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Abstract: In this paper, we scrutinize the effectiveness of classification techniques in recognizing
dance types based on motion-captured human skeleton data. In particular, the goal is to identify poses
which are characteristic for each dance performed, based on information on body joints, acquired
by a Kinect sensor. The datasets used include sequences from six folk dances and their variations.
Multiple pose identification schemes are applied using temporal constraints, spatial information,
and feature space distributions for the creation of an adequate training dataset. The obtained results
are evaluated and discussed.
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1. Introduction

Intangible cultural heritage (ICH) is a major element of peoples’ identities and its preservation
should be pursued along with the safeguarding of tangible cultural heritage. In this context, traditional
folk dances are directly connected to local culture and identity [1]. Recent technological advancements,
including ubiquitous mobile devices and applications [2], pervasive video capturing sensors and
software, increased camera and display resolutions, cloud storage solutions, and motion capture
technologies have completely changed the landscape and unleashed tremendous possibilities in
capturing, documenting and storing ICH content, which can now be generated at a greater volume and
quality than ever before. However, in order to exploit the full potential of the massive, high-quality
multimodal (text, image, video, 3D, mocap) ICH data that are becoming increasingly available, we need
to appropriately adapt state-of-the-art technologies, and also build new ones, in the fields of artificial
intelligence (AI), computer vision, and image processing. Such progress is essential for the ICH—in our
case, dance—content’s efficient and effective organization and management, fast indexing, browsing,
and retrieval, but also semantic analysis, such as automatic recognition [3,4] and classification [5,6].

Furthermore, the advent of motion sensing devices and depth cameras has brought about new
possibilities in applications related to motion analysis and monitoring, including human tracking,
action recognition, and pose estimation. The main advantage of a depth camera is the fact that it
produces dense and reliable depth measurements, albeit over a limited range and offers balance
in usability and cost. The Kinect sensor has been frequently used in such applications and will be
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employed in this work to capture sets of dance moves and gestures in 3D space and in real time,
resulting in a recorded sequence of points in 3D space for each joint at certain moments in time.

This paper focuses on the evaluation of classification algorithms on Kinect-captured skeleton
data from folkloric dance sequences for dance pose identification. We explore the applicability of
raw skeleton data from a single low-cost sensor for determining dance genres through well-known
classifiers. This paper extends the work presented in [7], in that multiple pose identification schemes
are applied using temporal constraints, spatial information, and feature space distributions.

The remainder of this paper is structured as follows: Section 2 briefly reviews the state of the art
in the field; Section 3 describes the methodology employed for motion capturing, data preprocessing
and feature extraction, while Section 4 presents the classifiers whose applicability for dance pose
identification are explored; the related experimental evaluation is given in Section 5; and, finally,
Section 6 concludes the paper with a summary of findings.

2. Related Work

Starting with a brief review of approaches proposed for the more general problem of human pose
estimation in computer vision, one could note that many techniques are based on the detection of
body parts, for example, through pictorial structures [8]. The advent of deep learning [9] has brought
forward two main groups of methods: holistic and part-based ones, which differ in the way the input
images are processed. The holistic processing methods do not create a separate model for every part.
DeepPose [10] is a holistic model that handles pose determination as a joint regression problem without
formulating a graphical model. A drawback of holistic-based methods is that they are often inaccurate
in the high-precision region due to the difficulty in learning direct regression of complicated posture
vectors based on images.

Part-based processing methods focus on detecting the human body parts individually, followed
by a graphic model to incorporate the spatial information. In [11], the authors, instead of training
the network using the whole image, use the local part patches and background patches to train
a convolutional neural network (CNN), in order to learn conditional probabilities of the part presence
and spatial relationships. In [12], a multiresolution CNN is designed to carry out body-part-specific
heat-map likelihood regression, which is in the sequel succeeded by an implicit graphic model for
assuring joint consistency.

As regards the more specific field of dance pose and move analysis, there is a relatively limited
number of works. In [13] a gesture classification system is described for skeletal wireframe motion
for certain gestures, among several dozen, in real-time and with high accuracy. In [14], a simple
non-parametric Moving Pose framework is proposed, for low-latency human action and activity
recognition. A method to recognize individual persons from their walking gait using 3D skeletal
data from a MS Kinect device using the k-means algorithm is described in [15], while a key posture
identification method is proposed in [16].

In [17], a methodology is proposed for dance learning and evaluation using multi-sensor and
3D gaming technology. In [18], a 3D game environment for dance learning is presented, which is
based on the fusion of multiple depth sensors data in order to capture the body movements of the
user/learner. In [19], improved robustness of skeletal tracking is achieved by using sensor data fusion
to combine skeletal tracking data from multiple sensors. The fused skeletal data is split into different
body parts, which are then transformed to allow view invariant pose recognition using a Hidden
State Conditional Random Field (HCRF). The proposed framework is tested on traditional “Tsamiko”
folk dance sequences. The attained recognition rates range from 38.4% up to 93.9% depending on
the particularities of the dancer and the experimental setup. In [20], a skeletal representation of the
dancer is again obtained by using data from multiple depth sensors. Using this information, the dance
sequence is partitioned, first, into periods and, subsequently, into patterns.

In [21], human action recognition is treated as a special case of the general problem of
classifying multidimensional time-evolving data in dynamic scenes. To solve detection correlations
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between channels, a generalized form of a stabilized higher-order linear dynamical system and the
multidimensional signal is represented as a third-order tensor. The work of [22] focuses on the
application of segmentation and classification algorithms to Kinect-captured depth images and videos
of folkloric dances in order to identify key movements and gestures and compare them against database
instances. However, that work considers individual joints for the analysis, rather than the entire body
pose, attaining recognition rates up to 42% in the general case.

The contribution of the paper at hand is twofold. Firstly, it extends the work of [7] by exploiting
the information of multiple joints simultaneously and investigates whether temporal dependencies
can be modeled using consecutive frame subtraction. Secondly, unlike [7], multiple pose identification
schemes are applied using temporal constraints, spatial information, and feature space distributions.

3. Data Capturing and Dance Representation

A three-step approach is adopted for the evaluation of dance pattern over traditional folk dances:
(i) motion capturing, (ii) data preprocessing and feature extraction, followed by (iii) comparative
evaluation among well-known classification techniques. Motion capturing is performed using
markerless, low-cost sensors. The motion sensors provide as an output the position and the rotation of
specific body joints at a constant frame rate. The available information is processed to form low-level
features which will be used as inputs to the dance recognition mechanism. The problem at hand,
i.e., dance recognition, constitutes a traditional multi-class classification problem. Given a frame,
or sequence of frames, during the performance of a dancer, our goal is to correctly identify which
dance is performed.

3.1. Capturing Dance Poses

Microsoft Kinect 2 is currently one of the most advanced motion sensing input devices that is
available to the public. It is a physical device with depth sensing technology, a built-in color camera,
infrared (IR) emitter, and microphone array, which projects and captures an infrared pattern to estimate
depth information. Based on the depth map data, the human skeleton joints are located and tracked via
the Microsoft Kinect 2 for Windows SDK [23]. Figure 1 shows a snapshot of our experiment conducted.
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Figure 1. The dance capturing process. Image on the left demonstrates the sensor position. On the
right, we can see the dancer while acting.

More specifically, the Microsoft Kinect 2 sensor can achieve real-time 3D skeleton tracking while,
at the same time, it is relatively cheap and easy to set up and use. The tracked skeleton consists of
twenty five joints with each one to include the 3D position coordinates, its rotation and a tracking
state property: “Tracked”, “Inferred”, and “UnTracked” [24]. Moreover, the sensor can work in dark
and bright environments and the capture frame rate is 30 fps. On the other hand, there are some
limitations that should be considered: it is designed to track the front side of the user and, as a result,
the front and back sides of the user cannot be distinguished, and that the movement area is limited



Technologies 2018, 6, 31 4 of 16

(approximately 0.7–6 m). In this work, the entirety of the captured joints have been used in the feature
extraction process (see [2] for a graphical presentation of the exact joints).

3.2. Identifying Key Poses

There are multiple sources of variation when investigating dance patterns. At first, there are
temporal variations that affect the movement speed, the main cause is mainly the music tempo.
Another source of variance is the dancer himself. The body build varies from person to person.
As such, joints positions span different space despite the same choreography. Furthermore, dancer
mentality often adds a personalized touch to the performance. In dances with pre-defined steps,
this leads to minor changes in positioning, e.g., different hand movements, legs bend more than
expected, and denser body rotations.

When building analytical predictive models for dance analysis, all possible sources of variation
must be included in the training dataset, so that the model can provide reliable predictions for new
instances; the training data should have a greater variation in feature attributes than the data to be
analyzed. Crucial factors influencing the predictive performance of classification models, involve
outliers, low-quality features, as well as differences in the size of the classes. In our case three sampling
approaches for the creation of an adequate training dataset are employed: temporally-constrained,
cluster-based, and uniform feature space selection.

Temporally-constrained selection divides a dance sequence into consecutive clusters by taking
into account factors related to both the dance itself and the motion capture device parameters. In each
of the initially-created clusters, a density-based approach, i.e., OPTICS algorithm output analysis,
identifies possible outliers and representative samples. Since similar instances are likely to be clustered
together, the few random samples from each cluster are expected to provide adequate information,
over the entire dataset. In this context, density-based approaches have often been employed for more
effective data selection [25].

The classic Kennard Stone algorithm is a uniform mapping algorithm; it yields a flat distribution
of the data. It is a sequential method that uniformly covers the experimental region. The procedure
consists of selecting, as the next sample (candidate object), the one that is most distant from those
already selected (calibration objects). For initialization, one can select either the two observations that
are most distant from each other, or, preferably, the one closest to the mean.

From all the candidate points, the one is selected that is furthest from those already selected
and from its closest neighbors, and added to the set of calibration points. To do this, we measure the
distance from each candidate point x0 to each point x which has already been selected and determine
which is smallest, i.e., min

i
d(x, x0). From these we select the one for which the distance is the maximum:

dselected = max
i0

(
min

i
d(x, x0)

)
. (1)

4. Classifiers for Dance Pose Identification

We have scrutinized the effectiveness of a series of well-known classifiers in dance recognition
from skeleton data. In this section, the investigated classification techniques are briefly described.

4.1. k Nearest Neighbors

The k-nearest neighbors (k-NN) algorithm is a non-parametric method used for classification [26].
A majority vote of its neighbors classifies an object, with the object being assigned to the class most
common among its k nearest neighbors; it is, therefore, a type of instance-based learning, where the
function is only approximated locally and all computation is deferred until classification.
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4.2. Naïve Bayes

Naive Bayes (NB) classifiers are a family of simple probabilistic classifiers based on applying
Bayes’ theorem with strong independence assumptions between the features [27]. Abstractly, naive
Bayes is a conditional probability model: given a problem instance to be classified, represented by
a vector x = {x1, . . . , xn} representing some n features (independent variables), it assigns to this
instance probabilities p(Ck|x1, . . . , xn) for each of K possible outcomes or classes Ck.

4.3. Discriminant Analysis

Discriminant analysis is a statistical analysis method useful in determining whether a set of
variables is effective in predicting category membership. Discriminant analysis (Discr) classifiers
assume that different classes generate data based on different Gaussian distributions [28] so that
p(x|y = Ck ) ∼ N(µk, ), k = 1, . . . , K. In order to train such a classifier, we need to estimate the
parameters of a Gaussian distribution for each class. Then, to predict the classes of new data, the trained
classifier finds the class with the smallest misclassification cost: ŷ = argmax

k

{(
x− µk

2
)T

βk + log πk

}
,

where βk =
−1

µk.

4.4. Classification Trees

Decision tree learning uses a decision tree as a predictive model which maps observations about an
item to conclusions about the item’s target value. In classification tree structures, leaves represent class
labels and branches represent conjunctions of features that lead to those class labels [27]. Each internal
(non-leaf) node is labeled with an input feature. The arcs coming from a node labeled with a feature
are labeled with each of the possible values of the feature. Each leaf of the tree is labeled with a class or
a probability distribution over the classes.

4.5. Ensemble Methods

Ensembles of classifiers is, actually, a combination of classifiers approach [29]; such methods use
multiple learning algorithms to obtain better predictive performance than could be obtained from any
of the constituent learning algorithms alone. In the case of classification trees, we have further used
the random forests algorithm (denoted as TreeBagger).

4.6. Support Vector Machines

Support vector machines (SVMs) are supervised learning models with associated learning
algorithms [30]. An SVM model is a representation of the examples as points in space, mapped
so that the examples of the separate categories are divided by a clear margin that is as wide as possible.
New examples are then mapped into that same space and predicted to belong to a category based on
which side of the margin they fall on.

5. Experimental Results

In order to capture and record the performers’ body motions, we used a motion capture system
using one Kinect 2 depth sensor and the i-Treasures Game Design module (ITGD), developed in the
context of the i-Treasures project [31]. The ITGD module enables the user to record and annotate
motion capture data received from a Kinect sensor.

The recording process took place at the School of Physical Education and Sport Science of the
Aristotle University of Thessaloniki. Six Greek traditional dances with a different degree of complexity
were recorded. Each dance was performed by three experienced dancers twice: the first time in
a straight line, and the second in a semi-circular curving line. Dancers’ movements were limited in
a predefined rectangular area.
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Experimental results are based on a set of 648 observations. A dancer is selected to provide
the training paradigms, the remaining two provide the test sets. Few representative data samples
are selected (see Section 5.3) to form the training set, using three different sampling approaches.
Then, we have a total of eight test sets, using a 20% holdout approach in each. The problem at hand is
a standard multiclass classification problem. We have six classes (as the number of dances).

The investigation emphasizes on the dance recognition per recorded frame. The performance
impact of the following factors is investigated:

1. Classifier input type: related to the input features’ values. The possible alternatives for the
creation of input features are four: (i) leg joints per frame (1Fr Legs), (ii) leg joints and frame
difference (FrDiff Legs), (iii) all joints per frame (1Fr All) and, (iv) all joints and frame difference
(FrDiff All).

2. Projection techniques: related to the dimensionality of inputs. There are two alternatives: PCA or
raw data.

3. Sampling approaches: related to training sets creation. There are three approaches: (i) random
sampling over kmeans clusters (K-random), (ii) time constrained OPTICS (TC-OPTICS),
and (iii) Kennard Stone (KenStone).

4. Classifier: i.e., the classification technique used, i.e., k-nearest neighbors (k-NN), naïve Bayes
(NB), classification trees (CT), linear kernel support vector machines (SVMs), a random forest
approach (TreeBagger), as well as Ensemble (Ens) versions.

In order to identify the impact of each parameter on the final classification scores, ANOVA
analysis has been performed (Section 5.5).

5.1. Dataset Description

The dances dataset consists of six different dances. Their execution was either in a straight line or
circle (Table 1). A set of consecutive image frames describes every dance. Every frame, Ii,i = 1, . . . , n, has
a corresponding extensible mark-up language (XML) file with positions, rotations, and confidence scores
for 25 joints on the body, in addition to timestamps. In the following a brief description of the dances
is provided.

Enteka (eleven): A dance, performed by both women and men, which is popular mainly in the
large urban centers of Western Macedonia (Grevena, Kozani, Florina, Kastoria, etc.). The dance is
performed freely as a street carnival dance, but also around the carnival fires. The dancers’ hands
during the dance move freely or are placed at the waist.

Kalamatianos: It is a popular Greek folkdance throughout Greece, Cyprus and internationally, often
performed at many social gatherings worldwide. It is a circle dance performed in a counterclockwise rotation
with the dancers holding hands. It is a twelve steps dance and the musical beat is 7/8. Makedonikos:
A circle dance, performed by both women and men, with a 7/8 musical beat. The basic pattern of
dance is performed in twelve movements/steps. Therefore, it resembles the Kalamatianos dance to
a great degree with the difference that it is a more joyous dance. It is popular in the region of Western
and Central Macedonia.

Syrtos (two-beat): The Syrtos (two-beat) dance is organized in a quick (two-beat) rhythm. It is
a circle dance, performed by both women and men mostly in the region of Pogoni of Epirus. In the
past, the dance was performed separately by men and women, in one, two, or more lines.

Syrtos (three-beat): Syrtos is one of the most popular dances throughout Greece and Cyprus. The Syrtos
(three-beat) dance is organized in a slow (three-beat) rhythm. It is a line dance and a circle dance, performed
by dancers (both women and men) in a curving line holding hands, facing right. It is widespread through
Epirus, Western Macedonia, Thessaly, Central Greece, and Peloponnese.
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Table 1. Number of representative frames per dance when using TC-OPTICS sampler. This example treats straight and circular trajectories as different cases.

KalCirc KalStr8 MakCirc MakStr8 Syrt2Circ Syrt2Str8 Syrt3Circ Syrt3Str8 Syrt11Str8 TrehCirc TrehStr8

Single Frame Legs Only

D1 18 10 11 7 21 19 44 24 19 34 10
D2 19 11 19 10 17 19 31 21 22 22 10
D3 18 14 11 15 9 10 30 16 25 16 11

Frame Difference Legs Only

D1 17 8 14 8 19 18 39 21 18 28 10
D2 16 11 18 11 15 17 32 21 18 17 8
D3 16 14 10 10 11 9 32 16 18 12 10

Frame Difference All Joints

D1 18 8 14 8 18 18 44 20 18 27 8
D2 18 10 16 8 15 21 30 21 22 17 8
D3 17 13 9 11 9 9 34 16 21 12 9
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Trehatos (Running): A circle dance, performed by both women and men, which is danced in the
village Neochorouda of Thessaloniki. The kinetic theme of the dance is composed of three different
dance patterns. The first one resembles the Syrtos (three-beat) pattern, the second takes place once and
connects the first and the second pattern, and the third one is characterized by intense motor activity.

An illustration of Syrtos dance is shown in Figure 2. At first the positions and rotation values for
each frame, Ii, i = 1, . . . , n of a dance, with n consecutive frames, are extracted. Thus, the dance is
described by a matrix, Di, of size b×m× n, where b is the number of body joints (i.e., 25), m is the
number of feature vectors (i.e., three coordinates and four rotations, plus two more binary indicators,
explaining if values are measured or estimated), and n is the duration of the dance.
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5.2. Feature Extraction

For feature extraction, a simple process is followed: For any dance Di, we have 24 × 9 × n values,
or, in a 2D form, a 216 × n matrix. A technical limitation did not allow the successful capturing of the
right thumb position in a few dances; it was, therefore, excluded from the pattern analysis. Thus, each
captured frame describes the entire body pose via 216 values.

One should note that joints’ positions are correlated to each other due to physical restrictions
of the body skeleton. As such, the application of a dimensionality reduction approach should be
considered. Ideally, a small set of feature values containing most of the available information support
a smooth performance for a variety of classifiers [32]. In this case PCA is used, maintaining 99.1% of
the initial feature space variance as in [7]. The PCA outcome resulted in a projection space less than
nine times that of the original.

However, dance is not a static act; a comparison of the difference among frames could provide
significant insights. Therefore, the time dimension should also be considered. We utilized the
information of successive frames of t time intervals, Ii and Ii+t, by subtracting them. In the end,
each dance, Di, was of size b × (2m)× n − 1. Prior to the dimensionality reduction via PCA step,
data were normalized using minmax normalization. In the former case, i.e., single frame analysis, PCA
resulted in 21 dimensions. For the latter case, i.e., two successive frames, we had 41 dimensions in the
reduced space.

5.3. Variation, Space, and Noise Handling

Table 1 illustrates the number of representative frames for each of the investigated dances,
using TC-OPTICS sampler. Results indicate that the applied summarization technique is robust to noise,
which in our case affects the dance duration. Even for extreme cases, the number of representative
frames remains similar for all dancers. The Syrtos 3 line dance is an extreme case. The first dancer
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performance duration was twice as long to other dancers. Yet, the representative frames are around
20 for all dancers. Table 2 indicates the training sets’ size (i.e., the number of observations) depending
on the sampling approach.

Table 2. Number of training samples, depending on the dancer and the sampling algorithm.

Row Labels Frame_Diff_Legs FrameDiff_All_Joints Single_Frame_Legs Single_Frame_All

KenStone
D1 180 180 189 189
D2 171 171 180 180
D3 146 146 155 155

K-Random
D1 186 186 196 196
D2 176 177 186 187
D3 151 152 160 161

TC-OPTICS
D1 56 56 58 60
D2 56 56 57 60
D3 52 52 51 54

5.4. Algorithms Setup

All algorithms were implemented in MATLAB. In our case the knn parameterization process
considers the number of k nearest points, which was set to k = 5, a similar adaptation as in [22].
The value provides a good tradeoff. If k = 3 or less we are unable to distinguish among different dances
that share the same steps. On the other hand, k = 7 or greater results in matching with similar steps of
other dances. The ensemble methods used 16 ensemble members. The rest of the parameters were
used at the default values.

5.5. Classification Scores

The proposed methodology involved data selection, dimensionality reduction, and samplers-classifiers
combinatory approaches. As such, all the above fields were investigated in terms of their impact at the
dance identification problem. Their performance was quantified by using traditional performance
measures as accuracy, precision, recall, and F1 scores. A further insight is provided via analysis of
variance. Figures 3–6 illustrate the impact for each of the investigated factors, namely, projection
technique (Figure 3), sampling approach (Figure 4), classifier (Figure 5) and input type (Figure 6).
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Figure 3 provides comparison results between raw input data and input data using principal
component analysis (PCA). The performance scores are average values over all combinations of utilized
classifiers, sampling approaches, and input type selection. There are two aspects worth mentioning.
At first, the performance scores are close for the two approaches. In both cases, a significant decline is
observed over the test set.
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Figure 4 describes the samplers’ impact on the dance identification task. Centroid-based random
clustering, i.e., K-random sampling, provides better results. Overall, similar results are observed.
The K-random sampling is also faster compared to the alternatives.
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Figure 5 demonstrates classifiers’ volatility in performance between training and test sets.
Regardless of the adopted approach, a significant drop in all performance scores is observed.
All classifiers’ average scores are below 0.5.
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Figure 6 provides a further insight on the question whether the joint selection or frame difference
can boost the classifiers performance. The information of all body joints, based on the current frame,
appears to provide (slightly) better results.

5.6. Statistical Analysis

To obtain further insights into the results and the relative performance of the different algorithms
we conducted an analysis of variance (ANOVA) on the F1 score results for the test samples. The F1
score is the harmonic mean of precision and recall. Thus, it contains a significant amount of information
regarding the overall performance. ANOVA also enables the statistical assessment of the effects that
the main design factors of this analysis have (i.e., the sampling schemes, feature extraction, and the
classifiers).

Table 3 shows the results of the ANOVA analysis. In this Table, the Source column corresponds to
the source of variation in data (i.e., the performance impact factors described earlier in this section
and their combined impact). Sum and Mean Sq. correspond to mean measurements between the
m groups and the grand mean; practically it quantifies the variability among the groups of interest.
The degrees of freedom (d.f.) are defined as d.f. = m − 1. The F column refers to the F statistic,
i.e., the “average” variability between the groups divided by the “average” variability within the
groups. Finally, we calculate the p-value, by comparing the F-statistic to an F-distribution with
m− 1 numerator degrees of freedom and n − m denominator degrees of freedom, for the total set of
n observations.

As shown in Table 4, all main factors (i.e., projection, sampling, classifier, and input type)
are strongly significant for explaining variations in F1 score, since the corresponding p-value is
approximately zero.

In addition to the above basic ANOVA results, we use the Tukey honest significant difference
(HSD) post-hoc test to identify sampling schemes and classifiers that provide the best results,
while considering the statistical significance of the differences between the results.
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Table 3. List of available dances and their variations as well as their duration, depending on the dancer.

Dance Variation Short Name Duration (Frames)

D1 D2 D3

Enteka Straight Syrt_11_Str8 749 807 858

Kalamatianos Circular Kal_Circ 655 593 561
Straight Kal_Str8 304 378 455

Makedonitikos Circular Mak_Circ 424 582 409
Straight Mak_Str8 283 367 418

Syrtos 2 Circular Syrt_2_Circ 608 543 352
Straight Syrt_2_Str8 623 639 334

Syrtos 3 Circular Syrt_3_Circ 608 964 947
Straight Syrt_3_Str8 1366 678 511

Trehatos Circular Treh_Circ 991 723 443
Straight Treh_Str8 315 295 355

Table 4. ANOVA outcomes.

Source Sum Sq. d.f. Mean Sq. F p-Value

Projection 0.0232 1 0.0232 13.3600 0.0003
Sampling 0.0261 2 0.0130 7.5000 0.0006
Classifier 2.2686 8 0.2836 163.3000 0.0000
InputType 0.2790 3 0.0930 53.5600 0.0000

Projection × Sampling 0.0064 2 0.0032 1.8400 0.1590
Projection × Classifier 0.0118 8 0.0015 0.8500 0.5621

Projection ×
InputType 0.0226 3 0.0075 4.3400 0.0049

Sampling × Classifier 0.0818 16 0.0051 2.9400 0.0001
Sampling × InputType 0.0147 6 0.0025 1.4100 0.2073
Classifier × InputType 0.2830 24 0.0118 6.7900 0.0000

Error 0.9967 574 0.0017
Total 4.0138 647

Figure 7 illustrates that classification scores are better when using information of all body joints,
without employing frame differences, i.e., subtracting joint values over specified time intervals. Mean
scores for each approach are shown as ‘o’. The average scores from subgroups in the experiment are
also provided. Since there is no overlap between the F1 values for the 1FrAll input type compared to
the others, 1FrAll scores are clearly statistically better than the others.
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Figure 8 indicates that PCA should not be used since the overall scores are statistically worse than
using raw feature values.
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Figure 9 indicates that, statistically, Kennard Stone sampling is no worse than centroid-based
random sampling, since there are partly overlapping areas on the F1 scale. Generally, K-random
sampling approach provides the best results.
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Figure 10 illustrates that the best classifiers for the problem at hand are k-nearest neighbors
and random forests (denoted as TreeBagger), with the the kNN approach attaining a slightly
greater performance.
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Regarding the combined approach of all four factors (i.e., feature type, projection space, sampling,
and classifier) the single-frame, PCA projected, k means-random sampler, kNN classifier provides
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the best possible results (0.52) with a marginal mean significantly different from 167 different groups.
The obtained results denote the superiority of the aforementioned best performing framework over
the approach proposed in [19], which is the only one currently in the literature that has been evaluated
on the same dataset of the specific folk dances. It is clear, however, that the current experimental setup
has not attained a fully satisfactory performance in the problem at hand, which could be justified
by the limited capability of a single Kinect sensor to capture the complex spatiotemporal variations
residing within folk dance movements, as well as the low amount of data available for training of the
utilized classifiers.

6. Conclusions

We have presented a comparative study of classifiers and data sampling schemes for dance pose
identification based on motion capture data acquired from Kinect sensors. Skeleton data served as
inputs to classifiers. Feature extraction process involved subtraction between successive frames and
principal component analysis for dimensionality reduction. Multiple pose identification schemes were
applied using temporal constraints, spatial information and feature space distributions for the creation
of an adequate training data set. Experimental results show that frame differencing and PCA lead
to lower recognition rates and that k nearest neighbors and random forests are the best-performing
classifiers among the ones explored. Future work directions include experimenting with data from
multiple Kinect sensors, as well as multimodal skeleton and RGB data, which may contribute to greater
precision rates.

Acknowledgments: This work was supported by the EU H2020 TERPSICHORE project “Transforming Intangible
Folkloric Performing Arts into Tangible Choreographic Digital Objects” under the grant agreement 691218.

Author Contributions: Eftychios Protopapadakis and Athanasios Voulodimos conceived and designed the
experiments. Eftychios Protopapadakis performed the experiments. Athanasios Voulodimos, Anastasios Doulamis
and Stephanos Camarinopoulos analyzed the data. Nikolaos Doulamis and Georgios Miaoulis contributed to
the experimental evaluation and results analysis. Eftychios Protopapadakis, Athanasios Voulodimos, Anastasios
Doulamis and Georgios Miaoulis wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shay, A.; Sellers-Young, B. The Oxford Handbook of Dance and Ethnicity; Oxford University Press:
Oxford, UK, 2016.

2. Voulodimos, A.S.; Patrikakis, C.Z. Quantifying privacy in terms of entropy for context aware services.
Identity Inf. Soc. 2009, 2, 155–169. [CrossRef]

3. Kosmopoulos, D.I.; Voulodimos, A.S.; Doulamis, A.D. A System for Multicamera Task Recognition and
Summarization for Structured Environments. IEEE Trans. Ind. Inform. 2013, 9, 161–171. [CrossRef]

4. Voulodimos, A.S.; Doulamis, N.D.; Kosmopoulos, D.I.; Varvarigou, T.A. Improving Multi-Camera Activity
Recognition by Employing Neural Network Based Readjustment. Appl. Artif. Intell. 2012, 26, 97–118.
[CrossRef]

5. Doulamis, N.D.; Voulodimos, A.S.; Kosmopoulos, D.I.; Varvarigou, T.A. Enhanced Human Behavior
Recognition Using HMM and Evaluative Rectification. In Proceedings of the First ACM International
Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, New York, NY, USA,
21–25 October 2010; pp. 39–44.

6. Voulodimos, A.; Kosmopoulos, D.; Veres, G.; Grabner, H.; van Gool, L.; Varvarigou, T. Online classification
of visual tasks for industrial workflow monitoring. Neural Netw. 2011, 24, 852–860. [CrossRef] [PubMed]

7. Protopapadakis, E.; Voulodimos, A.; Doulamis, A.; Camarinopoulos, S. A Study on the Use of Kinect
Sensor in Traditional Folk Dances Recognition via Posture Analysis. In Proceedings of the 10th
International Conference on PErvasive Technologies Related to Assistive Environments, New York, NY, USA,
21–23 June 2017; pp. 305–310.

8. Felzenszwalb, P.F.; Huttenlocher, D.P. Pictorial Structures for Object Recognition. Int. J. Comput. Vis. 2005,
61, 55–79. [CrossRef]

http://dx.doi.org/10.1007/s12394-009-0026-2
http://dx.doi.org/10.1109/TII.2012.2212712
http://dx.doi.org/10.1080/08839514.2012.629540
http://dx.doi.org/10.1016/j.neunet.2011.06.001
http://www.ncbi.nlm.nih.gov/pubmed/21757322
http://dx.doi.org/10.1023/B:VISI.0000042934.15159.49


Technologies 2018, 6, 31 15 of 16

9. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision:
A Brief Review. Comput. Intell. Neurosci. 2018, 7068349. [CrossRef] [PubMed]

10. Toshev, A.; Szegedy, C. DeepPose: Human Pose Estimation via Deep Neural Networks. In Proceedings of the
2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 1653–1660.

11. Chen, X.; Yuille, A. Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise
Relations. In Proceedings of the 27th International Conference on Neural Information Processing Systems,
Cambridge, MA, USA, 8–13 December 2014; Volume 1, pp. 1736–1744.

12. Tompson, J.; Jain, A.; LeCun, Y.; Bregler, C. Joint Training of a Convolutional Network and a Graphical
Model for Human Pose Estimation. arXiv, 2014.

13. Raptis, M.; Kirovski, D.; Hoppe, H. Real-time Classification of Dance Gestures from Skeleton Animation.
In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New York,
NY, USA, 26–28 September 2011; pp. 147–156.

14. Zanfir, M.; Leordeanu, M.; Sminchisescu, C. The Moving Pose: An Efficient 3D Kinematics Descriptor for
Low-Latency Action Recognition and Detection. In Proceedings of the IEEE International Conference on
Computer Vision, Los Angeles, CA, USA, 1–8 December 2013; pp. 2752–2759.

15. Ball, A.; Rye, D.; Ramos, F.; Velonaki, M. Unsupervised Clustering of People from ‘Skeleton’ Data.
In Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction,
New York, NY, USA, 5–8 March 2012; pp. 225–226.

16. Rallis, I.; Georgoulas, I.; Doulamis, N.; Voulodimos, A.; Terzopoulos, P. Extraction of key postures from 3D
human motion data for choreography summarization. In Proceedings of the 9th International Conference
on Virtual Worlds and Games for Serious Applications (VS-Games), Athens, Greece, 6–8 September 2017;
pp. 94–101.

17. Kitsikidis, A.; Dimitropoulos, K.; Yilmaz, E.; Douka, S.; Grammalidis, N. Multi-sensor Technology and
Fuzzy Logic for Dancer’s Motion Analysis and Performance Evaluation within a 3D Virtual Environment.
In Proceedings of the Universal Access in Human-Computer Interaction. Design and Development Methods
for Universal Access, Heraklion, Greece, 22–27 June 2014; pp. 379–390.

18. Kitsikidis, A.; Dimitropoulos, K.; Uğurca, D.; Bayçay, C.; Yilmaz, E.; Tsalakanidou, F.; Douka, S.;
Grammalidis, N. A Game-like Application for Dance Learning Using a Natural Human Computer Interface.
In Proceedings of the Universal Access in Human-Computer Interaction. Access to Learning, Health and
Well-Being, Los Angeles, CA, USA, 2–7 August 2015; pp. 472–482.

19. Kitsikidis, A.; Dimitropoulos, K.; Douka, S.; Grammalidis, N. Dance analysis using multiple Kinect sensors.
In Proceedings of the 2014 International Conference on Computer Vision Theory and Applications (VISAPP),
Lisbon, Portugal, 5–8 January 2014; Volume 2, pp. 789–795.

20. Kitsikidis, A.; Boulgouris, N.V.; Dimitropoulos, K.; Grammalidis, N. Unsupervised Dance Motion Patterns
Classification from Fused Skeletal Data Using Exemplar-Based HMMs. Int. J. Herit. Digit. Era 2015,
4, 209–220. [CrossRef]

21. Dimitropoulos, K.; Barmpoutis, P.; Kitsikidis, A.; Grammalidis, N. Classification of Multidimensional
Time-Evolving Data using Histograms of Grassmannian Points. IEEE Trans. Circuits Syst. Video Technol. 2016.
[CrossRef]

22. Protopapadakis, E.; Grammatikopoulou, A.; Doulamis, A.; Grammalidis, N. Folk Dance Pattern Recognition
over Depth Images Acquired via Kinect Sensor. In Proceedings of the 3D Virtual Reconstruction and
Visualization of Complex Architectures, Nafplio, Greece, 1–3 March 2017.

23. Kinect—Windows App Development, 2017. Available online: https://developer.microsoft.com/en-us/
windows/kinect (accessed on 15 January 2017).

24. Webb, J.; Ashley, J. Beginning Kinect Programming with the Microsoft Kinect SDK; Apress: New York, NY, USA, 2012.
25. Protopapadakis, E.; Doulamis, A. Semi-Supervised Image Meta-Filtering Using Relevance Feedback in

Cultural Heritage Applications. Int. J. Herit. Digit. Era 2014, 3, 613–627. [CrossRef]
26. Vandana, N.B. Survey of Nearest Neighbor Techniques. arXiv, 2010.
27. Farid, D.M.; Zhang, L.; Rahman, C.M.; Hossain, M.A.; Strachan, R. Hybrid decision tree and naïve Bayes

classifiers for multi-class classification tasks. Expert Syst. Appl. 2014, 41, 1937–1946. [CrossRef]

http://dx.doi.org/10.1155/2018/7068349
http://www.ncbi.nlm.nih.gov/pubmed/29487619
http://dx.doi.org/10.1260/2047-4970.4.2.209
http://dx.doi.org/10.1109/TCSVT.2016.2631719
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
http://dx.doi.org/10.1260/2047-4970.3.4.613
http://dx.doi.org/10.1016/j.eswa.2013.08.089


Technologies 2018, 6, 31 16 of 16

28. Silva, C.S.; Borba, F.d.L.; Pimentel, M.F.; Pontes, M.J.C.; Honorato, R.S.; Pasquini, C. Classification of blue
pen ink using infrared spectroscopy and linear discriminant analysis. Microchem. J. 2013, 109, 122–127.
[CrossRef]

29. Rokach, L.; Schclar, A.; Itach, E. Ensemble methods for multi-label classification. Expert Syst. Appl. 2014,
41, 7507–7523. [CrossRef]

30. Abe, S. Support Vector Machines for Pattern Classification; Springer: Berlin, Germany, 2010.
31. Dimitropoulos, K.; Manitsaris, S.; Tsalakanidou, F.; Nikolopoulos, S.; Denby, B.; Al Kork, S.;

Crevier-Buchman, L.; Pillot-Loiseau, C.; Adda-Decker, M.; Dupont, S. Capturing the intangible
an introduction to the i-Treasures project. In Proceedings of the 2014 International Conference on Computer
Vision Theory and Applications (VISAPP), Lisbon, Portugal, 5–8 January 2014; Volume 2, pp. 773–781.

32. Protopapadakis, E.; Doulamis, A.; Makantasis, K.; Voulodimos, A. A Semi-Supervised Approach for
Industrial Workflow Recognition. In Proceedings of the Second International Conference on Advanced
Communications and Computation (INFOCOMP 2012), Venice, Italy, 21–26 October 2012; pp. 155–160.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.microc.2012.03.025
http://dx.doi.org/10.1016/j.eswa.2014.06.015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Data Capturing and Dance Representation 
	Capturing Dance Poses 
	Identifying Key Poses 

	Classifiers for Dance Pose Identification 
	k Nearest Neighbors 
	Naïve Bayes 
	Discriminant Analysis 
	Classification Trees 
	Ensemble Methods 
	Support Vector Machines 

	Experimental Results 
	Dataset Description 
	Feature Extraction 
	Variation, Space, and Noise Handling 
	Algorithms Setup 
	Classification Scores 
	Statistical Analysis 

	Conclusions 
	References

