7 190,355 147,707 3435 1117 1490 828 3807 1441 1553 813
3 153 8.3 266,442 274,558 3325 1202 1433 690 3962 1816 1485 661

13

1 96 8.3 205,658 181,497 4170 1420 1772 978 4424 1698 1820 906
2 126 4.1 121,324 71,953 1964 672 819 473 1901 629 824 448
3 159 3.3 259,972 122,373 1693 498 607 588 1613 596 711 306
4 193 3.6 141,730 129,298 2278 746 889 643 2125 652 978 495

14
1 106 7.6 171,517 123,718 3983 1464 1533 986 3821 1474 1697 650
2 145 10.0 307,196 257,059 5210 1903 2111 1196 5193 1917 2155 1121
3 174 8.6 294,043 234,330 5255 2066 2109 1080 5063 1914 2180 969

15
1 109 7.6 293,670 281,731 5743 2102 2281 1360 5671 2125 2271 1275
2 149 9.2 336,525 208,733 6774 3140 2409 1225 5499 1945 2263 1291
3 179 8.9 330,367 333,966 6769 2645 2827 1297 7113 2893 2733 1487

16

1 65 10.1 154,081 120,320 3958 2104 1295 559 4680 2781 1231 668
2 93 7.5 82,914 129,435 2353 951 971 431 3826 2240 938 648
3 121 8.4 170,686 129,842 2309 846 990 473 2923 1363 1041 519
4 149 9.2 222,313 338,706 3953 2124 1225 604 3497 1584 1114 799

17

1 38 10.4 186,933 204,148 3987 1595 1576 816 3989 1520 1482 987
2 72 10.4 327,534 269,737 4910 1832 1960 1118 4937 1785 1982 1170
3 100 9.9 338,695 320,021 6006 2242 2594 1170 6017 2145 2406 1466
4 133 8.3 238,994 219,733 4068 1385 1832 851 4894 2031 1829 1034
5 159 9.8 319,265 362,508 4659 1735 1788 1136 4634 1803 1768 1063
6 190 9.4 328,468 314,207 5478 2402 2028 1048 4995 1939 1995 1061

18
1 107 10.3 158,525 173,526 3828 1916 1139 773 3548 1716 1336 496
2 140 7.6 149,758 119,284 3002 1482 1015 505 2922 1351 1048 523
3 168 9.6 231,146 188,059 3287 1543 1213 531 3622 1833 1133 656

19
1 135 11.5 259,696 202,839 5313 2675 1607 1031 4768 2175 1687 906
2 165 9.7 220,708 153,669 4602 1931 1379 677 4580 1457 1307 767
3 194 8.9 207,079 199,449 3987 2188 1544 870 3531 2201 1616 763

20

1 72 9.0 174,939 163,847 4287 1908 1563 816 4296 1918 1546 832
2 100 9.0 158,163 147,436 3960 2012 1264 684 3567 1655 1292 620
3 136 8.7 142,320 146,028 3386 1215 1471 700 4241 1980 1515 746
4 168 7.9 174,443 164,425 3721 1783 1368 570 3956 1964 1341 651

21 1 196 8.4 289,408 294,277 4467 1852 1830 785 5430 2607 1749 1074

22 1 203 10.0 211,167 188,905 4903 2054 1896 953 5288 2274 1876 1138
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3.3. Type of Movement

Table 1 shows the total number of each type of bout produced across the full day. To compare
between infants and across visits, Figure 6 shows the average percentage of each type of bout produced
across the full day for the right and left arms, by age, for infants with TD. In general, it appears that
infants show a “U”-shaped developmental trajectory for one arm only bouts, an inverted “U”-shaped
developmental trajectory for both arms moving for some portion of the bout, and no change across
time for both arms moving for the entire bout. Quadratic trends were the best fit for one arm only and
both arms moving for some portion of the bout for the right and left arms, while a linear trend best fit
both arms moving for the entire bout for the right and left arms.
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Figure 6. Average percentage of each type of bout (only one arm moving, both arms moving for some
portion of the bout, or both arms moving for all of the bout) produced across the full day for the left
and right arms, by age, for infants with typical development. Each colored line represents a different
infant across 3 to 6 visits. Two single assessments are represented by dots. Thick black line is the mean
and shaded area bordered by dashed black line is one standard deviation. Quadratic trends were the
best fit for the right and left arms for only one arm moving and both arms moving for some portion of
the bout. Linear trends were the best fit for both arms moving for all of the bout.

3.4. Kinematic Characteristics

Figure 7 shows the average bout duration (s) at each visit, by age, for infants with TD. A linear
trend fit the left and right arm data best, indicating that movement bouts get shorter as infants get
older. Figure 8 shows the average acceleration (m/s2) and average peak acceleration (m/s2) at each
visit, by age, for infants with TD. For average acceleration, a linear trend fit the left arm data best and a
quadratic trend fit the right arm best. For peak acceleration, data for both arms were best fit by a linear
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trend. Taken together, duration and acceleration data indicate that infants move with shorter duration
and faster acceleration arm movements as they get older, and the rate of change may not be constant
between arms. Table 1 provides the acceleration area values for each arm, at each visit. To compare
between infants and across visits, Figure 9 shows the normalized acceleration area for the right and
left arms per hour of awake time, by age, for infants with TD. A linear trend fits the right and left arm
data best, indicating normalized acceleration area increases as infants get older.
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black line is one standard deviation. A linear trend fit the left and right arm data best.
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Figure 8. Average acceleration (m/s2) and average peak acceleration (m/s2) for the left and right arms,
by age, for infants with typical development at each visit. Each colored line represents a different
infant across 3 to 6 visits. Two single assessments are represented by dots. Thick black line is the
mean and shaded area bordered by dashed black line is one standard deviation. For left average
acceleration, a linear trend fit the data best. For right average acceleration, a quadratic trend fit the data
best. Peak acceleration data were best fit by a linear trend.
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4. Discussion

Full day infant arm movement monitoring is necessary in order to advance our understanding
of how much and what type of movement practice is necessary to learn functional skills. Laboratory
based studies are limited to short periods of data collection and do not inform us about how much or
how infants are moving across the course of the day in their natural environments. Despite the great
knowledge gathered from these studies, it has recently been argued that to further advance the field
we now must sample development for a minimum of 24 h in order to overcome the effects of circadian
rhythms, behavioral context, environmental stimuli, mood and motivation, and other factors [19].
In this paper, we move from being able to assess only a few minutes of arm movement data to being
able to assess a full day through the use of wearable sensors.

Our purpose was to describe the development of a wearable sensor data algorithm for identifying
bouts of infant arm movement in infants with TD and AR. We found an overall performance of the
algorithm of 90% sensitivity. The algorithm does not make systematic errors (consistent over- or
under-counting). It is not able to distinguish between the infant moving his or her arms and the
caregiver moving the infant’s arms (for example, when putting on a shirt), however this type of
occurrence is expected to be low among the thousands of bouts of arm movement an infant produces
across a day. We feel this amount of non-systematic error is acceptable to move forward with studying
how full day movement patterns relate to infant development and the acquisition of functional skills.

Our report here of the number and kinematic characteristics of arm movement bouts from
22 infants with TD is the first step toward developing norms for full-day arm movement behavior.
We have provided the values obtained from 8 to 13 h of arm movement data, as well as normalized to
hours of awake time or as a percentage of movements made, in order to allow the comparison between
infants and across time. These data are the first step in measuring mean values and variability in a small
sample of infants with TD, and will allow us to power future studies to look for relationships between
changes in full-day arm movements and functional skill acquisition and to look for early differences in
arm movement patterns in infants AR. We have presented data here by chronological age as a first
step, however it will be as important to explore movement variables in relation to the developmental
trajectory. Two infants of the same chronological age are not expected to be at the same point in their
developmental trajectory of motor, cognitive, and/or social development. We believe this method
has potential, due to its quantitative assessment and multiple continuous hours of measurement,
to embrace the high variability that is a hallmark of typical development and use this information to
accurately identify infants who fall outside of the norms of TD very early in development.

Our results for the duration of arm movement bouts averaged around 1.3 s per bout. Previous
literature has focused on the duration of reaches, which are discrete movements of the arm to a target.
Infant reach durations have been observed to be approximately 0.6–0.9 s in 3-month-old infants [20],
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around 0.8 s in infants from 100 days through 200 days of age and beyond [21], 1.6 s in 4-month-old
infants and 1.2 s in 6-month-old infants [22], 0.5–0.7 s for 5-month-old infants [23], 1.1 s for the left
arm and 1.3 s for the right arm in 6-month-old infants [24], and around 1 s for 7 month-old infants [25].
Given that our arm movement data included both reaching and non-reaching activity, we feel that
our results are consistent with the previous data from shorter periods of laboratory-based infant
reaching assessments.

There are two studies that include arm acceleration values, each from a single infant. Average
arm accelerations across a full day from one infant between 51 to beyond 200 days of age ranged
from around 1.2–1.4 m/s2 [26]. These data included periods of no movement occurring across the day,
whereas our data are only during arm movement bouts. As a result of this methodological difference,
our average acceleration values are higher (around 1.7 m/s2), but we believe this is reasonable given
the different methodology. The other study reported arm peak acceleration of around 6000 mm/s2 in a
6-month-old boy [24], consistent with our findings of mean peak accelerations around 6 m/s2.

Across these first months, the majority of the bouts infants made were with one arm only,
compared to both arms moving for some or all of the bout. Within that stable preference, however,
there appears to be an interesting shift in the relative preference for one arm only moving vs. both
arms moving for some portion of the bout. The trajectories indicate that infants start lower but then
shift to increase their preference for arm bouts when both arms are moving for some portion of the
bout, followed by a decrease. Future work will allow us to explore whether this is related to the
development of reaching skill.

Our data are consistent with the previous data, showing that there is not an overwhelming
preference across infancy for right or left arm movement; infants with TD employ many different
strategies for reaching or otherwise moving their arms. Corbetta and Thelen collected kinematic arm
movement data for 4 infants longitudinally from 3 to 52 weeks of age (weekly from 3 to 30 weeks
and bi-weekly from 30 to 52 weeks). They identified both reaching and non-reaching interlimb
activity. For reaching, preference was attributed to the hand that made initial contact with the target.
For laterality in non-reaching movements, the hand with the faster average velocity over a 1-s window
was identified as the preferred hand. A right or left preference for each category of movement was
determined overall for each visit. The infants produced unstable and fluctuating lateral preferences
for reaching and non-reaching movements across the 1st year. Furthermore, when a preference was
detected in reaching, it was also observed in non-reaching movements [27]. In another study, 17 infants
at 6 months of age did not show a significant difference between right, left, or bimanual reaches,
they performed all three types of reaching equally [24].

5. Conclusions

We created an algorithm that can be used to quantify kinematic characteristics of infant arm
movement bouts produced across a full day in the natural environment. We chose these specific
metrics as a first step as they are commonly assessed kinematic measures. In future work, we will
explore more advanced computational techniques, such as non-linear analysis measures and machine
learning approaches to describe other aspects of our movement data. Furthermore, we will relate the
amount and type of arm movement practice across days and months to the development of functional
arm reaching skills. Finally, we will determine if early differences in arm movement patterns are
predictive of later neuromotor outcomes in infants AR. These results will inform the development of
early intervention therapies to support optimal neuromotor development.

Acknowledgments: Thank you to the infants and their families. Thank you to Eisner Pediatric and Medical
Center (Los Angeles, CA) and Children’s Hospital Los Angeles. This work was supported by the Bill & Melinda
Gates Foundation [OPP1119189] (PI: Smith). Additionally, Smith’s salary was supported by NIH K12-HD055929
(PI: Ottenbacher). Lane’s effort was supported in part by funding from the National Institutes of Health from the
National Center for Advancing Translational Science [UL1TR001855 and UL1TR000130]. The content is solely
the responsibility of the authors and does not necessarily represent the official views of the National Institutes
of Health. Study data were collected and managed using REDCap electronic data capture tools hosted at the



Technologies 2017, 5, 39 15 of 16

Southern California Clinical and Translational Science Institute at the University of Southern California. REDCap
(Research Electronic Data Capture) is a secure, web-based application designed to support data capture for
research studies, providing (1) an intuitive interface for validated data entry; (2) audit trails for tracking data
manipulation and export procedures; (3) automated export procedures for seamless data downloads to common
statistical packages; and (4) procedures for importing data from external sources. Trujillo-Priego is supported
in part by CONACyT. The Bill & Melinda Gates Foundation provided funds to cover the cost to publish in
open access.

Author Contributions: Beth A. Smith, Douglas L. Vanderbilt, and Gerald E. Loeb conceived and
designed the experiments; Beth A. Smith, Ivan A. Trujillo-Priego, and Joanne Shida performed the
experiments; Beth A. Smith, Christianne J. Lane, Weiyang Deng, and Ivan A. Trujillo-Priego analyzed the data;
Beth A. Smith, Christianne J. Lane, Weiyang Deng, Douglas L. Vanderbilt, Ivan A. Trujillo-Priego, Joanne Shida,
and Gerald E. Loeb wrote and edited this manuscript. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory, 1st ed.; Wiley: New York, NY, USA, 1949.
2. Libertus, K.; Needham, A. Teach to reach: The effects of active vs. passive reaching experiences on action

and perception. Vis. Res. 2010, 50, 2750–2757. [CrossRef] [PubMed]
3. Umansky, R. The hand sock, an artificial handicap to prehension in infancy, and its relation to clinical disuse

phenomena. Pediatrics 1973, 52, 546–555. [PubMed]
4. Kermoian, R.; Campos, J.J. Locomotor experience: A facilitator of spatial cognitive development. Child Dev.

1988, 59, 908–917. [CrossRef] [PubMed]
5. Schwarzer, G.; Freitag, C.; Buckel, R.; Lofruthe, A. Crawling is associated with mental rotation ability by

9-month-old infants. Infancy 2012, 18, 432–441. [CrossRef]
6. Oudgenoeg-Paz, O.; Volman, M.C.J.M.; Leseman, P.P.M. Attainment of sitting and walking predicts

development of productive vocabulary between ages 16 and 28 months. Infant Behav. Dev. 2012, 35,
733–736. [CrossRef] [PubMed]

7. Singh, M.; Patterson, D.J. Involuntary gesture recognition for predicting cerebral palsy in high-risk infants.
In Proceedings of the 2010 International Symposium on Wearable Computers (ISWC), Seoul, Korea,
10–13 October 2010; pp. 1–8.

8. Gravem, D.; Singh, M.; Chen, C.; Rich, J.; Vaughan, J.; Goldberg, K.; Waffarn, F.; Chou, P.; Cooper, D.;
Reinkensmeyer, D.; et al. Assessment of Infant Movement with a Compact Wireless Accelerometer System.
J. Med. Devices 2012, 6, 021013. [CrossRef]

9. Marcroft, C.; Khan, A.; Embleton, N.D.; Trenell, M.; Plötz, T. Movement recognition technology as a method
of assessing spontaneous general movements in high risk infants. Front. Neurol. 2015, 5, 284. [CrossRef]
[PubMed]

10. Heinze, F.; Hesels, K.; Breitbach-Faller, N.; Schmitz-Rode, T.; Disselhorst-Klug, C. Movement analysis by
accelerometry of newborns and infants for the early detection of movement disorders due to infantile
cerebral palsy. Med. Biol. Eng. Comput. 2010, 48, 765–772. [CrossRef] [PubMed]

11. Waldmeier, S.; Grunt, S.; Delgado-Eckert, E.; Latzin, P.; Steinlin, M.; Fuhrer, K.; Frey, U. Correlation properties
of spontaneous motor activity in healthy infants: A new computer-assisted method to evaluate neurological
maturation. Exp. Brain Res. 2013, 227, 433–446. [CrossRef] [PubMed]

12. Ohgi, S.; Morita, S.; Loo, K.K.; Mizuike, C. Time Series Analysis of Spontaneous Upper-Extremity Movements
of Premature Infants with Brain Injuries. Phys. Ther. 2008, 88, 1022–1033. [CrossRef] [PubMed]

13. Gima, H.; Ohgi, S.; Morita, S.; Karasuno, H.; Fujiwara, T.; Abe, K. A Dynamical System Analysis of the
Development of Spontaneous Lower Extremity Movements in Newborn and Young Infants. J. Physiol.
Anthropol. 2011, 30, 179–186. [CrossRef] [PubMed]

14. Activity Monitor Comparison | ActiGraph. Available online: actigraphcorp.com/products-showcase/
activity-monitors/product-comparison/ (accessed on 24 July 2016).

15. Actical Specifications. Available online: http://www.actigraphy.com/solutions/actical/specifications.html
(accessed on 22 July 2017).

16. Bayley, N. Bayley Scales of Infant Development, 3rd ed.; Pearson: San Antonio, TX, USA, 2005.
17. California Department of Health Care Services. Available online: http://www.dhcs.ca.gov/services/ccs/

Pages/HRIF.aspx#medicalcriteria (accessed on 20 May 2017).

http://dx.doi.org/10.1016/j.visres.2010.09.001
http://www.ncbi.nlm.nih.gov/pubmed/20828580
http://www.ncbi.nlm.nih.gov/pubmed/4742249
http://dx.doi.org/10.2307/1130258
http://www.ncbi.nlm.nih.gov/pubmed/3168629
http://dx.doi.org/10.1111/j.1532-7078.2012.00132.x
http://dx.doi.org/10.1016/j.infbeh.2012.07.010
http://www.ncbi.nlm.nih.gov/pubmed/22982273
http://dx.doi.org/10.1115/1.4006129
http://dx.doi.org/10.3389/fneur.2014.00284
http://www.ncbi.nlm.nih.gov/pubmed/25620954
http://dx.doi.org/10.1007/s11517-010-0624-z
http://www.ncbi.nlm.nih.gov/pubmed/20446047
http://dx.doi.org/10.1007/s00221-013-3504-6
http://www.ncbi.nlm.nih.gov/pubmed/23712684
http://dx.doi.org/10.2522/ptj.20070171
http://www.ncbi.nlm.nih.gov/pubmed/18635672
http://dx.doi.org/10.2114/jpa2.30.179
http://www.ncbi.nlm.nih.gov/pubmed/21963825
actigraphcorp.com/products-showcase/activity-monitors/product-comparison/
actigraphcorp.com/products-showcase/activity-monitors/product-comparison/
http://www.actigraphy.com/solutions/actical/specifications.html
http://www.dhcs.ca.gov/services/ccs/Pages/HRIF.aspx#medicalcriteria
http://www.dhcs.ca.gov/services/ccs/Pages/HRIF.aspx#medicalcriteria


Technologies 2017, 5, 39 16 of 16

18. Piper, M.C.; Darrah, J. Motor Assessment of the Developing Infant; WB Saunders: Philadelphia, PA, USA, 1994.
19. Adolph, K.E.; Robinson, S.R. Sampling Development. J. Cogn. Dev. 2011, 12, 411–423. [CrossRef] [PubMed]
20. Cunha, A.B.; de Almeida Soares, D.; de Paula Carvalho, R.; Rosander, K.; von Hofsten, C.; Tudella, E.

Maturational and situational determinants of reaching at its onset. Infant Behav. Dev. 2015, 41, 64–72.
[CrossRef] [PubMed]

21. Berthier, N.E.; Keen, R. Development of reaching in infancy. Exp. Brain Res. 2005, 169, 507–518. [CrossRef]
[PubMed]

22. Fallang, B.; Saugstad, O.D.; Grøgaard, J.; Hadders-Algra, M. Kinematic Quality of Reaching Movements in
Preterm Infants. Pediatr. Res. 2003, 53, 836–842. [CrossRef] [PubMed]

23. Fetters, L.; Todd, J. Quantitative Assessment of Infant Reaching Movements. J. Mot. Behav. 1987, 19, 147–166.
[CrossRef] [PubMed]

24. Rönnqvist, L.; Domellöf, E. Quantitative assessment of right and left reaching movements in infants:
A longitudinal study from 6 to 36 months. Dev. Psychobiol. 2006, 48, 444–459. [CrossRef] [PubMed]

25. Tronick, E.Z.; Fetters, L.; Olson, K.L.; Chen, Y. Similar and functionally typical kinematic reaching parameters
in 7- and 15-month-old in utero cocaine-exposed and unexposed infants. Dev. Psychobiol. 2004, 44, 168–175.
[CrossRef] [PubMed]

26. Abney, D.H.; Warlaumont, A.S.; Haussman, A.; Ross, J.M.; Wallot, S. Using nonlinear methods to quantify
changes in infant limb movements and vocalizations. Front. Psychol. 2014, 5, 771. [CrossRef] [PubMed]

27. Corbetta, D.; Thelen, E. Lateral biases and fluctuations in infants’ spontaneous arm movements and reaching.
Dev. Psychobiol. 1999, 34, 237–255. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/15248372.2011.608190
http://www.ncbi.nlm.nih.gov/pubmed/22140355
http://dx.doi.org/10.1016/j.infbeh.2015.06.003
http://www.ncbi.nlm.nih.gov/pubmed/26311469
http://dx.doi.org/10.1007/s00221-005-0169-9
http://www.ncbi.nlm.nih.gov/pubmed/16341854
http://dx.doi.org/10.1203/01.PDR.0000058925.94994.BC
http://www.ncbi.nlm.nih.gov/pubmed/12612201
http://dx.doi.org/10.1080/00222895.1987.10735405
http://www.ncbi.nlm.nih.gov/pubmed/14988056
http://dx.doi.org/10.1002/dev.20160
http://www.ncbi.nlm.nih.gov/pubmed/16886181
http://dx.doi.org/10.1002/dev.20002
http://www.ncbi.nlm.nih.gov/pubmed/15054885
http://dx.doi.org/10.3389/fpsyg.2014.00771
http://www.ncbi.nlm.nih.gov/pubmed/25161629
http://dx.doi.org/10.1002/(SICI)1098-2302(199905)34:2&lt;237::AID-DEV1&gt;3.0.CO;2-
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Participants 
	Procedures 
	Algorithm Development 
	Acceleration Rejection Threshold Determination. Detrending and Rectification 
	Filtering and Threshold Determination 
	Angular Velocity Rejection Threshold Determination. Detrending and Rectification 
	Filtering and Bout Threshold Determination 
	Arm Movement Bout Detection 
	Algorithm Performance: Counting Number of Bouts of Arm Movement 
	Type of Movement 
	Kinematic Characteristics 
	Acceleration Area 
	Statistical Analyses 

	Results 
	Algorithm Performance 
	Number of Bouts 
	Type of Movement 
	Kinematic Characteristics 

	Discussion 
	Conclusions 

