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Abstract: The performance of an underwater optical wireless communication link is investigated by
taking into account—for the first time and to the best of our knowledge—the simultaneous influence of
the chromatic dispersion, the time jitter and the turbulence effects, by assuming chirped longitudinal
Gaussian pulse propagation as information carriers. The estimation procedure is presented and a
novel probability density function is extracted in order to describe the irradiance fluctuations at the
receiver side. Furthermore, the availability of the link is investigated by means of its probability of
fade and various numerical results are presented using typical parameters for the underwater optical
wireless communication systems.

Keywords: underwater optical wireless communications; group velocity dispersion; turbulence; time
jitter; log-normal distribution; probability of fade

1. Introduction

Underwater optical wireless communication (UOWC) systems have attracted significant research
and commercial interest in recent years due to their very significant advantages that they offer.
More specifically, the UOWC links, due to their very large bandwidth, can achieve very high data rates
and real time communications inside the water, with low energy consumption and very high security
standards. Many recent theoretical and experimental works have been done in order to estimate
the effectiveness of the transmitter/receivers, link, modulation formats, etc. that are used in these
systems [1–10]. However, the performance of these systems is dominated by the characteristics of the
medium, where the pulses are propagating. Thus, the water strongly attenuates the information signal
and consequently their effective link length is of some tens of meters. Additionally, the turbulence of
the fluid, water purity and dispersion significantly affect the performance and the operation of the
wireless communication link. Furthermore, due to their capability for ultrafast data transmission, the
time jitter effect also affects their characteristics [1,11–13].

Many statistical models have been presented in order to describe the turbulence effect, especially
in the atmospheric environment. However, it has been proven that most of these models are also
accurate for the underwater environment [14–17]. Thus, the gamma–gamma distribution is accurate
enough for weak to strong turbulence conditions; the log-normal and the gamma are appropriate for
weak turbulence, while the K distribution and the negative exponential one can be used for strong and
saturated turbulence, respectively [18–20].
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The influence of the time jitter effect can be considered as a significant factor for ultra-high data
rate communication systems due to the fact that the longitudinal pulses, used by these systems, are
very short. Thus, any delayed arrival or time desynchronization at the receiver can cause the detection
of the optical pulse earlier or later than the “correct” time of the detection. This effect results in the
performance mitigation of the link, because it increases the negative influence of the scintillation
effect, due to the increased intensity of the fluid turbulence and the negative affection on the systems
characteristics [21–27].

Another effect that can significantly decrease the performance of the underwater optical
communication links is the chromatic dispersion. More specifically, due to the dependence of
the refractive index of the seawater on the wavelength and taking into account that the typical optical
pulses used in the optical communication systems cannot be monochromatic, the longitudinal pulse
shape changes along its propagation, and thus the detection procedure at the receiver becomes more
difficult and erroneous [28–33].

In this work—for the first time and to the best of our knowledge—the simultaneous influence
of turbulence, time jitter and chromatic dispersion is investigated for an UOWC link. It is assumed
that the communication system uses longitudinal chirped Gaussian pulses as information carriers
and that the fluid turbulence is weak. Thus, the log-normal distribution model has been used for the
representation of the fluid turbulence effect, while the influence of the group velocity dispersion (GVD)
is studied for both signs of a pulse’s chirp. Additionally, as far as the time jitter effect is concerned, it
has been assumed here that the probability of detecting a pulse earlier is equal to detecting it later,
and the normal distribution has been chosen in order to investigate its influence. The joint influence
of all the above effect is estimated and the corresponding probability distribution function (PDF) is
extracted. Then, using the derived mathematical expression for the PDF, the performance of the link is
estimated by means of its probability of fade and the relative numerical results are presented, using
typical values for the UOWC links.

The remainder of this work is organized as follows: in the next section, the underwater channel is
presented and the fluid turbulence effect is introduced, while in Section 3, the chromatic dispersion
effect is studied. Next, in Section 4, the time jitter effect is investigated and in Section 5, the simultaneous
influence of all the aforementioned effects is presented. Moreover, in Section 6, the probability of fade
of the link is obtained, while the numerical results and the conclusions of this work are presented in
Sections 7 and 8, respectively.

2. The Underwater Channel Model

The optical information pulse is assumed to propagate through the turbulent underwater
environment of the UOWC system, with additive white Gaussian noise (AWGN), n, of zero mean
value and variance σn

2. Additionally, the channel is considered as memoryless, stationary and ergodic.
Thus, the signal which arrives at the input of the receiver, y, is given as [34,35]:

y = ηxI + n (1)

where η stands for the effective photocurrent efficiency, x is the modulated transmitted signal and
I represents the instantaneous normalized irradiance at the receiver. The normalized irradiance, I,
depends on both the effects of the water turbulence, It, along with the influence of the time jitter effect,
Ij. Thus, the total normalized irradiance of (1), is expressed as [35–38]:

I = ItI jIl (2)

with Il being the signal losses due to the medium’s attenuation, but without loss of generality, in this
work, it is assumed to be equal to unity [36–38].

The turbulence effect plays a very significant role in the terrestrial optical wireless links [39–42].
However, in the corresponding underwater systems, turbulence is still a significant mitigation factor
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for their performance [18,43,44]. More specifically, by assuming weak water turbulence, the irradiance
fluctuations at the receiver of the UOWC link can be studied through the log-normal (LN) distribution.
The probability distribution function (PDF) of the LN model as a function of the instantaneous
normalized irradiance at the receiver, It, is given as [18,44,45]:

fIt(It) =
1

Itσ
√

2π
exp

−
(
ln(It) + σ2/2

)2

2σ2

 (3)

with σ2 being the log-irradiance variance [45–47], which depends on the channel’s characteristics.

3. The Chromatic Dispersion Effect

Taking into account that the optical pulses of the UOWC links are not monochromatic and the
refractive index of the seawater depends on the optical signal’s frequency, the chromatic dispersion
effect appears during the signal’s propagation. In order to estimate its influence, the refractive index
as a function of the link’s characteristics should be estimated. Thus, by using the empirical model
introduced by McNeil [48], and by substituting the wavelength, λ, in nm, of the optical beam, with the
corresponding angular frequency, ω, in rad/sec, i.e. λ = 2× 109πvω−1, with v being the speed of light
in the water in m/sec, the refractive index of the underwater environment will be given through the
following expression as a function of the link’s parameters [27]:

n(ω) = 1.3247 + 3.3× 10−15 ω2

(2πv)2 − 3.2× 10−29 ω4

(2πv)4 − 2.5× 10−6Te2

+4× 10−5Sa
(
5− 2× 10−2Te

)
+ 1.45× 10−5 Pr

(
1.021− 6× 10−4Sa

)(
1− 4.5× 10−3Te

) (4)

where Pr is the water pressure in kg/cm2, Te is the temperature in Celsius degrees, while Sa stands for
the salinity of the seawater in %�, [27,48].

Next, by substituting the refractive index into the propagation constant, i.e., β(ω) = ωn(ω)c−1,
with c being the speed of light in vacuum, in m/sec [28,33], and by expanding it in a Taylor series around
the angular frequency ω0 and keeping terms up to the second order [28], with βq = (dqβ/dωq)ω=ω0

for
q = 1,2, ... [28], the value of β1, which represents the inverse group velocity [28], is estimated, while β2,
which represents the GVD parameter, is given in ps2/km as [28]:

β2 =

(
d2β

dω2

)
ω=ω0

= 3.3× 1012 3ω0

2π2v2c
− 4× 10−2

ω3
0

π4v4c
(5)

Then, by taking into account (4) and (5), the values of the refractive index, and β2 are presented in
the following Table 1, for various values of the wavelength of the UOWC systems and by assuming
typical values of water temperature and salinity, i.e., Sa = 35%�, Te = 0 ◦C [27,48]. It should be
mentioned here that for the specific temperature and salinity values, it has been proven that the
pressure can be accurately estimated as Pr � 0.104d [48], where d represents the underwater depth in
meters and takes the value of 100 m.
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Table 1. Refractive index and GVD parameter values for various wavelengths for Sa = 35%�, Te = 0 ◦C
and d = 100 m.

Wavelength (λ) in [nm] Refractive Index (n) GVD Parameter (β2) in [ps2/km]

470 1.3461 86.74
500 1.3445 83.05
530 1.3432 79.53
560 1.3420 76.22
590 1.3411 73.10
620 1.3402 70.19
650 1.3395 67.46
680 1.3388 64.91

By using the GVD parameter, β2, obtained in (5), the evolution of the normalized amplitude,
U(z,T), of a pulse propagating along axis z, in km, inside a dispersive medium, can be estimated
through the following equation [28]:

i
∂U
∂z

=
β2

2
∂2U
∂T2 (6)

where T stands for the retarded time, in ps, which is defined as T = t− β1z, representing a time frame
of the pulse propagating with the group velocity along the pulse [28,31,32,49].

In order to estimate the influence of the GVD at the performance of the link, we assume
longitudinal chirped Gaussian pulses as information carriers of the UOWC, which have the following
initial condition [28]:

U(0, T) = exp

− (1 + iC)T2

2T2
0

 (7)

where C is the chirp effect parameter and T0 stands for the parameter, which represents the half width
at 1/e intensity of the pulse [21,28]. Furthermore, from (7) using (6), after propagation distance z, the
envelope of the longitudinal chirped Gaussian pulse will have the form [33,50]:

U(z, T) =
T0√

T2
0 − iβ2z(1 + iC)

exp

− (1 + iC)T2

2
[
T2

0 − iβ2z(1 + iC)
] (8)

while, its pulsewitdh Tpw(z, β2, T0, C) is given as [28]:

Tpw(z, β2, T0, C) =
√

T2
0 + 2Czβ2 + T−2

0 z2β2
2(C

2 + 1) (9)

4. The Time Jitter Effect

By assuming the propagation of the longitudinal chirped Gaussian pulse through the dispersive
medium, its instantaneous normalized irradiance at the receiver, Ij, is obtained from (8) and given
as [27,51]:

I j =
∣∣∣U(z, T)

∣∣∣2 = B exp
[
−A−1T2

]
(10)

with A = T2
pw(z, β2, T0, C) and B =

[
1 + 2T−2

0 β2zC + T−4
0 β2

2z2
(
C2 + 1

)]−1/2
, [50].

The retarded time T, as mentioned above, represents, in practice, the deviation from the center
of the longitudinal pulse. Thus, the value T=0 ps refers exactly at the center of the Gaussian pulse.
Thus, if the detection of each bit does not happen exactly at the correct time, i.e., at T=0 ps, then the Ij
value will be lower than expected. More specifically, while the throughput of the optical wireless links
increases and the duration of each information bit decreases, the probability of pulse detection before
or after the “ideal” moment, which corresponds at the center of the pulse, increases due to various
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desynchronization reasons concerning either the electronic circuits of the communication system or the
propagation characteristics of the optical beam. Consequently, the time jitter effect is getting stronger.

By assuming the time jitter as a probabilistic effect, with the same probability to detect each
specific bit before or after, T=0 ps, it could be statistically described by a normal distribution with
mean value equal to zero. Thus, the PDF of the normal distribution model with mean value, µT, and
variance σ2

T is given as [52,53]:

fT(T) =
1

√
2πσT

exp

− (T − µT)
2

2σ2
T

 (11)

The PDF of (11) is expressed as a function of T parameter and in order to make the needed random
variable (RV) transformation with Ij, the value of T should be obtained from (10) as:

T = ±

√
A ln

(
I−1

j B
)

(12)

Next, using the above equation (12), the PDF of (11) as a function of Ij is given as:

fI j

(
I j
)
=

fT

(√
A ln

(
I−1

j B
))

dI j
dT

∣∣∣∣
T=

√
A ln (I−1

j B)

+

fT

(
−

√
A ln

(
I−1

j B
))

dI j
dT

∣∣∣∣
T=−

√
A ln (I−1

j B)

(13)

and by substituting (11) and (12) into (13), the PDF of the Ij factor caused by the GVD and the time
jitter effect is obtained by:

fI j

(
I j
)
=

A

2

√
2πA ln

(
I−1

j B
)
σTI j

exp

−
(√

A ln
(
I−1

j B
)
− µT

)2

2σ2
T

+ exp

−
(√

A ln
(
I−1

j B
)
+ µT

)2

2σ2
T



 (14)

5. The Joint Influence of GVD, Time Jitter and Turbulence

The total simultaneous influence of the chromatic dispersion, time jitter and water turbulence
effects on the performance of the UOWC link can be estimated, from (3) and (14), through the extraction
of the corresponding joint PDF as [37,54,55]:

fI(I) =

∞∫
I/B

fI|It(I|It) fIt(It)dIt (15)

where fI|It(I|It) = (1/It) fI j(I/It) stands for the conditional probability. By substituting (3) and (14) into
(15) the joint PDF, which corresponds to the LN-turbulence with the simultaneous influence of the time
jitter and the GVD effects, is given as:

fI(I) = A
4πσσTI

∞∫
I/B

1√
A ln(I−1BIt)It

exp
[
−
(ln(It)+σ2/2)

2

2σ2

]
×

exp

−
(√

A ln(I−1BIt)−µT

)2

2σ2
T

+ exp

−
(√

A ln(I−1BIt)+µT

)2

2σ2
T


dIt

(16)
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and if the variable of the integral is transformed as y =
√

A ln(I−1BIt), and by assuming that the mean
value for the time jitter effect is zero, as mentioned above, after some simplifications, (16) can take the
following form:

fI(I) =
1

πσσTI
exp

−
(
ln

(
IB−1

)
+ σ2

2

)2

2σ2


∞∫

0

exp

− y4

2σ2A2 − y2

2 ln
(
IB−1

)
+ σ2

2σ2A
+

1
2σ2

T


dy (17)

Next, by expressing the second exponential term of the integral of (17), through the infinite

summation, i.e., exp(z) =
+∞∑
k=0

zk

k! , we conclude to the following expression:

fI(I) =
1

πσσTI
exp

−
(
ln

(
I
B

)
+ σ2

2

)2

2σ2


+∞∑
k=0

∞∫
0

exp
(
−

y4

2σ2A2

) [−y2
(

2 ln(IB−1)+σ2

2σ2A + 1
2σ2

T

)]k

k!
dy (18)

Finally, by solving the integral of (18), we obtain the following mathematical form for the joint
PDF of the UOWC link:

fI(I) =
1

πσσTI
exp

−
(
ln

(
I
B

)
+ σ2

2

)2

2σ2


+∞∑
k=0

(−1)k

4k!

2 ln
(
IB−1

)
+ σ2

2σ2A
+

1
2σ2

T


k(

2σ2A2
) 2k+1

4 (19)

The mathematical expression that has been derived in (19) corresponds to a new, joint PDF, which
describes the simultaneous influence of the chromatic dispersion, the water turbulence, modeled with
the log-normal distribution model and the time jitter effects, for the case of longitudinal Gaussian chirped
pulses being used as information carriers for the underwater optical wireless communication link.

6. The Probability of Fade

A significant performance metric for the communication systems is their probability of fade.
This quantity represents the availability of the link and gives the probability that the signal’s irradiance
at the receiver falls below a specific threshold, Ith, which constitutes a characteristic technical parameter
of the receiver of each link and is given as [50,56,57]:

PF = Pr(I ≤ Ith) =

∫ Ith

0
fI(I)dI (20)

where the function fI(I) represents the PDF, which describes the irradiance fluctuations of the information
signal at the input of the link’s receiver.

Thus, using (19) and (20), the probability of fade of an UOWC link, which is using longitudinal
Gaussian chirped pulses as information carriers, taking into account the influence of the seawater
turbulence, the time jitter and the GVD is given as:

PF =
1

πσσT

+∞∑
k=0

Ith∫
0

1
I

exp

−
2 ln

(
IB−1

)
+ σ2

2
√

2σ


2


(
−

2 ln(IB−1)+σ2

2σ2A −
1

2σ2
T

)k

4k!(2σ2A2)−
2k+1

4

dI (21)

7. Numerical Results

In this work, the joint influence of time jitter, log-normal turbulence and chromatic dispersion
in an UOWC system was studied, which uses longitudinal Gaussian chirped pulses as information
carrier. Through the above procedure, a novel joint PDF was derived (19) in order to describe the
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irradiance fluctuations at the receiver, due to their simultaneous effect. Moreover, the fade probability
of the system can be estimated from (21). For the numerical results presented below, typical values
of water temperature and salinity, i.e., Sa = 35%�, Te = 0 ◦C [27,48], have been chosen, while the
underwater depth is fixed at 100 m and the corresponding pressure is estimated through the expression
P � 0.104d [48], as mentioned above. Moreover, the information pulse duration, T0, values are varying
from 2 ps to 6 ps and the operational wavelength, λ, is taken to be 470 nm, which is a typical value
for the UOWC systems. Furthermore, the chirp parameter, C, is assigned the values −10 or 10 and
the horizontal propagation link is assumed to have length either 40 m or 50 m [58–60]. Furthermore,
the parameter C2

n, which depends on the turbulence strength, takes three values, i.e., 8.0×10−15 m−2/3,
1.6×10−14 m−2/3 and 2.4×10−14 m−2/3. Finally, the variation of the time jitter effect, σT, is set at 5 ps
while the receiver’s irradiance threshold is assumed to be Ith = 0.5.

A very significant issue concerning this work is the influence of the GVD on the pulse’s shape
depending on the sign of its chirp. More specifically, as it can be observed from (10), the pulse’s
amplitude, i.e. the value of B, depends strongly on the value of the chirp. Thus, it can be seen that if
the chirp value is negative the amplitude of the pulse initially increases and after a maximum value,
decreases with the propagation distance. On the other hand, for positive chirp values, the value of B
decreases monotonically when the link length increases. The opposite behavior is observed for the
width of the pulse. Thus, from (9), it can be seen that for positive chirp, the pulsewidth increases
monotonically, while for negative values, it decreases initially, reaches a minimum value (which
corresponds to the maximum value of amplitude) increases after that, as well. From (9), it arises that
the critical propagation distance, z, where the monotonicity changes, depends on the parameters of the
channel and the initial shape of the pulse.

In Figure 1, the amplitude of Ij from (8) is plotted as a function of the propagation distance, for
various pulse widths, T0, and for positive and negative chirp values. As it can be seen in Figure 1, for
C = −10, the amplitude of the optical pulses increases in the first meters of the propagation path, then
achieves a maximum value and after that the value of B decreases when z increases. On the contrary,
for C = 10, the value of B decreases always when z increases. It should be mentioned that when the
pulse’s amplitude increases, due to the GVD effect, its pulsewidth decreases, respectively, and vice
versa. The corresponding behavior concerning the width of the optical pulse is shown in Figure 2,
where the influence can be seen of the chirp, the wavelength and the propagation distance.
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Taking into account the behavior of the amplitude of a longitudinal Gaussian pulse, due to the
GVD effect depending on the chirp’s sign, we plot the probability of fade of the optical wireless
system in Figure 3, considering the GVD effect, the time jitter and the fluid turbulence modeled
with the log-normal distribution by using the expression obtained in (21). In the specific figure, the
probability of fade of a UOWC link is plotted as a function of the longitudinal Gaussian pulsewidth, for
a propagation distance z equal to 40 m and assuming typical water values for salinity, temperature and
Ith, as mentioned above. The influence of the atmospheric turbulence strength can be observed, while
the chirp value and its sign play a very important role. More specifically, the negative chirped pulses
help the UOWC link to have better performance and availability capabilities, because the probability
of fade is much lower than the probability obtained for positive chirp. Additionally, from Figures 1
and 3, it can be seen that the best probability of fade performance is achieved for link lengths where
the larger amplitude value B, appears.
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Next, in Figure 4, the probability of fade of a UOWC link with longer link length is presented.
Due to the fluid turbulence, the outage probability performance decreases when the intensity of the
effect is getting stronger and the chirp value significantly affects its value. Here, the link length is
assumed to be z = 50 m with the same irradiance threshold as in the previous case. By comparing
Figures 3 and 4, and by taking into account the outcomes that have been presented in Figure 1, it can
be seen that the positive influence of the negative value of chirp is getting weaker as the probability
of fade is estimated away from the maximum amplitude of the pulse due to the GVD effect, i.e. the
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value of B. However, even for longer distances, the negative chirp value can improve the performance
characteristics of the underwater optical wireless link.Technologies 2020, 8, 3 9 of 12 
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In both Figures 3 and 4, it can be seen that the influence of the chirp effect is significant especially
for link distances near the critical link length for the negative chirp pulses. Additionally, the influence
of the atmospheric turbulence effect can significantly mitigate the performance of the link, while, as
shown in Figure 2, the link’s wavelength affects the quality of the connection and its availability. Thus,
taking into account the obtained conclusions and using the above derived expressions (19) and (21),
the most effective UOWC system can be designed depending on the characteristics of the underwater
optical channel and the required link performance.

8. Conclusions

In this work, for first time to the best of our knowledge, the performance of an underwater optical
wireless communication system with longitudinal chirped Gaussian pulses as data carriers and taking
into account the simultaneous influence of the effects of chromatic dispersion, time jitter and turbulence,
has been studied. For the latter effect, the log-normal distribution has been used. For this UOWC link,
a novel probability density function was derived in order to describe the irradiance fluctuations at
the system’s receiver due to the joint influence of the above-mentioned effects and we presented the
expression for the estimation of its availability by means of its probability of fade. Finally, using typical
parameter values for the UOWC systems and by using the above-derived expressions, we presented
the corresponding numerical results and conclusions concerning the amplitude and the width of the
pulse and their dependence of the effects studied above, the new joint PDF and the probability of fade
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