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Abstract: A few recent publications on interrupted time series analysis only conduct preintervention
modelling and use it to illustrate postintervention deviation without quantifying the amount lost
during the intervention period. Thus, this study aims to illustrate how to estimate and quantify
the actual amounts (in South African Rands—ZAR) that the negative impact of the intervention
effects of the COVID-19 pandemic had on the South African total monthly wholesale and retail sales
using the seasonal autoregressive integrated moving average (SARIMA) with exogenous components
(SARIMAX) model. In addition, the SARIMAX model is supplemented with three approaches for
interrupted time series fitting (also known as a pulse function covariate vector), which are: (i) trial
and error, (ii) quotient of fitted values and actual values, and (iii) a constant value of 1 throughout
the intervention period. Model selection and adequacy metrics indicate that fitting a pulse function
with a trial-and-error approach produces estimates with the minimum errors on both datasets, so a
more accurate loss in revenue in the economy can be approximated. Consequently, using the latter
method, the pandemic had an immediate, severe negative impact on wholesale trade sales, lasting
for 15 months (from March 2020 to May 2021) and resulted in a loss of ZAR 302,339 million in the
economy. Moreover, the retail sales were also negatively affected, but for 8 months (from March 2020
to October 2020), with a 1-month lag or delay, suggesting the series felt the negative effects of the
pandemic one month into the intervention period and resulted in a loss of ZAR 87,836 million in
the economy.

Keywords: wholesale trade sales; retail sales; COVID-19 intervention; SARIMAX; Box–Jenkins
methodology

1. Introduction

Intervention analysis provides a roadmap to modelling and estimating the intervention
effect on a time series under study. In intervention analysis, the assumption is that the
intervention affects the data-generating process by changing the mean function and trend of
the underlying series (Cryer and Chan 2008). In general, interventions differ in magnitude
and type. Some are natural (such as tsunamis and earthquakes), some are human-made
(such as the 9/11 attack), and some have unknown causes, such as the COVID-19 pandemic
(Bogoch et al. 2020; Wu et al. 2020). Since the onset of the COVID-19 pandemic, many
researchers have conducted interrupted time series (ITS) studies to assess the impact of the
pandemic throughout various fields. Most researchers used the naïve ordinary least squares
segmented regression model to estimate and quantify the pandemic effects (McIntosh et al.
2021; Zhong et al. 2022; Yoshioka et al. 2022). Although segmented regression is a common
approach, it is not always adequate, particularly when the data have seasonality and
autocorrelation (Schaffer et al. 2021).

The Box–Jenkins autoregressive integrated moving average (ARIMA) models are
an alternative approach to accommodate seasonality, autocorrelation and other potential
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confounding effects (Pridemore et al. 2014). Unlike in segmented regression, there is no
need to include time and seasonal dummy variables in the ARIMA model, as the model can
accommodate stochastic seasonality in the data. Stated differently, the first differencing is
to remove a trend, and a seasonal difference is to remove the seasonality component so that
the series can be transformed from nonstationarity to stationarity. The basic assumption of
ARIMA modelling is that the data-generating process of the underlying time series does
not change over time (Montgomery et al. 2015). However, in real-world applications, a
time series may be subjected to interruptions, which affect the modelling and forecasting
performance of the basic ARIMA models. As a result, Box and Tiao (1975) developed
the autoregressive integrated moving average with exogenous components (ARIMAX) to
incorporate these interventions into the series. The beneficial property of the ARIMAX
model is that when conditions of the data-generating process of the underlying series
are interrupted, the ARIMAX models are flexible and can be modified by using transfer
functions to accommodate these changes (Inyang et al. 2023).

Transfer functions (or impact variables) provide a functional form of the characterised
relationship between the intervention and the series under study. They reconstruct the
relationship between the step, pulse, and time series to model more complex intervention
impacts, including gradual level shifts, a pulse with gradual decay, and lagged effects (Box
et al. 2015). The pulse and step functions are the two general types of transfer functions
(Inyang et al. 2023). A step change is an abrupt, long-term change where the series level is
moved either up or down by a particular value shortly after the intervention. A pulse is an
abrupt, noticeable temporary change on one or more observations instantaneously after
the intervention (Aliffia et al. 2024).

According to Bernal et al. (2017), it is important to hypothesise the probable shape of
the resulting impact before conducting the intervention analysis. This can be done using
the response variable’s pre-existing scientific knowledge and literature. Some intervention
impacts are best represented by combining the step and pulse functions, and the resulting
impact model can take different shapes and forms. A variety of impact models are found
in (Montgomery et al. 2015; Bernal et al. 2017, 2018; and Bottomley et al. 2019). In ITS
analysis, ARIMA produces forecasts of the underlying series in the absence of the inter-
vention, referred to as the “counterfactual series”, which are used to evaluate how the
actual values deviate from these forecasts in the intervention period (Bernal et al. 2017;
Bartholomew et al. 2023). In the counterfactual scenario, the expected trend of the series
remains unchanged. Therefore, the counterfactual series serves as a basis to compare the
pattern of the interrupted series with how it would have unfolded had the intervention not
occurred (Bartholomew et al. 2023).

In South Africa, the wholesale and retail sectors collectively contribute around 15% to
the Gross Domestic Product (GDP), constituting approximately 22% of the country’s labour
force (Sewell et al. 2016; Mamaro and Mabandla 2022). In particular, the retail sector is
comprised of 87% small enterprises, 9.5% medium enterprises, and 4.5% large enterprises
(Sewell et al. 2016). As a result of the strict COVID-19 measures, small retail enterprises
were the most severely affected in the sector (Arndt et al. 2020). Large retail firms were
no exception; for instance, the analysis of financial reports of twenty-two Johannesburg
Stock Exchange (JSE)-listed South African retail firms showed that the COVID-19 pandemic
had a statistically significant negative impact on the financial performance of these firms
(Mamaro and Mabandla 2022). As shown in Chitiga-Mabugu et al. (2021), both the
wholesale and retail sectors were among many other sectors of the South African economy
that were severely affected by the COVID-19 pandemic. Thus, the COVID-19 pandemic had
a negative impact (during the intervention period) on the employment level, job creation
capability, and profitability of firms in these sectors, which had a direct detrimental effect
on the overall South African economy. This highlights the importance of quantifying the
approximate losses in the wholesale and retail sectors due to the COVID-19 pandemic. It is
worth mentioning that there are other studies that explore tests of policy ineffectiveness
when the predicted values of the variable of interest are computed using the reduced form
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or final form policy response equations (Pesaran and Smith 2016). Although the objectives
of Pesaran and Smith (2016) and this study are aligned, which is to estimate the impact
of the intervention or policy change on the target variable, the scope and objective of this
study are different.

There is almost no research on the application of the ITS ARIMAX model in the context
of the wholesale and retail sectors in South Africa and the rest of the world. However,
similar research has been conducted in the past in other sectors to assess intervention
effects with properties like COVID-19. For instance, in the health sciences, Zhou et al. (2023)
used the ITS ARIMA approach to analyse the impact of the COVID-19 pandemic on the
incidence rate of notifiable communicable diseases in China. ARIMA model with a change
in slope that occurs immediately after the intervention was fitted to the data, and the results
revealed a significant short-term decrease in the incidence rates of respiratory and enteric
infectious diseases. Additionally, a short-term drop in the incidence rates of blood-borne
and sexually transmitted infectious diseases with a step change was observed, which was
likely to recover to the previous levels in the long term. There was no significant change
in the incidence rate of natural focus diseases or arboviral diseases before and after the
epidemic. In the oil industry, Aliffia et al. (2024) conducted a single-point intervention
analysis with a pulse function to quantify the effect of the Russia–Ukraine conflict on the
weekly price of crude oil. Among the models considered, ARIMA with a pulse function
at the intervention point best fits the intervention series. The intervention parameters
were estimated using the cross-correlation plot. The 12-week forecasts had relatively low
model adequacy values (MAPE = 2.89% and MSE = 10.27). A study by Inyang et al. (2023)
investigated the impact of the Declaration of Cooperation (DoC) by the Organisation of
Petroleum Exporting Countries (OPEC) on monthly crude oil prices between January 1998
and December 2021. The Declaration of Cooperation had a statistically significant abrupt
permanent increment of 33.72% to the price of crude oil immediately after it was introduced.

Lam et al. (2009) used an ARIMA model with a permanent step change to compute
more precise and reliable estimates of the intervention effects and the asymptotic change
observed in the business process reengineering simulation results from the activity model
analysis. Bartholomew et al. (2023) investigated the effect of COVID-19 vaccinations on the
daily COVID-19 cases in Nigeria using the naïve ordinary least squares linear regression
model and the ITS ARIMA model. Five structural breaks were identified in the series,
and the two models were fitted. Model selection metrics (AIC, BIC, and log-likelihood)
showed that the naïve OLS regression model did not fit the data well and favoured the first
differenced ITS ARIMA model with exogenous components. The intervention coefficient
was negative, indicating that Nigeria’s daily cases remained high after the vaccine rollout.

In the legislature, Chamlin (2017) used ITS ARIMA with zero-order transfer functions
to assess and model the impact of New Jersey’s blood and alcohol legislation on monthly
total and separate mortalities of drivers and passengers from vehicle crashes. The results
highlighted that the implementation of the blood and alcohol legislature had no significant
effect on the number of deaths across all three outcome measures but proved to reduce ve-
hicle crash fatalities by a rate of three passengers per month. In a similar study, Humphreys
et al. (2013) studied the immediate and delayed impacts of removing regulatory trading
hours restrictions on alcohol sales on the weekly police cases of violence in England and
Wales. The analysis reported a gradual and permanent shift (step change) of violence
between 3 a.m. and 6 a.m. by a first-order transfer function with an initial increase of
27.5% at the start of the intervention. It increased to 36% towards the end of the study
period. Pridemore et al. (2014) assessed the effect of the implementation of the 2006 alcohol
policy on gender-specific monthly alcohol-related fatalities of the Russian population aged
15 years and above. The intervention effect was modelled using a first-order gradual change
ARIMAX intervention model. The study results showed that the introduction of the alcohol
policy reduced the annual alcohol poisoning fatalities of approximately 6700 males as well
as 760 male and 770 female liver cirrhosis fatalities. Had the policy not been introduced,
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male alcohol poisoning fatalities, female alcoholic liver cirrhosis, and male liver cirrhosis
fatalities were estimated to have increased by 35%, 9%, and 15%, respectively.

In the South African context, studies using the Box–Jenkins methodology to indepen-
dently investigate the long-term impact of the Global Financial Crisis (GFC) and COVID-19
pandemic on manufacturing, new car sales and the arrival of tourists were conducted
(Makoni and Chikobvu 2023a, 2023b, 2023c; Chipumuro et al. 2024; Chikobvu and Makoni
2024). Similarly, Masena and Shongwe (2024a, 2024b) used the Box–Jenkins methodology
with SARIMA with exogenous component (SARIMAX) to illustrate the effect of the COVID-
19 pandemic on wholesale and retail sales in South Africa. Although these studies (Makoni
and Chikobvu 2023a, 2023b, 2023c; Chipumuro et al. 2024; Chikobvu and Makoni 2024;
Masena and Shongwe 2024a, 2024b) aimed to assess and quantify the intervention effect,
there was no intervention analysis nor year-to-year comparisons evaluated to estimate
the net loss in sales or revenue during the intervention period. Hence, this current study
thoroughly extends on the work of Masena and Shongwe (2024a) and Masena and Shongwe
(2024b) by conducting an in-depth intervention analysis by incorporating the pulse function
into the fitted SARIMAX models in the intervention period; such an additional analysis
assists in quantifying the approximate amount that the economy lost due the intervention
period. This is the important component missing in all the publications (Makoni and
Chikobvu 2023a, 2023b, 2023c; Chipumuro et al. 2024; Chikobvu and Makoni 2024; Masena
and Shongwe 2024a, 2024b); readers must be made aware of these analyses so policymakers
know the approximate amount lost due to an uncontrollable intervention. Then, mitigating
strategies can be developed and implemented to lower the negative effects in the future.
Furthermore, the intervention analysis uses three approaches to fitting the pulse function to
the interrupted series throughout the intervention period for both the wholesale and retail
series. Finally, the loss of revenue in both sectors will be quantified using the approach
with the best-fitting pulse function.

2. Materials and Methods

In this study, Tk represents the intervention period, where k = {0, 1, . . . , j}. T0 is the
starting point of the intervention and Tj is the last point in the intervention period. Yt
represents the response variables: the total monthly (i) wholesale and (ii) retail trade sales.

The step-change variable takes the value of 0 in the pre-intervention period and
1 during the intervention period (Cryer and Chan 2008). A step function is expressed
as follows:

STk
t =

{
0 i f t < Tk
1 i f t ≥ Tk

}
(1)

The pulse variable takes the value of 1 in the intervention point/period and 0 otherwise
(Cryer and Chan 2008). A pulse function is expressed as follows:

P(Tk)
t =

{
0, if t ̸= Tk

1, if t = Tk
(2)

For any given series, the intervention effect is modelled via the general form of a
transfer function as follows (Schaffer et al. 2021):

Yt = µ +
ω0 + ω1B + ω2B2 + . . . + ωhBh

1 − δ1B − δ2B2 − . . . − δrBr Xt + εt (3)

where Xt = PTk
t or STk

t (intervention variable), B is the backshift operator
(

BpYt = Yt−p
)
, ω0

denotes the initial value for the impact of the intervention at T0, δ is the decay rate,
h describes when the effect happens, while r represents the decay pattern. When the
intervention impact model shows that the intervention had an immediate effect with a
gradual decay, h = 0 and r = 1 in Equation (3). However, when the intervention impact
model shows that the intervention had a delayed effect with a gradual decay, h = 1 and
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r = 1 in (3). Note that r = 1 is a variable used to show that the intervention impact in the
series has an exponential decaying pattern or dies out exponentially.

Two parts of the overall model must be obtained to evaluate the impact of the inter-
vention. The first part is the basic model for the pre-intervention series, and the second
part is the intervention impact model (Bartholomew et al. 2023). The evaluation is carried
out using the following steps:

i. Identify (T0), the start of the intervention period;
ii. Apply the Box–Jenkins methodology to fit an ARIMA model in the pre-intervention pe-

riod;
iii. Use the pre-intervention model to forecast values in the intervention period

(counterfactual);
iv. Obtain the differences between actual values in step (iii);
v. Evaluate step (iv) to determine a model for the intervention effect;
vi. Use the results from step (v) to select the appropriate intervention variable;
vii. Use Equation (3) to estimate the intervention effects.

3. Results and Discussion

This section outlines the ARIMA/SARIMA intervention models used to assess and
quantify the COVID-19 pandemic effects on the total monthly wholesale and retail trade
sales in South Africa. Section 3.1 summarises the pre-intervention models for the wholesale
and retail datasets from the studies by Masena and Shongwe (2024a, 2024b). Section 3.2
presents the intervention analysis on the total South African monthly wholesale trade sales
from April 2020 to May 2021 and the total South African monthly retail trade sales from
April 2020 to October 2020. For both datasets, a pulse function is incorporated into the
fitted SARIMA models using three approaches to extend the fitted pre-intervention models.
All analyses involving model selection, parameter estimation, and model diagnostics were
conducted using the TSA, tseries, forecast and MASS packages in R statistical software
version 4.3.2 (Cryer and Chan 2008; R Core Team 2023; Trapletti and Hornik 2018; Hyndman
and Khandakar 2008; Venables and Ripley 2002).

3.1. Pre-Intervention Models
3.1.1. Wholesale

The time series plot of the South African Wholesale trade sales from January 2009
until April 2023 is shown in Figure 1.
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The Box–Cox transformation had a lambda value of λ = 1.0303 ≈ 1, which suggested
that data transformation was not necessary for the wholesale data. The KPSS test has a
highly significant p-value (0.01), which suggests that the series is not trend stationary. There-
fore, the first and seasonal differences are necessary to de-trend and capture the seasonality
in the series. The KPSS unit root test of stationarity was conducted, and its p-value ≈ 0.1;
this means that it is not statistically significant at a 5% significance level. Therefore, the first
and seasonally differenced wholesale series in Figure 2 is trend stationary.
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Masena and Shongwe (2024a) identified the pre-intervention model for SA’s total
monthly wholesale trade sales (Wt) as SARIMA(2, 1, 1)(0, 1, 1)12 with MLE parameter
estimates given in Table 1, and the model is given by:(

1 − ϕ1B − ϕ2B2
)
(1 − B)

(
1 − B12

)
Wt = (1 − θ1B)

(
1 − Θ1B12

)
ε

t
(4)

Table 1. SARIMA(2, 1, 1)(0, 1, 1)12 model parameter estimates.

Parameter Estimate Standard Error Test Statistic p-Value

ϕ1 −0.868733 0.144873 −5.9965 2.02 × 10−9

ϕ2 −0.556278 0.081725 −6.8068 9.98 × 10−12

θ1 0.345427 0.172463 2.0029 0.04519

Θ1 −0.530365 0.092548 −5.7307 1.00 × 10−8

All model parameters in Table 1 are statistically significant at the 5% significance level.
The standardised residuals in Figure 3a are random with no apparent trend. The ACF

plot in Figure 3b suggests no autocorrelation on residuals except for 3 slightly significant
lags. The pattern of the histogram of the residuals in Figure 3c is almost close to that of
normal distribution. Shapiro–Wilk and Jarque–Bera normality tests were conducted at a
5% significance level. The highly significant p-values from the Shapiro–Wilk (0.01) and
Jarque–Bera (4.006 × 10−10) tests suggest that the standardised residuals from the fitted
SARIMA model are not normally distributed. According to these tests, the assumption of
normality is violated.

Portmanteau Ljung–Box and Box–Pierce tests are used to test for serial autocorrelation
in the residuals of the chosen SARIMA(2, 1, 1)(0, 1, 1)12 model. The p-values from the Ljung–
Box (0.108) and Box–Pierce (0.149) tests are not statistically significant at a 5% significance
level. Therefore, the null hypothesis cannot be rejected. It is concluded that there is no
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autocorrelation in the residuals from the fitted SARIMA model (since only a few lags exceed
the standard error limits that are blue in Figure 3b). The slightly significant lags in Figure 3b
are due to random sampling error.
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In further analysis, the fitted SARIMA(2, 1, 1)(0, 1, 1)12 model was investigated for
outliers in the pre-intervention period using the R forecast package (Hyndman and Khan-
dakar 2008). An Innovative Outlier (IO) was detected at t120 corresponding to December
2018. The presence of the IO explains the violation of the normality assumption. However,
the histogram in Figure 4c suggests that the residuals from the SARIMA(2, 1, 1)(0, 1, 1)12
model might be considered almost normally distributed. The p-value from the Ljung–Box
(0.041) test is statistically significant at 5% significance level, suggesting autocorrelation
in the residuals; this value is close to 0.05, indicating that the Ljung–Box test will have a
non-significant p-value at 1% significance level. Moreover, the p-value from the Box–Pierce
test (0.064) is not statistically significant at 5% significance level. Therefore, there is no
notable autocorrelation in the residuals from the fitted SARIMA(2, 1, 1)(0, 1, 1)12 model
with the IO.
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3.1.2. Retail

The time series plot of total monthly retail sales is given in Figure 5. The series in
Figure 5 has an upward trend and exhibits a highly seasonal behaviour.
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Figure 5. Time series plot of total retail trade sales (Rt) from January 2009 to April 2023.

The first and seasonally differenced inverse transformed retail series in Figure 6 is
stationary, with no apparent trend. The p-value (0.01) from the Augmented Dickey-Fuller
(ADF) test is statistically significant at the 5% significance level. Therefore, the first and
seasonally differenced inverse transformed retail series is stationary.
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Masena and Shongwe (2024b) identified the pre-intervention model for SA’s total
monthly retail trade sales (Rt) as SARIMA(0, 1, 1)(0, 1, 0)12 with MLE parameter estimates
given in Table 2. However, the mathematical expression for SARIMA(0, 1, 1)(0, 1, 0)12 in
Masena and Shongwe (2024b) is incorrect. The correct mathematical expression of the
SARIMA(0, 1, 1)(0, 1, 0)12 model is given by:

(1 − B)
(

1 − B12
)

Yt = (1 − θ1B)εt (5)

where Yt =
1
Rt

, since the Box–Cox transformation suggested an inverse transformation to
the retail data Masena and Shongwe (2024b). The model parameter in Table 2 is statistically
significant at the 5% significance level.

Table 2. SARIMA(0, 1, 1)(0, 1, 0)12 model parameter estimates.

Parameter Estimate Standard Error Test Statistic p-Value

θ1 −0.868733 0.144873 −5.9965 2.02 × 10−9

The time series plot, the ACF and histogram of standardised residuals from the fitted
SARIMA(0, 1, 1)(0, 1, 0)12 model is provided in Figure 7. The standardised residuals in
Figure 7a are random with no apparent trend. The ACF plot in Figure 7b suggests no
autocorrelation on residuals except for 1 significant lag. The pattern of the histogram of the
residuals in Figure 7c almost resembles that of normal distribution.

The Portmanteau Ljung–Box and Box–Pierce tests are used to test for serial autocorre-
lation in the residuals of the chosen SARIMA(0, 1, 1)(0, 1, 0)12 model. The p-values from
both the Ljung–Box (0.208) and Box–Pierce (0.264) tests are not statistically significant at
5% significance level. Therefore, there is no autocorrelation in the residuals from the fitted
SARIMA(0, 1, 1)(0, 1, 0)12 model. Therefore, the SARIMA(0, 1, 1)(0, 1, 0)12 model may be
used to forecast future retail trade sales.
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3.2. Intervention Analysis: Wholesale and Retail Sales

Figure 8 presents a broadened view of the pandemic impact on both the total monthly
wholesale and retail trade sales from March 2020. In Figure 8a,b, forecasts generated using
the pre-intervention model are used as the counterfactual series. That is, how the series
would have evolved had the COVID-19 pandemic not occurred. Possible impact models of
the COVID-19 intervention on wholesale and retail trade sales are illustrated in Figure 9.
The graphical illustration in Figure 8a shows that it took 15 months (April 2020–May 2021)
for the wholesale series to recover from the negative impacts of the pandemic. Therefore,
it is concluded that the period from April 2020 to May 2021 is the intervention period in
the context of the wholesale data. The Stats SA preliminary statistical release on the South
African wholesale sector reported that April 2020 had the worst year-to-year (2019 to 2020)
percentage change of −42.9% (Stats SA 2024a).

Moreover, there were positive year-to-year comparisons in September 2020 (1.2%)
and December 2020 (2.9%). Most of the year-to-year comparisons in 2021 (2020 to 2021)
are relatively better than those reported in 2020, with positive percentage changes in May
2021 (10.6%), April 2021 (82%) and May 2021(45.4%). More importantly, these year-to-year
comparisons show that the pandemic had an immediate, negative impact on wholesale
trade sales, as depicted in Figure 9a. On the contrary, the retail series took only 8 months
to recover from the pandemic effects. Thus, the intervention period for the retail series is
from March 2020 until October 2020.

From a different perspective, the Stats SA preliminary statistical release on the retail
sector reported that April 2020 had the worst year-to-year (2019 to 2020) percentage change
of −46.1% (Stats SA 2024b). There were positive year-to-year comparisons in March 2020
(6.4%), highlighting that the retail sales series felt the negative impact of the pandemic
from the second month (1-month lag) in the intervention period, as illustrated in Figure 9b.
September 2020 (1.2%) and December 2020 (2.9%) were reported to have shown positive
year-to-year (2019 to 2020) percentage changes.
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3.3. Three Approaches to Fitting a Pulse Function: Wholesale and Retail
3.3.1. Trial-and-Error Approach

A pulse function is fitted on the counterfactual series to assess and model the effect
of the pandemic on each observation. Figure 10 presents the results of the trial-and-error
approach to fitting the pulse function.
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Figure 10. Quantifying the COVID-19 impact on (a) wholesale and (b) retail trade sales using pulse
function by trial-and-error approach.

The graphical analysis in Figure 10a shows that the fitted pulse function had a close to
perfect fit to the wholesale series in the intervention period. The fitted values undeniably
mimic the pattern of the actual/observed values in the same timeframe. The results are
the same for the retail trade sales in Figure 10b. In this approach, the covariate vector of
the fitted pulse function was determined through trial-and-error in R statistical software
version 4.3.2, using the ‘xreg’ parameter in the arima function of the forecast package
(Hyndman and Khandakar 2008).

3.3.2. Estimated Values/Actual Values (Quotient Approach)

The second approach includes finding the covariate vector of the pulse function
for each month by dividing the estimated or fitted value from the counterfactual series
(forecasts) by the corresponding actual/observed value for that month throughout the
intervention period. Figure 11 presents the results of the fit from this approach. Figure 11a,b
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show that fitting a pulse function in the counterfactual series using the quotient approach
does not yield a better fit than the results shown in Figure 10 by the trial-and-error approach
for both sectors. Although the series mimics the overall pattern of actual values in the
intervention period, it could not capture the significant loss in sales recorded in April 2020
and a few subsequent points in the intervention period on both datasets.

Economies 2024, 12, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 11. Capturing the COVID-19 impact on (a) wholesale and (b) retail trade sales using pulse 
function by fitted values/observed values approach. 

3.3.3. 𝑃௧ = 1, Where 𝑡 = 𝑇 or 0 Otherwise 
The third and final approach to fitting a pulse function is expressed in Equation (2), 

where the covariate vector in the pulse function is assigned a constant value of 1 through-
out the intervention period and 0 in the pre-intervention period. This is the most com-
mon approach in interrupted time series intervention analysis (Pridemore et al. 2014; In-
yang et al. 2023; Bartholomew et al. 2023). The results are shown in Figure 12. Although 
the fitted/estimated values from this approach managed to detect the negative impact of 
the pandemic on the actual trade sales, they do not capture its effect accurately. Figure 12a 
shows that fitting a pulse function using a constant value of 1 in the covariate vector does 
not provide a good fit to the wholesale series in the intervention period. The results are 
worse for the retail data shown in Figure 12b. 

Figure 11. Capturing the COVID-19 impact on (a) wholesale and (b) retail trade sales using pulse
function by fitted values/observed values approach.

3.3.3. Pt = 1, Where t = Tk or 0 Otherwise

The third and final approach to fitting a pulse function is expressed in Equation (2),
where the covariate vector in the pulse function is assigned a constant value of 1 throughout
the intervention period and 0 in the pre-intervention period. This is the most common
approach in interrupted time series intervention analysis (Pridemore et al. 2014; Inyang
et al. 2023; Bartholomew et al. 2023). The results are shown in Figure 12. Although the
fitted/estimated values from this approach managed to detect the negative impact of the
pandemic on the actual trade sales, they do not capture its effect accurately. Figure 12a
shows that fitting a pulse function using a constant value of 1 in the covariate vector does
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not provide a good fit to the wholesale series in the intervention period. The results are
worse for the retail data shown in Figure 12b.
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3.4. Approach Selection: Wholesale

Table 3 summarises the results of model selection and adequacy metrics from the three
approaches used in fitting the pulse function on the interrupted wholesale series in the inter-
vention period. From the results in Table 3, it is evident that Approach 1 is more appropriate
in capturing the impact of the COVID-19 intervention on South African wholesale trade
sales, as shown by the lowest Akaike’s information criterion (AIC), Bayesian information
criterion (BIC), root mean squared error (RMSE) and the mean absolute percentage error
(MAPE) values. Therefore, the model with the pulse function fitted by trial and error can be
used to quantify the impact of the COVID-19 intervention on the total monthly wholesale
trade sales.
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Table 3. AIC, BIC, RMSE, and MAPE for three approaches to fitting pulse functions to the whole-
sale series.

AIC BIC RMSE MAPE

Approach 1: Trial-and-Error 2786.29 2803.77 4895.173 1.887742

Approach 2: Fitted values/Observed values 2848.31 2865.79 15,312.13 5.697709

Approach 3: Pt = 1, if t = T0 2909.66 2927.13 23,184.31 9.750518

3.5. Intervention Effects: Wholesale

Table 4 summarises the estimated intervention impact of the COVID-19 pandemic
throughout the 15 months of the intervention period (highlighting the detrimental effect on
wholesale trade sales). The percentage changes in Table 4 were calculated using Equation
(6), expressed as:

% Change =
Fitted valuesTk − Predicted valuesTk

Predicted valuesTk

× 100 (6)

Table 4. Summary of COVID-19 estimated effects during 15 months of the intervention.

Date Vector Covariates % Change Estimated COVID-19 Effect (Million)

Mar-2020 −0.4 −5.3% –ZAR 12,022

Apr-2020 −3.0 −43.4% –ZAR 91,017

May-2020 −1.7 −23.3% –ZAR 52,399

Jun-2020 −0.4 −7.2% –ZAR 16,054

Jul-2020 −0.5 −10.4% –ZAR 24,100

Aug-2020 −0.3 −6.9% –ZAR 15,867

Sep-2020 0.0 −5.1% –ZAR 11,943

Oct-2020 −0.3 −5.6% –ZAR 14,060

Nov-2020 −0.5 −10.3% –ZAR 25,798

Dec-2020 0.0 −3.5% –ZAR 7657

Jan-2021 −0.6 −12.2% –ZAR 25,160

Feb-2021 0.0 −2.1% –ZAR 4598

Mar-2021 0.3 0.2% ZAR 454

Apr-2021 0.0 −3.2% –ZAR 7087

May-2021 0.6 2.1% ZAR 4970

Total Effect –ZAR 302,339

As shown in Figure 13, the hardest hit month was April 2020, with a 43.4% drop or
ZAR 91,017 (million) fewer sales than it would have accumulated in the absence of the
pandemic. May 2021 had a significantly high percentage change relative to all other months
in the intervention period. This shows that not all months were negatively affected.
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3.6. Approach Selection: Retail

Table 5 summarises the results of model selection and adequacy metrics from the
three approaches used in fitting the pulse function on the perturbed retail series in the
intervention period. Similar to the wholesale series, Approach 1 is more appropriate for
capturing the impact of the COVID-19 intervention on South African retail trade sales, as
shown by the lowest AIC, BIC, RMSE, and MAPE values. Therefore, the model with the
pulse function fitted by trial and error can be used to quantify the impact of the COVID-19
intervention on the total monthly retail trade sales.

Table 5. AIC, BIC, RMSE and MAPE for three approaches to fitting a pulse function for the Retail series.

AIC BIC RMSE MAPE

Approach 1: Trial-and-Error 2225.67 2234.25 1106.46 0.8209

Approach 2: Fitted values/Observed values 2423.74 2432.32 10,141.92 11.4421

Approach 3: Pt = 1, if t = T0 2489.8 2498.38 13,167.4 13.9439

3.7. Intervention Effects: Retail

Table 6 summarises the estimated intervention impact of the pandemic on the retail
trade series and is graphically illustrated in Figure 14. The percentage changes in Table 6
were calculated using Equation (6). The retail sector recorded a 48.1% drop or R43,534 (mil-
lion) fewer retail sales than would have been accumulated in the absence of the pandemic
in April 2020. This clearly indicates that April 2020 was the hardest-hit month in the
intervention period. The plot of the estimated COVID-19 pandemic on the retail trade
sales from March 2020 to October 2020, a total of 8 months, with a collective loss of ZAR
87,836 million.
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Table 6. Summary of COVID-19 estimated effects during 8 months in the intervention period.

Date Vector Covariates % Change Estimated COVID-19 Effect (Million)

Mar-2020 0.2 2.1% ZAR 1935

Apr-2020 −4.5 −48.1% −ZAR 43,534

May-2020 −1.6 −16.3% −ZAR 15,530

Jun-2020 −1.0 −9.5% −ZAR 8,866

Jul-2020 −1.0 −9.5% −ZAR 8744

Aug-2020 −0.7 −6.3% −ZAR 6073

Sep-2020 −0.5 −4.2% −ZAR 3966

Oct-2020 −0.4 −3.2% −ZAR 3058

Total Effect −ZAR 87,836
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4. Conclusions

This study aimed to estimate and quantify the intervention effects of the COVID-19
pandemic on the South African total monthly wholesale and retail sales using the ARIMA
model with three approaches to fitting a pulse function covariate vector by: (i) trial-and-
error, (ii) the quotient of fitted values and actual values (Quotient Approach) and (iii) a
constant value of 1 throughout the intervention period. Model selection and adequacy
metrics (AIC, BIC, RMSE, and MAPE) indicated that the trial-and-error method produced
a covariate vector with the best-fitting pulse function in the intervention period for both
datasets. Thus, the pulse function fitting using trial and error provides a new perspective
on the ITS approach to intervention analysis. Interestingly, this approach has not been used
in any studies or literature we consulted.

In this study, it is shown using the pulse function with the trial-and-error method
that the pandemic had an immediate, severe negative impact on wholesale trade sales,
lasting for 15 months (from March 2020 to May 2021). The retail sales were also negatively
affected, but for 8 months only (March 2020 to October 2020), with a 1-month lag or delay,
suggesting that the series felt the negative effects of the pandemic one month into the
intervention period. The 8-month recovery period of the South African retail sector shows
it is more resilient than the wholesale sector. In the analysis, it was shown that sales in both
sectors were hardest hit in April 2020, with an estimated loss of ZAR 91,017 million and
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ZAR 43,534 million for the wholesale and retail trade sales, respectively. This is attributed
to the implementation of the strict national lockdown, which came into effect on 27 March
2020 in South Africa. Furthermore, this is reflected by the extremely low year-to-year
(2019–2020) comparisons and percentage changes between the counterfactual forecasts and
the actual/observed values. In the intervention period, the total estimated losses in sales
for the wholesale and retail sectors were ZAR 302,339 and ZAR 87,836 million, respectively,
indicating that the wholesale industry had the worst losses.

The results of this study will strengthen the goal/objective to provide accurate and
reliable forecasting techniques and approaches to quantifying the net effect of large-scale
interventions on the two South African sectors. Given the importance of the wholesale and
retail trade sectors in the South African economy (which accounts for a significant portion
of the GDP and workforce), these intervention quantification efforts will aid businesses
and policymakers in assessing the effectiveness of their countermeasures and allow them
sufficient time to improve and allocate their resources efficiently to prepare for future shocks
or interruptions. Using a time-series approach, one can analyse the trend of wholesale and
retail trade sales before, during, and after the COVID-19 pandemic to identify the extent of
the shock and forecast the industry’s future sales trajectory.

As part of future work, other researchers can reevaluate the work discussed in Makoni
and Chikobvu (2023a, 2023b, 2023c), Chipumuro et al. (2024), and Chikobvu and Makoni
(2024) to fit the pulse function model discussed here to conduct a proper quantification
analysis of the intervention effect by estimating the actual loss in sales or revenue during
the intervention (i.e., GFC or COVID-19) period in the South African economy. In addition,
other alternative models may be more appropriate in the model selection process; some
of these include hybrid models and machine learning methods. These can be pursued as
future research and compared with the fitted model here.

5. Study Limitations

This study did not provide wholesale and retail trade sales forecasts in the post-
intervention period using the selected ARIMAX intervention models. Moreover, the retail
trade sales appear to have been subjected to a second intervention from June to July 2021;
however, this plausible intervention was not investigated because the scope of this research
was to assess the initial effect of COVID-19 on the two sectors in South Africa.
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