Technological Innovation and Agricultural Productivity in Nigeria Amidst Oil Transition: ARDL Analysis
Abstract
:1. Introduction
2. Empirical Review
2.1. Energy Diversification and Agricultural Development
2.2. Climate Change, Technology, and Food Security
2.3. Sustainable Land Management and Agricultural Productivity
2.4. Agricultural Programs and Gender-Based Disparities
2.5. Theoretical Review of Literature
2.5.1. Solow–Swan Growth Model
2.5.2. Endogenous Growth Theory
2.5.3. Innovation Diffusion Theory
3. Data and Estimation Techniques
3.1. Data
3.2. Estimation Technique
4. Results
4.1. Descriptive Statistics
4.2. Correlation Matrix
4.2.1. Objectives 1: Impact of Technological Innovation on Agricultural Productivity
4.2.2. Objectives 2: Impact of Agricultural Innovation on Agricultural Output
4.2.3. Objective 3: Comparison of the Impact of Technological Innovation on Oil and Agriculture
4.3. Discussion of Results
4.4. Recommendations
- Invest in agricultural technology infrastructure: The government and relevant stakeholders should prioritize substantial investment in agricultural infrastructure. This includes funding for advanced irrigation systems, precision agriculture tools, and mechanized farming equipment. These investments can help mitigate the diminishing returns and high technology costs currently limiting agricultural productivity.
- Enhance agricultural education and training: To address the lack of the skilled manpower necessary for effective implementation of technological practices, educational programs and vocational training in agricultural technology should be expanded. Universities and technical institutions should collaborate with agricultural technology companies to ensure that farmers and agricultural professionals are well-trained in the latest innovations.
- Strengthen agricultural credit schemes: Revise the Agricultural Credit Guarantee Scheme Fund (ACGSF) to ensure the proper allocation and utilization of funds. Implement robust monitoring and evaluation frameworks to prevent misappropriation of funds and ensure that financial support is effectively enhancing technological adoption and productivity in the agricultural sector.
- Promote research and development in agriculture: Increase funding and support for research and development (R&D) in agriculture to foster innovation. Partnerships between government agencies, research institutions, and private sector entities should be encouraged to develop and disseminate new agricultural technologies tailored to Nigeria’s specific climatic and soil conditions.
- Implement favorable trade policies: Reform trade policies to support the agricultural sector. Reducing trade barriers and providing incentives for agricultural exports can enhance market access for farmers, allowing them to benefit from economies of scale and better integrate into global value chains, which can incentivize the adoption of technological innovations.
- Encourage private sector participation: Foster a conducive environment for private sector investments in agricultural technology. This includes creating favorable tax policies, providing subsidies for technology adoption, and establishing public-private partnerships to facilitate the development and distribution of agricultural technologies. Enhanced collaboration with technology firms can drive innovation and efficiency in the agricultural sector.
5. Conclusions
Limitations of the Study
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abah, Esther Enuwa, Clement Owoicho Momoh, and Samuel Olushola Fadairo. 2024. Endogenous measures for stifling corruption within selected agricultural and food development projects in Benue State, North Central, Nigeria. Journal of Economic Criminology 4: 100060. [Google Scholar] [CrossRef]
- Adeagbo, O. A., A. S. Bamire, A. A. Akinola, A. D. Adeagbo, T. S. Oluwole, O.A. Ojedokun, T. O. Ojo, H. S. Kassem, and C. U. Emenike. 2023. The level of adoption of multiple climate change adaptation strategies: Evidence from smallholder maize farmers in Southwest Nigeria. Scientific African 22: e01971. [Google Scholar] [CrossRef]
- Adenle, Ademola A., Sébastien Boillat, and Chinwe Ifejika Speranza. 2022. Key dimensions of land users’ perceptions of land degradation and sustainable land management in Niger State, Nigeria. Environmental Challenges 8: 100544. [Google Scholar] [CrossRef]
- Aghion, Philippe, and Peter Howitt. 1992. A growth model with creative destruction. Econometrica 60: 323–51. [Google Scholar] [CrossRef]
- Akinola, Adebayo, Ayodeji Kehinde, Akeem Tijani, Adeolu Ayanwale, Felicia Adesiyan, Victoria Tanimonure, Ayodeji Ogunleye, and Temitope Ojo. 2023. Impact of membership in agricultural cooperatives on yield of smallholder tomato farmers in Nigeria. Environmental and Sustainability Indicators 20: 100313. [Google Scholar] [CrossRef]
- Amare, Mulubrhan, and Bedru Balana. 2023. Climate change, income sources, crop mix, and input use decisions: Evidence from Nigeria. Ecological Economics 211: 107892. [Google Scholar] [CrossRef]
- Amzat, Jimoh, Kafayat Aminu, Victor I. Kolo, Ayodele A. Akinyele, Janet A. Ogundairo, and Maryann C. Danjibo. 2020. Coronavirus outbreak in Nigeria: Burden and socio-medical response during the first 100 days. International Journal of Infectious Diseases 98: 218–24. [Google Scholar] [CrossRef]
- Andati, P., E. Majiwa, M. Ngigi, R. Mbeche, and J. Ateka. 2023. Effect of climate-smart agriculture technologies on crop yields: Evidence from potato production in Kenya. Climate Risk Management 41: 100539. [Google Scholar] [CrossRef]
- Ani, R. A., and B. Nuhu. 2010. Impact of corruption on farm production and profit. Russian Journal of Agricultural and Socio-Economic Sciences 2: 3. [Google Scholar]
- Apraku, Amos, John F. Morton, and Benjamin Apraku Gyampoh. 2021. Climate change and small-scale agriculture in Africa: Does indigenous knowledge matter? Insights from Kenya and South Africa. Scientific African 12: e00821. [Google Scholar] [CrossRef]
- Aragie, E., Jean Balié, C. Morales, and Karl Pauw. 2023. Synergies and trade-offs between agricultural export promotion and food security: Evidence from African economies. World Development 172: 106368. [Google Scholar] [CrossRef]
- Awolala, David, Joseph Mutemi, Elijah Adefisan, Philip Antwi-Agyei, Andrea Taylor, Richard Muita, Emily Bosire, Bethwel Mutai, and Elias Nkiaka. 2023. Economic value and latent demand for agricultural drought forecast: Emerging market for weather and climate information in Central-Southern Nigeria. Climate Risk Management 39: 100478. [Google Scholar] [CrossRef]
- Aworunse, Oluwadurotimi Samuel, Honey Aanu Olorunsola, Eze Frank Ahuekwe, and Olawole Odun Obembe. 2023. Towards a sustainable bioeconomy in a post-oil era Nigeria. Resources, Environment and Sustainability 11: 100094. [Google Scholar] [CrossRef]
- Ayanwale, A. B., T. O. Ojo, and A. A. Adekunle. 2023. Estimating the distributional impact of innovation platforms on income of smallholder maize farmers in Nigeria. Heliyon 9: e16026. [Google Scholar] [CrossRef]
- Aye, Goodness C., and Nicholas M. Odhiambo. 2021. Oil prices and agricultural growth in South Africa: A threshold analysis. Resources Policy 73: 102196. [Google Scholar] [CrossRef]
- Babatunde, Abdulhammed Opeyemi, Ahmad Abdullateef Abdulkareem, Foluso Olugbenga Akinwande, Aminat Olaitan Adebayo, Ebelechukwu Tabitha Omenogor, Yusuff Adebayo Adebisi, and Esther Bosede Ilesanmi. 2021. Leveraging mobile health technology towards achieving universal health coverage in Nigeria. Public Health in Practice 2: 100120. [Google Scholar] [CrossRef] [PubMed]
- Baiyegunhi, L. J. S., F. Akinbosoye, and L. O. Bello. 2022. Welfare impact of improved maize varieties adoption and crop diversification practices among smallholder maize farmers in Ogun State, Nigeria. Heliyon 8: e09338. [Google Scholar] [CrossRef]
- Balana, Bedru B., and Motunrayo A. Oyeyemi. 2022. Agricultural credit constraints in smallholder farming in developing countries: Evidence from Nigeria. World Development Sustainability 1: 100012. [Google Scholar] [CrossRef]
- Bello, Lateef Olalekan, Lloyd J. S. Baiyegunhi, Gideon Danso-Abbeam, and Abiodun A. Ogundeji. 2021. Gender decomposition in smallholder agricultural performance in rural Nigeria. Scientific African 13: e00875. [Google Scholar] [CrossRef]
- Ben Salem, Leila, Ridha Nouira, Khaled Jeguirim, and Christophe Rault. 2022. The determinants of crude oil prices: Evidence from ARDL and nonlinear ARDL approaches. Resources Policy 79: 103085. [Google Scholar] [CrossRef]
- Chatziantoniou, Ioannis, Michail Filippidis, George Filis, and David Gabauer. 2021. A closer look into the global determinants of oil price volatility. Energy Economics 95: 105092. [Google Scholar] [CrossRef]
- Chiaramonti, David, and Kyriakos Maniatis. 2020. Security of supply, strategic storage and COVID-19: Which lessons learnt for renewable and recycled carbon fuels, and their future role in decarbonizing transport? Applied Energy 271: 115216. [Google Scholar] [CrossRef] [PubMed]
- Djoumessi, Yannick Fosso. 2022. New trend of agricultural productivity growth in Sub-Saharan Africa. Scientific African 18: e01410. [Google Scholar] [CrossRef]
- Edafe, Oluwatosin D., Evans Osabuohien, Oluwatoyin Matthew, Isaiah Olurinola, Joel Edafe, and Romanus Osabohien. 2023. Large-scale agricultural land investments and food security in Nigeria. Heliyon 9: e19941. [Google Scholar] [CrossRef]
- Edohen, O. P., and O. O. Ikelegbe. 2018. Labour use types, agricultural income of farm households in Nigeria: An evidence from rural Benin. Knowledge Review 37: 1–9. [Google Scholar]
- Ejem, Agwu Agwu, Charity Aremu, Olanrewaju O. P. Ajakaiye, Charity Ben-Enukora, Oluwakemi E. Akerele-Popoola, T. I. Ibiwoye, and A. F. Olaniran. 2023. Perspectives on communicating 21st-century agricultural innovations to Nigerian rural farmers. Journal of Agriculture and Food Research 11: 100511. [Google Scholar] [CrossRef]
- Eke, Ihuoma Chikulirim, F Felix Awara Eke, and Awara Emeng Edom. 2019. Technological advancement and economic growth in Nigeria. African Journal of Applied and Theoretical Economics 5: 124–45. [Google Scholar]
- Eleke, P. N., M. Jibril, and J. M. Nte. 2019. A review of the effect of crude oil exploration on agriculture: A case study of the Niger Delta region. Journal of Agricultural Economics, Environment, and Social Sciences 5: 87–98. [Google Scholar]
- Etuk, Ekanem Abasiekong, and Josephine Oluwatoyin Ayuk. 2021. Agricultural commercialisation, poverty reduction, and pro-poor growth: Evidence from Commercial Agricultural Development Project in Nigeria. Heliyon 7: e06818. [Google Scholar] [CrossRef]
- Eweoya, Ibukun, Senanu R. Okuboyejo, Oluwole A. Odetunmibi, and Babafemi O. Odusote. 2021. An empirical investigation of acceptance, adoption, and the use of e-agriculture in Nigeria. Heliyon 7: e07588. [Google Scholar] [CrossRef]
- Federal Ministry of Agriculture and Rural Development (FMARD). 2015. Growth Enhancement Scheme. Available online: http://www.fmard.gov.ng/Growth-Enhancement-Scheme (accessed on 15 October 2023).
- Frey, Eric. 2017. The Solow model and standard of living. Undergraduate Journal of Mathematical Modeling: One + Two 7: 5. [Google Scholar] [CrossRef]
- Gordon, Robert J. 2012. Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds. NBER Working Paper No. 18315. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Grossman, Gene M., and Elhanan Helpman. 1991. Trade, knowledge spillovers, and growth. European Economic Review 35: 517–26. [Google Scholar] [CrossRef]
- Habtewold, Tsegaye Mulugeta, and Almas Heshmati. 2023. Impacts of improved agricultural technologies on food security and child nutrition in rural Ethiopia. Cogent Food & Agriculture 9: 2276565. [Google Scholar] [CrossRef]
- Ikuemonisan, Edamisan Stephen, Adebayo B. Abass, Shiferaw Feleke, and Igbekele Ajibefun. 2022. Influence of agricultural degree programme environment on career in agribusiness among college students in Nigeria. Journal of Agriculture and Food Research 7: 100256. [Google Scholar] [CrossRef]
- Isukuru, Efe Jeffery, Akinyemi Olufemi Ogunkeyede, Adedoyin Ayorinde Adebayo, and Matthew Freedom Uruejoma. 2023. Potentials of bamboo and its ecological benefits in Nigeria. Advances in Bamboo Science 4: 100032. [Google Scholar] [CrossRef]
- Jacal, Samara, Franziska Brigitte Straubinger, Emmanuel Olatunbosun Benjamin, and Gertrud Buchenrieder. 2022. Economic costs and environmental impacts of fossil fuel dependency in Sub-Saharan Africa: A Nigerian dilemma. Energy for Sustainable Development 70: 45–53. [Google Scholar] [CrossRef]
- Jiaduo, Erti, Md. Golam Kibria, Nazhat Nury Aspy, Ehsan Ullah, and Md. Emran Hossain. 2023. The impact of agricultural employment and technological innovation on the environment: Evidence from BRICS nations considering a novel environmental sustainability indicator. Sustainability 15: 15083. [Google Scholar] [CrossRef]
- Kayode, Olusola Titilope, A. P. Aizebeokhai, and A. M. Odukoya. 2022. Geophysical and contamination assessment of soil spatial variability for sustainable precision agriculture in Omu-Aran Farm, Northcentral Nigeria. Heliyon 8: e08976. [Google Scholar] [CrossRef]
- Kianguebene-Koussingounina, Chrisfanel E., Jerry O. Olajide-Kayode, Ibrahim A. Oyediran, Raymond Webrah Kazapoe, Ebenezer Ebo Yahans Amuah, Bawa Naziru, Aliyu Ohiani Umaru, and Millicent Obeng Addai. 2023. Geostatistical assessment of soils in Ibadan, Southwest Nigeria: Focus on agricultural lands. Environmental and Sustainability Indicators 19: 100287. [Google Scholar] [CrossRef]
- Kolapo, Adetomiwa, Adekunle John Didunyemi, Oluwatoba John Aniyi, and Oluwatosin Emmanuel Obembe. 2022. Adoption of multiple sustainable land management practices and its effects on productivity of smallholder maize farmers in Nigeria. Resources, Environment and Sustainability 10: 100084. [Google Scholar] [CrossRef]
- Kolapo, Adetomiwa, and Adeyera James Kolapo. 2023. Implementation of conservation agricultural practices as an effective response to mitigate climate change impact and boost crop productivity in Nigeria. Journal of Agriculture and Food Research 12: 100557. [Google Scholar] [CrossRef]
- Latzer, Hélène, Kiminori Matsuyama, and Mathieu Parenti. 2019. Reconsidering the Market Size Effect in Innovation and Growth. Global Poverty Research Lab Working Paper. Brussels: BrusselsL Universite Libre de Bruxelles, pp. 19–106. [Google Scholar] [CrossRef]
- Lawal, Adedoyin Isola, Abiola John Asaleye, Joseph Iseolorunkanmi, and Olabisi Popoola. 2018. Economic Growth, Agricultural Output and Tourism Development in Nigeria: An Application of the ARDL Bound Testing Approach. Journal of Environmental Management and Tourism 9: 786–794. [Google Scholar] [CrossRef]
- Lawal, Adedoyin Isola, Awolusi Frank, and Babalola Kehinde Leke. 2015. Can Nigeria achieve millennium development goals? The Journal of Social Sciences Research. Available online: http://eprints.lmu.edu.ng/3065/ (accessed on 11 May 2024).
- Lawal, Lawal, Adedoyin Isola, Tony I. Nwanji, Abiola Asaleye, Victor Ahmed, and Mariam Camarero, eds. 2016. Economic growth, financial development and trade openness in Nigeria: An application of the ARDL bound testing approach. Cogent Economics & Finance 4: 1258810. [Google Scholar] [CrossRef]
- Lucas, Robert E., Jr. 1988. On the mechanics of economic development. Journal of Monetary Economics 22: 3–42. [Google Scholar] [CrossRef]
- Maertens, Miet, Oyakhilomen Oyinbo, Tahirou Abdoulaye, and Jordan Chamberlin. 2023. Sustainable maize intensification through site-specific nutrient management advice: Experimental evidence from Nigeria. Food Policy 121: 102546. [Google Scholar] [CrossRef]
- Mandal, Jajati, Waheed Ariyo Bakare, Mohammad Mahmudur Rahman, Md Aminur Rahman, Abu Bakkar Siddique, Effiom Oku, Michael D. Wood, Simon M. Hutchinson, and Debapriya Mondal. 2022. Varietal differences influence arsenic and lead contamination of rice grown in mining impacted agricultural fields of Zamfara State, Nigeria. Chemosphere 305: 135339. [Google Scholar] [CrossRef]
- Mardiana, Harisa, and Esther Kembauw. 2021. The Role of Diffusion of Innovation in Agricultural to Compete in Asean Community. IOP Conference Series: Earth and Environmental Science 755: 012074. [Google Scholar] [CrossRef]
- Matthew, Oluwatoyin A., Romanus Osabohien, Olanrewaju Olaniyi Omosehin, Nasreen Jawaid, Timothy Aderemi, Opeyemi Olanrewaju, and Patience N. Evans-Osabuohien. 2023. Information and communication technology deployment and agricultural value chain nexus in Nigeria. Heliyon 9: e19043. [Google Scholar] [CrossRef]
- Melesse, Mequanint B., Philip Miriti, Geoffrey Muricho, Chris O. Ojiewo, and Victor Afari-Sefa. 2023. Adoption and impact of improved groundnut varieties on household food security in Nigeria. Journal of Agriculture and Food Research 14: 100817. [Google Scholar] [CrossRef]
- Mwangi, Margaret, and Samuel Kariuki. 2015. Factors determining adoption of new agricultural technology by smallholder farmers in developing countries. Journal of Economics and Sustainable Development 6: 215–232. [Google Scholar]
- National Information Technology Development Agency (NITDA). 2015. eAgriculture Portal. Available online: http://www.eagriculture.org.ng/eAgricPortal/ (accessed on 11 May 2024).
- Ndaghu, Ndonkeu Nathanel, Tahirou Abdoulaye, Amina Mustapha, Djomo Choumbou Raoul Fani, Rayner Tabetando, Ukpe Udeme Henrietta, and Sahbong Lucy Kamsang. 2023. Gender differentiation on the determinants and intensity of adoption of Purdue Improved Cowpea Storage (PICS) bags in Northern Nigeria. Heliyon 9: e23026. [Google Scholar] [CrossRef]
- Ogunsolu, Olamide. 2021. Technological Transformation of the Agricultural Sector in Nigeria: An Antidote for Economic Recession. Tallinn: Tallinn University of Technology, School of Business and Governance. [Google Scholar]
- Ojo, Temitope O., and Lloyd JS Baiyegunhi. 2023. Gender differentials on productivity of rice farmers in Southwestern Nigeria: An Oaxaca-Blinder decomposition approach. Heliyon 9: e22724. [Google Scholar] [CrossRef]
- Okafor, Chukwuebuka C., Chinelo A. Nzekwe, Charles C. Ajaero, Juliet C. Ibekwe, and Festus A. Otunomo. 2022. Biomass utilization for energy production in Nigeria: A review. Cleaner Energy Systems 3: 100043. [Google Scholar] [CrossRef]
- Olayide, Olawale Emmanuel, Isaac Kow Tetteh, and Labode Popoola. 2016. Differential impacts of rainfall and irrigation on agricultural production in Nigeria: Any lessons for climate-smart agriculture? Agricultural Water Management 178: 30–36. [Google Scholar] [CrossRef]
- Olujobi, Olusola Joshua, Uchechukwu Emena Okorie, Elizabeta Smaranda Olarinde, and Adetutu Deborah Aina-Pelemo. 2023. Legal responses to energy security and sustainability in Nigeria’s power sector amidst fossil fuel disruptions and low carbon energy transition. Heliyon 9: e17912. [Google Scholar] [CrossRef]
- Otekunrin, Olutosin A., Oluwaseun A. Otekunrin, S. Momoh, and Idris A. Ayinde. 2019. How far has Africa gone in achieving the zero-hunger target? Evidence from Nigeria. Global Food Security 22: 1–12. [Google Scholar] [CrossRef]
- Oyetunde-Usman, Zainab, Kehinde Oluseyi Olagunju, and Oyinlola Rafiat Ogunpaimo. 2021. Determinants of adoption of multiple sustainable agricultural practices among smallholder farmers in Nigeria. International Soil and Water Conservation Research 9: 241–8. [Google Scholar] [CrossRef]
- Parlasca, Martin C., Constantin Johnen, and Matin Qaim. 2022. Use of mobile financial services among farmers in Africa: Insights from Kenya. Global Food Security 32: 100590. [Google Scholar] [CrossRef]
- Romer, Paul M. 1987. Growth based on increasing returns due to specialization. The American Economic Review 77: 56–62. [Google Scholar]
- Romer, Paul M. 1990. Endogenous technological change. Journal of Political Economy 98: S71–S102. [Google Scholar] [CrossRef]
- Rongjian, Yu, Ikpe-etim Nathan Obomufok, and N. Khan. 2019. The role of advanced technology in agricultural innovation. Modern Concepts in Developmental Agronomy 4: MCDA.000576. [Google Scholar] [CrossRef]
- Sarimiento, Prime. 2000. Agriculture Weighed Down by Corruption and Waste. Philippine Centre for Investigative Journalism. Available online: http://www.pcij.org/stories/2000/agri.html (accessed on 12 October 2009).
- Solow, Robert M. 1956. A contribution to the theory of economic growth. The Quarterly Journal of Economics 70: 65–94. [Google Scholar] [CrossRef]
- Tabash, Mosab I., Ezekiel Oseni, Adel Ahmed, Yasmeen Elsantil, Linda Nalini Daniel, and Adedoyin Isola Lawal. 2024. Pathway to a Sustainable Energy Economy: Determinants of Electricity Infrastructure in Nigeria. Sustainability 16: 2953. [Google Scholar] [CrossRef]
- Tabe-Ojong, Martin, Ghislain BD Aihounton, and Jourdain C. Lokossou. 2023. Climate-smart agriculture and food security: Cross-country evidence from West Africa. Global Environmental Change 81: 102697. [Google Scholar] [CrossRef]
- Teklu, Abyiot, Belay Simane, and Mintewab Bezabih. 2023. Multiple adoption of climate-smart agriculture innovation for agricultural sustainability: Empirical evidence from the Upper Blue Nile Highlands of Ethiopia. Climate Risk Management 39: 100477. [Google Scholar] [CrossRef]
- Uji, Wilfred Terlumun. 2020. Corruption and national development in Nigeria: An appraisal. Global Journal of Human-Social Science: Sociology and Culture 15: 9. [Google Scholar]
- Valadkhani, Abbas, Arezoo Ghazanfari, Jeremy Nguyen, and Amir Moradi-Motlagh. 2021. The asymmetric effects of COVID-19 on wholesale fuel prices in Australia. Economic Analysis and Policy 71: 255–66. [Google Scholar] [CrossRef]
- Wang, Yun, and Yuhao Qian. 2024. Driving factors to agriculture total factor productivity and its contribution to just energy transition. Environmental Impact Assessment Review 105: 107369. [Google Scholar] [CrossRef]
- Wossen, Tesfamicheal, Abebe Menkir, Arega Alene, Tahirou Abdoulaye, Sam Ajala, Baffour Badu-Apraku, Melaku Gedil, Wendie Mengesha, and Silvestro Meseka. 2023. Drivers of transformation of the maize sector in Nigeria. Global Food Security 38: 100713. [Google Scholar] [CrossRef]
- Yilanci, Veli, Ilham Haouas, Onder Ozgur, and Samuel Asumadu Sarkodie. 2021. Energy diversification and economic development in emergent countries: Evidence from Fourier function-driven bootstrap panel causality test. Frontiers in Energy Research 9: 632712. [Google Scholar] [CrossRef]
AGTFP | LOG(AGO) | AGVA | OLR | TFP | GFCF | LOG(ACGSF) | TRADE | EXR | LOG(PAT) | LOG(SCI) | CPS | FDI | INR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Units of Measurement | Index, 2015 = 100 | Naira | % of GDP | % of GDP | % of GDP | Naira | % of GDP | Local Currency per USD | Count of Patent Applications | Count of Scientific Publications | % of GDP | % of GDP | % | |
Mean | 96.38836 | 7.300383 | 22.88138 | 11.51401 | 0.363506 | 35.63058 | 13.46867 | 31.67436 | 108.0868 | 6.200730 | 7.136119 | 9.387385 | 1.476171 | 0.453578 |
Median | 99.78920 | 7.608584 | 22.23471 | 11.14464 | 0.372391 | 33.10736 | 13.49881 | 33.71975 | 111.2313 | 6.143809 | 6.954143 | 8.234514 | 1.087951 | 4.310292 |
Maximum | 111.0581 | 10.62440 | 36.96508 | 28.70544 | 0.695784 | 89.38613 | 16.38023 | 53.27796 | 401.1520 | 7.022868 | 8.974612 | 19.62560 | 5.790847 | 18.18000 |
Minimum | 75.15485 | 2.836278 | 12.24041 | 1.573876 | 0.115230 | 14.16873 | 10.11273 | 9.135846 | 0.617708 | 5.459586 | 5.290134 | 4.957522 | 0.183822 | −65.85715 |
Std. Dev. | 11.26548 | 2.535542 | 4.589772 | 6.173340 | 0.181204 | 18.96943 | 2.115533 | 12.42937 | 109.9700 | 0.408439 | 0.947922 | 3.559186 | 1.235819 | 14.25917 |
Skewness | −0.759089 | −0.403899 | 0.440302 | 0.477526 | 0.215744 | 1.087484 | −0.046453 | −0.260245 | 0.978891 | 0.138853 | 0.045019 | 1.039979 | 1.766764 | −2.717477 |
Kurtosis | 2.335507 | 1.735150 | 4.732787 | 2.875631 | 1.677406 | 3.924531 | 1.413048 | 2.128483 | 3.189257 | 2.012887 | 2.104805 | 3.625500 | 6.193077 | 12.91104 |
Jarque–Bera | 4.691796 | 3.847817 | 6.454107 | 1.584635 | 3.145085 | 9.541464 | 4.317038 | 1.760356 | 6.609079 | 1.752519 | 1.349135 | 8.059020 | 38.74765 | 218.2694 |
Probability | 0.095761 | 0.146035 | 0.039674 | 0.452794 | 0.207517 | 0.008474 | 0.115496 | 0.414709 | 0.036716 | 0.416337 | 0.509377 | 0.017783 | 0.000000 | 0.000000 |
Sum | 3951.923 | 299.3157 | 938.1364 | 472.0742 | 14.17674 | 1460.854 | 552.2154 | 1298.649 | 4431.558 | 248.0292 | 285.4448 | 384.8828 | 60.52301 | 18.59670 |
Sum Sq. Dev. | 5076.444 | 257.1590 | 842.6402 | 1524.405 | 1.247721 | 14,393.57 | 179.0193 | 6179.566 | 483736.1 | 6.506085 | 35.04373 | 506.7123 | 61.08993 | 8132.960 |
Observations | 41 | 41 | 41 | 41 | 39 | 41 | 41 | 41 | 41 | 40 | 40 | 41 | 41 | 41 |
AGTFP | LOG(AGO) | AGVA | OLR | TFP | GFCF | LOG(ACGSF) | TRADE | EXR | LOG(PAT) | LOG(SCI) | CPS | FDI | INR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AGTFP | 1 | |||||||||||||
LOG(AGO) | 0.760 | 1 | ||||||||||||
AGVA | 0.727 | 0.468 | 1 | |||||||||||
OLR | 0.383 | −0.000 | 0.362 | 1 | ||||||||||
TFP | −0.395 | 0.095 | −0.630 | −0.638 | 1 | |||||||||
GFCF | −0.718 | −0.929 | −0.520 | −0.114 | 0.036 | 1 | ||||||||
LOG(ACGSF) | 0.605 | 0.952 | 0.322 | −0.100 | 0.267 | −0.900 | 1 | |||||||
TRADE | 0.759 | 0.567 | 0.623 | 0.556 | −0.499 | −0.538 | 0.452 | 1 | ||||||
EXR | 0.476 | 0.875 | 0.176 | −0.252 | 0.380 | −0.764 | 0.853 | 0.267 | 1 | |||||
LOG(PAT) | 0.418 | 0.659 | 0.307 | −0.033 | 0.189 | −0.580 | 0.666 | 0.435 | 0.541 | 1 | ||||
LOG(SCI) | 0.623 | 0.967 | 0.328 | −0.042 | 0.181 | −0.922 | 0.944 | 0.463 | 0.913 | 0.624 | 1 | |||
CPS | 0.413 | 0.741 | 0.170 | −0.209 | 0.284 | −0.696 | 0.808 | 0.237 | 0.675 | 0.512 | 0.749 | 1 | ||
FDI | 0.304 | 0.0741 | 0.357 | 0.685 | −0.419 | −0.140 | 0.037 | 0.293 | −0.119 | −0.011 | 0.046 | 0.087 | 1 | |
INR | 0.296 | 0.462 | 0.342 | −0.035 | −0.077 | −0.559 | 0.459 | 0.227 | 0.379 | 0.331 | 0.490 | 0.421 | −0.049 | 1 |
Variables | ADF | PP | ||
---|---|---|---|---|
Level | First Difference | Level | First Difference | |
AGTFP | 0.2375 | 0.0362 | 0.3344 | 0.0000 |
LOG(AGO) | 0.2182 | 0.0035 | 0.2182 | 0.0030 |
AGVA | 0.1096 | 0.0000 | 0.0726 | 0.0000 |
OLR | 0.3749 | 0.0000 | 0.0640 | 0.0000 |
TFP | 0.3495 | 0.0000 | 0.3328 | 0.0000 |
GFCF | 0.0064 | 0.0012 | 0.0086 | 0.0017 |
LOG(ACGSF) | 0.6497 | 0.0029 | 0.7382 | 0.0029 |
TRADE | 0.1541 | 0.0000 | 0.1821 | 0.0000 |
EXR | 1.0000 | 0.0032 | 1.0000 | 0.0043 |
LOG(PAT) | 0.7455 | 0.0090 | 0.5506 | 0.0000 |
LOG(SCI) | 0.9208 | 0.0061 | 0.9083 | 0.0071 |
CPS | 0.2186 | 0.0000 | 0.5362 | 0.0000 |
FDI | 0.0049 | 0.0000 | 0.0059 | 0.0000 |
INR | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
Null Hypothesis | Obs | F-Statistic | Prob. |
---|---|---|---|
AGTFP does not Granger Cause TFP | 37 | 2.19377 | 0.1280 |
TFP does not Granger Cause AGTFP | 8.79471 | 0.0009 |
F-Statistic | I0 Bound | I1 Bound | |
---|---|---|---|
Values | 6.277068 | 2.62 | 3.79 |
Dep. Variable: AGTFP | Short-Run ARDL | Long-Run ARDL |
---|---|---|
AGTFP(−1) | −0.485642 *** (0.162660) | |
AGTFP(−2) | 0.313153 * (0.153593) | |
TFP | 12.996919 ** (6.129376) | −90.705103 *** (29.133142) |
TFP(−1) | 1.704428 (6.549078) | |
TFP(−2) | 10.250378 * (5.824857) | |
GFCF | 0.132536 (0.124183) | −0.741846 (0.723579) |
GFCF(−1) | −0.415371 *** (0.127285) | |
GFCF(−2) | 0.305549 *** (0.085259) | |
LOG(ACGSF) | −0.243834 (1.071571) | −1.158985 (5.282161) |
TRADE | −0.177887 *** (0.049887) | −1.171365 * (0.596564) |
EXR | −0.009330 (0.010459) | −0.044347 (0.062212) |
CointEq(−1) | −0.210386 ** (0.085558) | |
Constant | 219.468117 * (109.461685) |
F-Statistic | I0 Bound | I1 Bound | |
---|---|---|---|
Values | 1.229078 | 3.23 | 4.35 |
Dep. Variable: LOG(AGO) | Short-Run ARDL |
---|---|
LOG(AGO(−1)) | 1.438718 *** (0.185242) |
LOG(AGO(−2)) | −0.757006 ** (0.287187) |
LOG(AGO(−3)) | 0.257262 (0.169151) |
AGTFP | 0.003439 (0.004408) |
GFCF | −0.013607 * (0.006737) |
GFCF(−1) | 0.018206 ** (0.008529) |
GFCF(−2) | −0.012603 ** (0.005767) |
LOG(ACGSF) | 0.083087 (0.113581) |
LOG(ACGSF(−1)) | 0.034489 (0.154148) |
LOG(ACGSF(−2)) | −0.344734 ** (0.152554) |
LOG(ACGSF(−3)) | 0.209129 * (0.110472) |
Constant | 0.775767 (1.290656) |
F-Statistic | I0 Bound | I1 Bound | |
---|---|---|---|
Model 1 | 2.974503 | 2.86 | 4.01 |
Model 2 | 2.816324 | 2.86 | 4.01 |
Explanatory Variables | Dep. Variable: OLR | Dep. Variable: AGVA |
---|---|---|
OLR(−1)/AGVA(−1) | 0.411624 ** (0.170837) | 0.483405 *** (0.136338) |
TFP | −5.549463 (6.229909) | −9.723358 ** (3.945871) |
GFCF | −0.006840 (0.081175) | −0.026433 (0.048159) |
TRADE | 0.249432 ** (0.101562) | −0.070126 (0.060587) |
TRADE(−1) | −0.137314 (0.098422) | 0.085395 (0.054002) |
EXR | −0.011688 (0.016411) | 0.004699 (0.008887) |
Constant | 6.742564 (6.670831) | 15.50906 *** (5.116708) |
Dep. Variable: AGTFP | Short-Run ARDL | Long-Run ARDL |
---|---|---|
LOG(PAT*SCI) | 0.615223 (2.146106) | −23.789149 ** (9.786836) |
LOG(PAT*SCI(−1)) | 1.815923 (3.157214) | |
LOG(PAT*SCI(−2)) | 3.649458 (3.235388) | |
CPS*FDI | −0.011452 (0.035115) | −0.310681 (0.182384) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyemo, J.T.; Ahmed, A.; Abaver, D.T.; Riyadh, H.A.; Tabash, M.I.; Lawal, A.I. Technological Innovation and Agricultural Productivity in Nigeria Amidst Oil Transition: ARDL Analysis. Economies 2024, 12, 253. https://doi.org/10.3390/economies12090253
Adeyemo JT, Ahmed A, Abaver DT, Riyadh HA, Tabash MI, Lawal AI. Technological Innovation and Agricultural Productivity in Nigeria Amidst Oil Transition: ARDL Analysis. Economies. 2024; 12(9):253. https://doi.org/10.3390/economies12090253
Chicago/Turabian StyleAdeyemo, Joel T., Adel Ahmed, Dominic T. Abaver, Hosam Alden Riyadh, Mosab I. Tabash, and Adedoyin Isola Lawal. 2024. "Technological Innovation and Agricultural Productivity in Nigeria Amidst Oil Transition: ARDL Analysis" Economies 12, no. 9: 253. https://doi.org/10.3390/economies12090253
APA StyleAdeyemo, J. T., Ahmed, A., Abaver, D. T., Riyadh, H. A., Tabash, M. I., & Lawal, A. I. (2024). Technological Innovation and Agricultural Productivity in Nigeria Amidst Oil Transition: ARDL Analysis. Economies, 12(9), 253. https://doi.org/10.3390/economies12090253