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Abstract: Forecasting stock markets is challenging due to the influence of various internal
and external factors compounded by the effects of globalization. This study introduces a
data-driven approach to forecast S&P 500 returns by incorporating macroeconomic indi-
cators including gold and oil prices, the volatility index, economic policy uncertainty, the
financial stress index, geopolitical risk, and shadow short rate, with ten technical indicators.
We propose three hybrid deep learning models that sequentially combine convolutional
and recurrent neural networks for improved feature extraction and predictive accuracy.
These models include the deep belief network with gated recurrent units, the LeNet ar-
chitecture with gated recurrent units, and the LeNet architecture combined with highway
networks. The results demonstrate that the proposed hybrid models achieve higher fore-
casting accuracy than the single deep learning models. This outcome is attributed to the
complementary strengths of convolutional networks in feature extraction and recurrent
networks in pattern recognition. Additionally, an analysis using the Shapley method iden-
tifies the volatility index, financial stress index, and economic policy uncertainty as the
most significant predictors, underscoring the effectiveness of our data-driven approach.
These findings highlight the substantial impact of contemporary uncertainty factors on
stock markets, emphasizing their importance in studies analyzing market behaviour.

Keywords: economic policy uncertainty; financial stress index; forecasting; gated recurrent
unit; geopolitical risk; highway networks; LeNet; macroeconomic indicators; shadow short
rate; stock market returns

1. Introduction
Estimating stock returns is crucial for informed decision-making in financial markets,

as it enables investors to understand and anticipate market trends. However, forecasting
stock returns is challenging due to the influence of numerous internal factors, such as
historical prices, market structures, and investor sentiments, as well as external factors such
as macroeconomic indicators, political stability, international agreements, and unforeseen
events (Celebi & Hönig, 2019; Mahajan et al., 2022). Internal market dynamics are often
shaped by external influences, especially macroeconomic factors, which ultimately affect
stock prices (Yao et al., 2023). Recent advancements in Deep Learning (DL) have shown
promising performance in learning complex data patterns by leveraging their sophisticated
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feature extraction and prediction capabilities (Sonkavde et al., 2023). The predictability
of stock returns has critical implications for algorithmic trading, the development of
investment strategies, and risk management. Ultimately, the goal of forecasting stock
returns is to maximize returns on equity investments (Ivanyuk, 2022). Moreover, accurate
market forecasts serve as Early Warning System (EWS) for potential market downturns
and subsequent recoveries (Gajamannage et al., 2023; Liu & Long, 2020).

This study proposes a novel data-driven approach to forecasting S&P 500 returns by
integrating macroeconomic indicators, such as market volatility, financial stress, economic
policy uncertainty, monetary policy, and ten Technical Indicators (TIs). The contemporary
uncertainty features of economic policy, geopolitical risk, financial stress and monetary
policy are represented by the proxies of Economic Policy Uncertainty of America (US
EPU), Geopolitical Risk (GPRD), Financial Stress Index (FSI) and Shadow Short Rate (SSR)
respectively. Besides, we examine the impact of the international prices of gold and oil and
the US stock market Volatility Index (VIX) on market forecasts.

Our proposed hybrid models are the sequential combinations of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs). In the first layer, CNN variants
Deep Belief Network (DBN) and LeNet are applied for features’ extraction. Then, in the
second layer, RNN variants—Gated Recurrent Unit (GRU) and highway networks—are
used for predictions. Hence, the proposed hybrid models are DBN–GRU, LeNet–GRU
and LeNet–Highway for forecasting S&P 500 returns. The prediction performance of
these hybrid models has been compared with that of the benchmark single models GRU,
Highway Networks, LeNet and DBN in terms of Root Mean Square Error (RMSE), Mean
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). Our results suggest
that the three proposed hybrid models outperform the benchmark component models for
all evaluation measures. Moreover, the US market is predictable, and LeNet–Highway
hybrid model is the best prediction model for the proposed data-driven approach.

The primary objective of this study is to enhance the predictive accuracy of stock
market returns, specifically for the S&P 500 index, by integrating diverse macroeconomic
indicators and TIs into advanced DL frameworks. The research aims to address the
challenges posed by the complex interplay of internal and external market factors by
proposing novel hybrid models. In doing so, this study identifies the key drivers of
market returns—such as market volatility, financial stress, and economic policy uncer-
tainty—and demonstrates the superiority of the hybrid models over single-model methods.
The results of the best prediction method have also been validated using the Time Series
Cross-Validation (TSCV) technique.

The approach of this study aligns with the increasing need for reliable forecasting
in finance, offering a valuable framework that combines critical economic signals with
advanced analytics to anticipate market movements effectively. The significance of this
research lies in its potential to support investors, financial analysts, and policymakers by
providing robust forecasting tools, facilitating informed decision-making, and enabling
the development of effective trading strategies and risk management practices in real-time
financial markets.

The rest of this paper is structured in six other sections. Section 2 is of Related Work
that also includes problem statement. Section 3 presents Proposed Data-Driven Approach
for Forecasting Stock Market which covers the details of the data and methodology along
with the proposed hybrid deep models. This is followed by Section 4 of Results and
Discussion, Section 5 of Time Series Cross Validation, and Section 6 of SHAP for Explaining
Model’s Predictions. Lastly, Conclusions and Future Work are presented in Section 7.
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2. Related Work
Forecasting financial time series through DL techniques is one of the lucrative research

topics in the field of finance, as the majority of investment decisions in financial markets
are based on Machine Learning (ML) algorithms and not human subjectivity. DL models
are widely used for stock market forecasts and attain good prediction performance. The
existing literature provides many studies offering empirical evidence that the DL models
have superior forecasting performance than the traditional ML models (Ma & Yan, 2022).
Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM) and CNNs are the
main DL models used for predicting financial time series (Rezaei et al., 2021). Our focus
is on the predictive abilities of some variants of RNNs and CNNs in the presence of a
set of various macroeconomic and TIs influencing stock markets. Hence, the following
subsections present state-of-the-art studies in this regard.

2.1. Forecasting Stock Markets with Convolutional and Recurrent Neural Networks

In recent literature, DL models as data-driven approaches, are sensitive to overfitting,
particularly when insufficient data representing the original population is available. To
address this problem, the prediction of the stock index is performed with the StockNet
GRU model consisting of a new data augmentation approach (Gupta et al., 2022). The
proposed model has two modules, namely investigation and injection modules. There
has been a considerable decrease in the model’s error when compared with the modular
approach of Baek and Kim (2018). In another study (Gao et al., 2022), the overnight (close-to-
open) returns’ direction of a target stock market is predicted with a hybrid model multiple
branch CNN based on genetic algorithm MBCNN-GA. Their proposed model shows better
performance than the benchmark models. However, this study does not consider other
factors, such as economic and geopolitical uncertainties, social media, etc., as important
features for determining market forecasts.

CNNs do not efficiently utilize contextual relational information while processing time
series data, resulting in compromised performance (Li et al., 2023). LSTM can overcome
this limitation of CNNs and has been effective in modeling financial time series. Then there
is GRU which combines the forget and input gates into a single update gate thus reducing
the computational complexity of LSTM (Gupta et al., 2022). It has fewer parameters and
faster training than the LSTM. The fundamental structure of CNN-GRU embedded into
AE is designed to extract the significant temporal features from the stock market data (Li
et al., 2023). The weights of irrelevant information are reduced and important features
are captured with the introduction of the attention layer in the model’s architecture. The
basic principle of the attention mechanism is emphasizing the crucial information only and
not focusing on the entire output. Thus, an encoding-decoding structure based on skip
connections and the attention mechanism is put forward for efficient utilization of stock
markets’ information. Three Chinese composite indices along with NASDAQ and DAX
and four individual stocks of the NASDAQ are studied, and the proposed model shows
high prediction performance.

2.2. Importance of Contemporary Macroeconomic Indicators for Equity Markets

The global economies are facing unprecedented uncertainty, particularly after the
Global Financial Crisis (GFC) and COVID-19. The resulting financial turmoil led to high
inflation worldwide, which has been countered by stricter monetary policies in most coun-
tries. The Russian invasion of Ukraine further accentuated the problem (World Bank, 2023).
Global growth was projected to be sluggish during 2023-2024. Moreover, the development
of free trade zones has increased financial globalization that strengthens financial integra-
tion but also weakens the isolation of international markets for the infiltration of economic
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shocks. Thus, financial markets’ uncertainties are inevitable with global economic devel-
opment. This has drawn the growing attention of investors and policymakers worldwide
(Bali et al., 2022; Ludvigson et al., 2021). Moreover, the dramatic increase in international
capital flows of equity and bond markets is also associated with global financial integration
(Evans & Hnatkovska, 2014). Another implication of globalization is the increasingly signif-
icant role of media (social, electronic, and print) on the performance of financial markets.
Researchers have been interested in the development of various global and country-specific
uncertainty indices using information from the media tiers. For instance, Baker et al. (2016)
constructed the US EPU index from the weighted sum of three indices–the Economic Fore-
caster Disagreement, News and Tax Expiration. Likewise, researchers from other countries
developed their country-specific EPU index either considering the three composite indices
or the news index, as is the case for Europe and China. The growing financial uncertainties
increase volatility and reduce returns, while the declining uncertainties reduce stock market
variance (Gupta et al., 2020). The response of financial markets toward uncertainty shocks
has been time-dependent. The impact of elevating financial uncertainties has been stronger
than that of the declining ones of the same magnitude. In this article, Table 1 entails some
recent studies predicting stock markets with contemporary external factors.

Table 1. Literature Summary of Macroeconomic Indicators Impacting Stock Markets.

Indicator(s) Research Studies Objective Key Findings

US EPU, non-US EPUs Huang et al. (2023) Can non-US EPUs predict US
stock returns?

Non-US EPUs have better
predictive power for the US
equity market than the US EPU.

EPUs for Global and G7 markets Chiang (2019) To examine the impact of EPU on
stock returns

Returns decline due to increasing
EPU.

US EPU Arouri et al. (2016) To study the effect of EPU on US
market

Stronger negative impact during
recessions.

EPUs US, UK, China and Pakistan Ghani and Ghani (2023) What is the impact of EPUs on
Pakistan’s stock market?

Strong impact of US EPU but no
impact of EPUs of China and
Pakistan.

EPU, GPR, FSI Das et al. (2019) Do US EPU, GPR and FSI affect
emerging stock markets alike?

Heterogeneous impact of all and
is restricted in extreme upper tails,
EPU has stronger impact.

GPR Segnon et al. (2023)
What is the impact of GPR and
macroeconomic variables on stock
market?

GPR has no impact on stock
market.

FSI, EPU, Oil Ftiti and Hadhri (2019) How FSI, EPU and oil price
impact stock returns?

No impact of FSI, EPU and Oil on
stock returns.

US EPU and GEPU Alqahtani and Martinez (2020)
To examine the impact of US and
global EPUs on the GCC stock
markets

Both EPUs have significant
negative associations with stock
markets, and the US EPU has a
stronger effect.

Emerging markets’ FSI (EFSI) and
Global FSI (GFSI) Ilgın (2024)

To study the effect of EFSI and
GFSI on the stock markets of
Mexico, Indonesia, Nigeria and
Turkey

Both EFSI and GFSI negatively
impact all markets in the short
term.

GFSI, VIX, US EPU, GEPU, GPR Liang et al. (2023)
To examine the indicators’ long-
term predictive role on the equity
market volatility

GFSI is the most significant
predictor, and VIX’s long-term
predictive ability is superior to
that of US EPU’s.

SSR Tokmakcioglu and Ozcelebi (2020) To examine the impact of SSR on
stock returns

Contractionary monetary policy
decreases stock returns.
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Table 1. Cont.

Indicator(s) Research Studies Objective Key Findings

SSR Aslam et al. (2023) What is association of changes in
SSR with stock markets?

There exists a non-linear
association between SSR and
stock markets.

SSR, gold price Claus et al. (2014) and Claus et al.
(2018)

To examine the impact of SSR on
asset markets

No significant impact of SSR on
the US equity market.

Conventional and
Unconventional Shadow Rates
(CSR and USR)

Salisu et al. (2024) How monthly US stock returns
react to CSR and USR?

Both CSR and USR have a
negative long-term impact on the
stock market.

2.2.1. Economic Policy Uncertainty (EPU)

Economic policy uncertainty refers to uncertain and undefined economic policies of
the government. The EPU index for the US economy was developed in 2016 (Baker et al.,
2016) based on the coverage of economic events by major US newspapers, the reports of
Congressional Budget office regarding tax revisions and the survey by professionals at the
Federal Reserve Bank of Philadelphia. Later, other researchers developed the EPU index
for other countries as well. The spillover effect from the economic uncertainty of the larger
economies, such as the US and Europe, has been an attentive area of research for scholars. The
US being the largest equity market has a dominating effect on the worldwide equity markets
as market participants tend to infer information from the larger markets. Thus, smaller equity
markets are prone to the shocks from larger markets (Das et al., 2019; Hu et al., 2018).

Foreign investors remain vigilant to the US financial and economic conditions. The
economic variables of various countries outside the US have lower predictive power for
the stock returns in their markets than the lagged US stock market returns (Rapach et al.,
2010). In particular, the US market uncertainty and investors’ attention largely impact
the global financial markets (Andrei & Hasler, 2015). The dominant effect of US market
forms the basis of the concept of information frictions suggested by Hong et al. (2007). The
information friction theory and the literature generally agree that the US EPU index is a
significant indicator in predicting global stock market returns (Hu et al., 2018). However,
there are also a few contradicting studies. For instance, the impact of economic information
from other countries (outside US) on the US stock market is examined in (Huang et al.,
2023). It is observed that non-US EPUs outperform US EPU in predicting excess market
returns in the US market. This finding challenges the common belief that significant market
signals are primarily transmitted from the US to other markets.

2.2.2. Geopolitical Risk (GPR)

The geopolitical risk index developed by Caldara and Iacoviello (2017), refers to the
uncertain economic conditions in specific regions induced by events like wars, imbalances
of nuclear power, terrorism, etc. The index is based on eight categories, with the benchmark
starting in 1985 using the data from a set of 10 global newspapers. It is a source of
systematic risk that is associated with the adverse events influencing "the peaceful course
of international relations" (Caldara & Iacoviello, 2022). It encompasses the prospective
political, economic, security, and social risks emerging from the involvement of a country
in international affairs.

Most of the studies in existing literature investigate the role of GPR for determining
volatility and returns of the equity markets. For instance, Antonakakis et al. (2017) investi-
gate the relationship of oil price and categorical GPRs with stock markets. The authors find
a statistically significant negative relationship of GPRs with markets’ return and volatility.
Besides, Bouras et al. (2019) show that categorical GPRs have a statistically significant
impact on markets’ volatility but not on returns. Moreover, the stock markets of emerging
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economies are more influenced by the global geopolitical shocks than the domestic ones.
In a recent study, the autoregressive Markov-switching GARCH-MIDAS is employed to
forecast the stock market volatility using geopolitical risks (Segnon et al., 2023). A large
dataset of 22 years having daily DJIA returns and monthly GPRs and macroeconomic
variables has been used for the analysis. The results show that there has been no significant
impact of the GPR index on the US stock market. Another investigation into the impact
of various categories of the GPR on stock market volatility reveals that risks arising from
war-like situations are particularly significant for predicting the realized volatility of the
US stock market (Niu et al., 2023).

The impact of GPR on stock markets’ volatility is multidimensional. A rise in the GPR
elevates the risk of investing in financial markets. It delays the decision-making process of
investors, thus decelerating the trading activity in stock markets (Salisu et al., 2022). It is one
of the key determinants of investment decisions by investors (Chalmers et al., 2023). The GPR
is also positively related to the volatility of stock markets (Zhang et al., 2023), and the global
GPR significantly impacts the stock market volatility (Christou et al., 2017). Besides, the GPR
makes the capital flow from the emerging markets to the developed markets.

2.2.3. Financial Stress Index (FSI)

The Office of Financial Research (OFR) quantifies systematic financial stress as FSI that
refers to the disruptions in the normal functioning of financial markets (Index, 2023). It is
a composite index with five main categorical variables including credit, equity valuation,
funding, safe assets, and volatility. The daily FSI is the weighted average levels of these
variables as observed in the market on that particular day. This index may identify potential
vulnerabilities in the financial system that may trigger stress.

In literature, the impact of FSI on stock markets has been examined in combination
with other variables, while some study this index in terms of its categorical variables (Das
et al., 2022). For instance, the impact of US EPU, GPR, and FSI on the emerging stock
markets is investigated in (Das et al., 2019). Their findings establish that the emerging
markets are influenced by the economic, geopolitical, and financial uncertainties of the
US propagated through various channels like trade, foreign investments, and bilateral
agreements. However, they do not study the possible determinants of this impact and the
level of sensitivity of the equity markets to these channels. The authors have extended this
study by analyzing the impact of EPU and GPR on the Asian emerging equity markets
using a non-parametric causality-in-quantiles valuation (Kannadhasan & Das, 2020). They
found that there is an asymmetric dependence of stock returns with EPU and GPR varying
across different quantiles. Hence, the effect of EPU is more profound on the emerging stock
markets than GPR and FSI.

2.2.4. Shadow Short Rate (SSR)

The shadow rate, initially created by Black (1995), is an interest rate used to measure
the economy when nominal interest rates come closer to the zero lower bound. This rate is a
synthetic summary measure reflecting the degree to which the interest rates of intermediate
and longer maturity assets become lower than would be expected in case a zero policy rate
prevails with no unconventional policy measures. However, the shadow rate models did not
become popular in the financial literature earlier than the GFC of 2007–2008, when the short-
term interest rate reached the zero lower bound in many countries, including the US, because
central banks aggressively eased their monetary policies in reaction to the financial crisis. The
Federal Reserve reduced its federal funds rate to near zero and introduced unconventional
policy measures. It is derived from the yield curve data and can be used as a proxy for the
impact of conventional and unconventional monetary policy shocks (Claus et al., 2014). We
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use the SSR by Krippner (2013, 2015) in this study because its high frequency is important for
validity of results as suggested by the literature (Aslam et al., 2023).

There have been mixed results in the literature about the impact of SSR on stock
markets. Claus et al. (2014) calculated the impact of monetary policy shocks on asset mar-
kets by using SSR as a measure of changes in conventional and unconventional monetary
policies. They found a significant impact of SSR for prices of gold and corporate bonds
and the exchange rate, but an insignificant impact for equity prices. In a similar study
by Claus et al. (2018), the responses of interest rates, asset returns, and exchange rates
are found to be larger and more significant to unconventional monetary policy shocks
than the conventional ones. Stock price index S&P 500 represented equity markets in this
study, and the authors found an insignificant negative impact of SSR on S&P 500 index. In
another work, the cross-correlation of international monetary policies with stock markets
is examined by Aslam et al. (2023) by applying Multifractal Detrended Cross Correlation
Analysis (MD-DXA) for the data set of stock indices of eight countries and their correspond-
ing SSR. The study concluded that there exists a non-linear interaction and multifractality
among stock market returns and SSR, implying that the changes in SSR can be important
for articulating portfolio management strategies involving SSR.

2.3. Forecasting Stock Markets with Technical Indicators

Technical indicators provide useful information about the internal trading activities of
the market and are helpful for stock predictions. A set of 27 TIs along with the five funda-
mental features Open, High, Low, Close and Volume (OHLCV) is used to predict Chinese
stocks with CNN model (Ma & Yan, 2022). Their results show that CNN achieved predic-
tion accuracy of around 69% for both composite index and individual stocks. Moreover,
the post-COVID forecasting accuracy of the model is lower than the pre-COVID period.

Another seminal work of Stein (2022), examines the predictability of the S&P 500
equity premium using the frequency-decomposed components of various TIs as features.
The main idea is to benefit from the potential predictive power of high-frequency noise or
low-frequency trend. Moreover, while including the investor sentiments as features, it is
found that the medium-frequency components of the decomposed indicators predict the
discount rate news impacting equity premium. Besides, a hybrid boosting model attention
based AB-CNN and contextual bidirectional CB-LSTM with MLP are used to forecast the
two stocks of NYSE using TIs (Kamara et al., 2022). Moreover, the study constructs short-
term trading signals using various TIs based on the proposed model, whose performance
is evaluated using annual return, volatility, and sharpe ratio. The proposed model proves
to be efficient in capturing stable and profitable trading signals.

2.4. Research Gap

This study systematically identifies critical research gaps and conducts a comprehen-
sive analysis to address key challenges in stock market forecasting. First, contemporary
macroeconomic indicators such as EPU, GPR, FSI, and SSR are recognized for their in-
fluence on stock returns. Yet, most existing research examines these factors in isolation,
leaving a gap in understanding their interactions and collective effects. Second, linear
models like Autoregressive Moving Average (ARMA) and Autoregressive Integrated Mov-
ing Average (ARIMA) are inadequate for capturing non-linearities and latent dynamics
of financial data, and traditional ML methods also struggle with long-term dependencies
and autocorrelations. Third, advanced memory-based models such as RNNs, LSTMs, and
GRUs offer improvements but are limited by gradient problems, computational complexity,
and poor generalizability. In addition, the black-box nature of DL models emphasizes the
need for interpretability and robust validation techniques. This study seeks to address
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these gaps by proposing integrated and interpretable models to improve the accuracy and
reliability of stock market forecasts.

2.5. Problem Statement

Stock market forecasting remains a challenging task due to the highly volatile, noisy,
and chaotic nature of financial data, compounded by the issue of non-stationarity in stock
prices (Mahajan et al., 2022; Salemi Mottaghi & Haghir Chehreghani, 2023; Salles et al.,
2022). The global integration of equity markets has further amplified their sensitivity to
various factors, including changes in the global economy, geopolitical tensions, monetary
policies, and commodity prices such as oil and gold (Chiang, 2019; Ftiti & Hadhri, 2019).
The conventional linear models like ARMA and ARIMA are inadequate for capturing the
non-linearities and latent dynamics of such complex financial data (Selvin et al., 2017).
While many ML methods can model non-linear structures, they often fail to address long-
term dependencies, which are critical for reliable stock market predictions (Li et al., 2022).
Although DL models have emerged as promising solutions for handling these complexities,
they still face challenges such as vanishing gradients, computational inefficiency, and lack
of interpretability, particularly in memory-based models such as RNNs, LSTMs, and GRUs
(Gajamannage et al., 2023; Li et al., 2023).

Problem Formulation

Assume our target variable S&P index return yt ∈ RD represents the observed values
at time t and xt ∈ Rn represent the features (explanatory variables) at time t and that these
features have an impact on the target variable yt. The objective is to predict future values
ŷT for a current time T based on the percentage change values of the input features x1, x2,
x3,..., xT . In summary, our objective is to learn a non-linear mapping M(.) such that:

ŷT = M(x1, x2, x3, ..., xT) (1)

3. Proposed Data-Driven Approach for Forecasting Stock Market
This section presents details of the data and its preprocessing, the CNN and RNN variants

employed in the study, and the proposed hybrid deep models. The forecasting process begins
with data collection and culminates in interpretability testing and cross-validation of the best
prediction model. Figure 1 graphically represents the data-driven approach for forecasting
S&P 500 returns in this study. Moreover, Algorithm 1 represents its workflow.

3.1. Dataset

The dataset includes S&P 500 stock index as the target variable and a set of internal and
external factors as features. The internal factors include values of ten TIs—Bollinger Bands
(Boll_ub and Boll_lb), Relative Strength Index (RSI), Aroon Oscillator (AroonOsc), stochastic
oscillator (stoch), Average Directional Index (ADX), Money Flow Index (MFI), Moving
Average Convergence Divergence (MACD), Simple Moving Average (SMA), Weighted
Moving Average (WMA), and Exponential Moving Average (EMA)—calculated from the
open, high, low and close prices and volume data of S&P 500 index. Besides, the set of
external factors comprises macroeconomic indicators including GPRD, FSI, US EPU, US
SSR, gold and oil prices, and VIX. Here, the EPU and SSR are country-specific, and FSI and
GPRD are global factors. While VIX is a volatility index measuring the implied volatility
of S&P 500 index and is often referred to as the fear index (Sarwar, 2012). The expected
volatility of the US stock market in the near future is based on this index. The purpose of
selecting these features is to study the influence of both external and internal dynamics on
the US stock market in terms of its prediction. Hence, the predictive ability of technical and
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macroeconomic indicators has been analyzed. The data for all features is of daily frequency
for a period of 22.5 years ranging from 1 January 2001 to 26 June 2023. It is a long time
period inhibiting the effect of major global events like 9/11 in 2001, GFC 2008, and the
COVID-19 pandemic in 2020. The dataset spanning over two decades provides ample
data points for training DL models, ensuring the models can capture both short-term and
long-term dependencies. Moreover, the start of 2001 marks the period where consistent,
high-quality daily data for the selected features became widely available.

Datasets

Internal Features
- Bollinger Bands
- RSI
- MFI
- SMA
- WMA
- EMA
- AroonOsc
-MACD
-Stoch
-ADX

External Features
- EPU
- GPRD
- SSR
- FSI
- Gold
- Oil
- VIX

Data Preprocessing Deep Sequential Model LeNet-Highway

Merging Data

Data 
Transformation

Handling Missing
 Values

Outlier Removal 

Models' Predictions

Target
S&P 500

Predictions

Predictions

 Deep Sequential Model DBN-GRU

Predictions

Deep Sequential Model LeNet-GRU

Shapley Additive exPlanation 
(SHAP)

Back-testing (TSCV) 

Figure 1. Data-Driven Approach for Forecasting S&P 500 Returns.
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Algorithm 1 Algorithm of the Data-Driven Approach Forecasting S&P 500 Returns.

1: Data Collection and Preprocessing:
2: Download S&P 500 index data using YahooFinance API in Python
3: Download data of macroeconomic indicators from their respective sources
4: Calculation of TIs using TA library
5: Merging datasets of external macroeconomic indicators with S&P 500 and TIs
6: Calculate returns taking percentage changes of all variables
7: Remove missing values
8: Remove outliers with 3σ rule
9: Data Splitting:

10: Input variables→ Xtrain, Xtest
11: Target variable→ ytrain, ytest
12: Input:
13: Sequence of input data X = {x1, x2, ..., xT}
14: Corresponding target outputs y = {y1, y2, ..., yT}
15: Hyperparameters of the Proposed Models
16: Implementation of the Proposed DL Models:
17: Initialize the parameters (weights and bias vectors) of the proposed model
18: Fit the model← Xtrain, ytrain
19: Predict stock returns with the trained model← Xtest
20: return predictions ŷt
21: Calculate Evaluation Metrics:
22: RMSE, MAE, MAPE
23: Compare the prediction performance of the proposed models
24: Backtesting:
25: Apply time series cross validation
26: Interpretability of the model:
27: Apply SHAP algorithm

3.2. Data Preprocessing

The daily data of all variables have been accessed from four sources. The S&P 500
index values are extracted using the Python Yahoo Finance API. While the EPU and GPR
data have been obtained from a common source1 and the data for SSR2 and FSI3 have been
accessed from their respective sources. The data for S&P 500 stock index, Gold, Oil, VIX,
and FSI is available for working days only, whereas the data for US EPU, US SSR, and
GPRD is inclusive of holidays (including weekends). Therefore, these features have been
merged with respect to the dates of S&P 500 index using the Pandas Dataframe.merge
function in Python. Please refer to Figure 2 for the merged data.

Stock Index 
Data

VIX

GPR

EPU FSI

Gold

Oil

SSR

Figure 2. Merging Data.
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We have considered the returns (percentage changes) of all variables and removed
the outliers (values beyond ±3 standard deviations) of the resultant dataset using the
three sigma rule. The scale of the data has been reduced by taking returns and removing
outliers. The final dataset has 4850 samples after deleting those with the missing values.
The descriptive statistics of the returns are given in Table 2.

Table 2. Descriptive Statistics of Returns.

mean std min max skew kurt range

S&P 500
Return 0.0337 0.9021 −3.6285 3.6499 −0.1889 1.3584 7.2784

GPRD 5.1522 38.1454 −80.5363 167.868 1.0139 1.5556 248.405
US SSR −0.0596 10.6378 −148.911 144.17 −0.7519 75.3694 293.081
US EPU 10.7329 58.3753 −95.7076 272.3 1.3817 2.4596 368.008
FSI −1.7076 62.7624 −1121.78 1093.75 −3.9145 135.052 2215.53
Gold 0.0552 0.9388 −3.262 3.3326 −0.1487 0.8682 6.5946
Oil 0.0721 2.2264 −12.2478 14.6764 −0.017 3.3951 26.9242
VIX −0.0455 5.9211 −21.3836 22.4806 0.4294 1.0353 43.8643
Boll_ub 0.0415 0.2634 −0.9978 0.9773 −0.4255 1.7946 1.9751
Boll_lb 0.0486 0.3205 −1.2966 1.3361 −0.1012 2.6408 2.6327
RSI 0.4435 11.7848 −35.0696 46.1167 0.4028 1.0524 81.1864
Stoch 83.8473 706.68 −100 16978.2 15.9393 300.354 17078.2
ADX 0.3862 15.7659 −28.5681 53.9779 0.3562 0.0578 82.5459
SMA 0.0518 0.279 −1.6113 1.4671 −0.3772 1.891 3.0784
WMA 0.053 0.3105 −1.2611 1.2884 −0.4694 1.1434 2.5494
EMA 0.0506 0.2727 −0.9966 0.9451 −0.5971 0.9829 1.9417
AroonOsc −8.6186 55.9545 −275 250 −1.7865 7.294 525
MFI 0.7898 15.4275 −51.0437 53.9094 0.3677 0.4529 104.953
MACD −2.3159 192.607 −3885.21 5973.72 2.144 297.799 9858.92

3.3. Convolutional and Recurrent Neural Networks Applied in the Study

We consider two convolutional neural networks—LeNet and DBN—and two recurrent
neural networks—GRU and Highway—to propose our hybrid DL models for forecasting
S&P 500 returns. Moreover, these are the benchmark models to compare the performance
of our proposed models in this study. A brief introduction of these single models and the
details of their proposed combinations are given in the following subsections.

3.3.1. Gated Recurrent Unit (GRU)

A gated recurrent unit, being a simplification of LSTM, is a special type of RNN
introduced by Chung et al. (2014). It has been developed to reduce the computational
complexity of LSTM to process sequential data like speech, text, and time series. GRU
has two gates—the reset gate and the update gate—in contrast to the three gates of LSTM
(forget, input, and output gates). The reset gate of GRU has the same function as the forget
gate in LSTM, which is to determine the chunk of information coming from the hidden
state to be forgotten, whereas the update gate updates the hidden state with the selective
input information. This way, there is control over the flow of information passing through
a GRU unit. The underlying purpose is to update the hidden state and calculate the output
at every time step. The structure of a GRU cell is shown in Figure 3 (Su & Kuo, 2019).

Assume that xt is the input at a given time step t, ht−1 is the hidden state at the
previous time step t− 1, Wz and bz are the weights and biases for the update gate and Wr

and br are the weights and biases for the reset gate, the respective outputs of the update
and reset gates as zt and rt take the form as:

zt = σ(Wz · [ht−1, xt] + bz) (2)

rt = σ(Wr · [ht−1, xt] + br) (3)
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Moreover, the candidate hidden state h̃t of the GRU cell with Wh and bh as its weights
and biases is updated as:

h̃t = tanh(Wh · [rt ⊙ ht−1, xt] + bh) (4)

With ⊙ as the hadamard product, the final output of the GRU cell is the updated
hidden state ht calculated as:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (5)

h(t−1) h(t)

y(t)

⊗ ⊕

r(t) z(t)

x(t)

⊗

1−
⊗

FC FC

FC

GRU architecture

Figure 3. Architecture of a GRU Cell.

3.3.2. Recurrent Highway Networks (RHNs)

A highway network is a deep feed-forward NN having hundreds of layers with skip
connections that regulate the flow of information. These networks have been designed
and introduced by Srivastava et al. (2015) with the main purpose of resolving the issues of
gradient-based training of very deep networks. These are inspired by the LSTM architecture.
The depth of NNs is crucial for solving complex research problems and large datasets.
However, this depth poses challenges to the training of such networks (Sonkavde et al.,
2023). The highway networks have been introduced as a solution to this problem. They
enable gradient-based training of hundreds of layers using multiple activation functions.
The equations for the basic unit of a highway network are:

T(x) = σ(WT · x + bT) (6)

C(x) = 1− T(x) (7)

H(x) = ReLU(WH · x + bH) (8)

Y(x) = T(x) · H(x) + C(x) · x (9)



Economies 2025, 13, 6 13 of 28

Here x is the input to the network; T(x) is the transform gate and C(x) is the carry
gate; H(x) is the transformed output; WT and bT are the weights and bias terms for the
transformation gate; WH and bH are the weights and bias terms for the transformation;
sigma is the sigmoid activation function and ReLU is the rectified linear unit activation
function; and lastly, Y(x) is the final output.

We are predicting stock returns by incorporating the linear activation function in the
final output layer of the highway network. The basic architecture of a highway network is
shown in Figure 4, (Tao et al., 2018).

Figure 4. Architecture of Recurrent Highway Network.

3.3.3. LeNet

LeNet is one of the initial CNNs proposed by LeCun et al. (1998). It has been primarily
designed for recognition of images of handwritten digits and laid the foundation for
further advancements in deep learning. The basic structure of LeNet, as shown in Figure 5,
comprises seven layers, including two 5 × 5 convolutional layers, 2 average pooling layers
and three dense layers with non-linear activation functions (Wang et al., 2017). LeNet
bascially refers to LeNet-5, which is the fifth iteration of the LeNet CNN model. It has
unique convolutional filters or kernels that identify the inherent patterns of the data. It
has been widely used for object recognition and natural language processing. Moreover, it
has been used to predict the direction of S&P 500 using data of per minute frequency (Sim
et al., 2019). The empirical results show that CNNs can better predict S&P 500 than ANN
and SVM. In another work, an optimized CNN has been used by Chung and Shin (2020)
to predict the Korean stock index KOSPI movement using TIs as features. The optimized
CNN outperformed simple CNN and ANN in terms of prediction performance.

Figure 5. Architecture of LeNet.
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3.3.4. Deep Belief Networks (DBNs)

A deep belief network is an unsupervised learning algorithm comprising of two dif-
ferent NNs—Restricted Boltzman Machines (RBMs) and belief networks. RBMs are similar
to the regular Boltzman machines, with the exception that they are not fully connected and
therefore they are named as ’restricted’. The RBMs are used for pre-training and the back
propagation NN is employed for reverse fine-tuning in a DBN.

DBN involves multiple layers with conditional dependencies; therefore, it has an
extensive set of equations. However, a simplified set of equations for its building block
are represented here (Zhang & Ci, 2020). There are Nh nodes in the hidden layers and Nv

nodes in the visible layer. Assume the binary states of the visible node i and hidden node j
as vi and hj, the weight between them as wi j and the biases as ai and bj. The equations for
RBM layers will be:

The visible layer consists of observable variables:

P(vi = 1) = σ

(
Nh

∑
j=1

Wijhj + bi

)
(10)

The hidden layer consists of latent variables:

P(hj = 1) = σ

(
Nv

∑
i=1

Wijvi + cj

)
(11)

The joint energy of the RBM is given by:

E(v, h) = −
Nv

∑
i=1

Nh

∑
j=1

Wijvihj −
Nv

∑
i=1

bivi −
Nh

∑
j=1

cjhj (12)

The conditional probabilities are given by the sigmoid function:

P(hj = 1|v) = σ

(
Nv

∑
i=1

Wijvi + cj

)
(13)

A DBN is composed of multiple RBMs stacked on top of each other. The hidden layer
of one RBM becomes the visible layer of the next RBM, such that:

P(v(k)i = 1|h(k)) = σ




N(k−1)

∑
j=1

W(k)
ij h(k−1)

j + b(k)i


 (14)

P(h(k)j = 1|v(k)) = σ




N(k)

∑
i=1

W(k)
ij v(k)i + c(k)j


 (15)

However, the output layer of a DBN for regression can be modified as:

ŷi =
N(k)

∑
j=1

W(k)
ij h(k−1)

j + b(k)i (16)

Here ŷi is the predicted stock return for the ith sample, and h(k−1)
j is the activation

from the hidden layer of the previous RBM. The linear activation function will be used
instead of the sigma function. The framework of the DBN regression model is depicted in
Figure 6 (Boesch, 2024).
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Figure 6. Architecture of DBN.

3.4. Proposed Hybrid Deep Learning Models

In our data-driven approach, the hybrid DL models are combined on the idea of an
encoder-decoder framework. The encoder is first applied to filter the original inputs for
feature extraction, and then the decoder makes predictions using the extracted features as
input. The hybrid NNs have been extensively worked upon for stock market prediction
(Jia et al., 2023; Sonkavde et al., 2023). This study also employs hybrid NNs for predicting
stock returns of S&P 500. Specifically, we employ a CNN variant to extract features and
then a recurrent architecture for predictions. Though RNNs are more acknowledged for
doing well with the sequential data, CNNs can also be applied successfully for sequential
modeling (Jerez & Kristjanpoller, 2020). They also have the advantages of avoiding gradient
and memory problems. In some studies, CNNs outperform LSTMs (Bai et al., 2018). Hence,
convolutional neural networks LeNet and DBN are used for features’ extraction at the first
tier, and recurrent neural networks GRU and Highway are used for prediction at the second
tier. The proposed three hybrid sequential models are DBN-GRU, LeNet-GRU, and LeNet-
Highway. The topologies of the proposed DBN-GRU, LeNet-GRU, and LeNet-Highway
models are given in Tables 3–5.

The choice of DL models to forecast S&P 500 returns is justified by their ability to
capture complex, non-linear relationships of the uncertainty factors US EPU, FSI, GPR, and
SSR with stock returns and volatility. Literature highlights that these risk factors often lack
linear relationships with market dynamics, making non-linear models like DL more suitable
for forecasting (Aye et al., 2018; Balcilar et al., 2019). Besides, hybrid models are known to
leverage the strengths of different neural network architectures, enabling enhanced pre-
dictive performance for complex financial time series data. Existing literature underscores
that hybrid architectures outperform standalone DL models by addressing their limitations,
such as overfitting and weak generalization in dynamic systems (Hajirahimi & Khashei,
2019; Pradeepkumar & Ravi, 2018).

Table 3. Topology of the Proposed Model 1: DBN-GRU.

Models Topology

DBN

Input (X)
Hidden Layer 1 (Units = 128)
Hidden Layer 2 (Units = 64)
Hidden Layer 3 (Units = 32)
Flatten Layer ()

GRU
Input (Flatten layer output of DBN)
GRU (Units = 32, Activation = tanh)
Dense Layer (Units = 1, Activation = linear)
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Table 4. Topology of the Proposed Model 2: LeNet-GRU.

Models Topology

LeNet

Input (X)
Conv 1D Layer (Units = 6, kernel_size = 3, padding = same, Activation = tanh)
Average Pooling (pool_size = 2, padding = same)
Conv 1D Layer (Units = 64, kernel_size = 3, padding = same, Activation = tanh)
Average Pooling (pool_size = 2, padding = same)
Flatten Layer ()
Dense Layer (Units = 32, Activation = tanh)
Dense layer (Units = 16, Activation = tanh)

GRU
Input (Dense layer output of LeNet)
GRU(Units = 32, Activation = tanh)
Dense Layer(Units = 1, Activation = linear)

Table 5. Topology of the Proposed Model 3: LeNet-Highway.

Models Topology

LeNet

Input (X)
Conv 1D Layer (Units = 6, kernel_size = 3, padding = same, Activation = tanh)
Average Pooling (pool_size = 2, padding = same)
Conv 1D Layer (Units = 64, kernel_size = 3, padding = same, Activation = tanh)
Average Pooling (pool_size = 2, padding = same)
Flatten Layer ()
Dense Layer (Units = 32, Activation = tanh)
Dense layer (Units = 16, Activation = tanh)

Highway

Input (Dense Layer output of LeNet)
Transform Gate with Activation = sigmoid
Carry Gate
Transformation with Activation = sigmoid
Highway Output is the combination of outputs of transform gate and carry gate
Hidden Layer1 (Units = 64, Activation = tanh)
Hidden Layer2 (Units = 64, Activation = tanh)
Hidden Layer3 Dense (Units = 32, Activation = tanh)
Hidden Layer4 Dense (Units = 32, Activation = tanh)
Output (Units = 1 and Activation = linear)

4. Results and Discussion
The accuracy of the applied prediction models has been gauged using three evaluation

metrics: RMSE, MAE, and MAPE. Among these, RMSE and MAE are scale-dependent.
These can be used for comparing different models on the same data, as is the case in
this study. Besides, MAPE is independent of the scale of the data and is a percentage
measure of the model’s accuracy (Mahajan et al., 2022). However, it needs a meaningful
zero and can be undefined for the actual values closer to zero. Our study evaluates the
prediction performance of the benchmark and the proposed models by calculating both
scale-dependent RMSE and MAE and scale-independent MAPE.

The evaluation metrics of our applied models are reported in Table 6. This table
presents deep models in order of descending RMSE. It is evident that the three proposed
models, DBN-GRU, LeNet-GRU and LeNet-Highway, outperform their component models
(DBN, GRU, LeNet and Highway) for the three evaluation metrics. Hence, the prediction
performance of the proposed hybrid models is better than the single deep models. The
result aligns with the previous studies that suggest that combined models are more viable
for time series modeling and can enhance the forecasting accuracy in contrast to single
models used separately (Hajirahimi & Khashei, 2019; Liang et al., 2019; Pradeepkumar &
Ravi, 2018).
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Table 6. Evaluation of Prediction Performance.

Model
Performance Metrics

RMSE MAE MAPE

DBN 0.0076 0.0046 2.29%
GRU 0.0075 0.0059 3.01%
Highway 0.0067 0.0037 1.48%
LeNet 0.0049 0.0038 1.24%
DBN, GRU Hybrid 0.0045 0.0031 1.26%
LeNet, GRU Hybrid 0.0045 0.0031 1.07%
LeNet, Highway Hybrid 0.0040 0.0028 0.97%

To further verify the prediction performance of the proposed hybrid models, the
forecasted returns of the S&P 500 were plotted against the actual returns for the out-of-
sample values in Figures 7–9. These plots show that the proposed models have a better
predictive ability for forecasting S&P returns over the testing period. Moreover, these plots
present varying but reasonable degrees of randomness in their forecasts. Similar results
were also plotted for the prediction performance of the single benchmark models.
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Figure 7. S&P500 Return Prediction with Hybrid DBN-GRU Model.
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Figure 8. S&P500 Return Prediction with Hybrid LeNet-GRU Model.
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Figure 9. S&P500 Return Prediction with Hybrid LeNet-Highway Model.

Notably, the hybrid LeNet–Highway model outperforms all other models with the
lowest RMSE, MAE and MAPE values, as shown in Figures 10, 11 and 12, respectively.
Additionally, the prediction performance of DBN–GRU and LeNet–GRU is almost similar.
This result can be due to using the GRU for final predictions in both models. It also
suggests that DBN and LeNet perform equally well for feature extraction. However, LeNet
is the best-performing solo model among DBN, GRU, and Highway. A CNN variant
outperforming sequential RNNs is supported in the literature (Bai et al., 2018; Jerez &
Kristjanpoller, 2020).

When we compare the prediction performance of the proposed hybrid models with
that of their component models, we find that the DBN-GRU hybrid has approximately 41%,
33%, and 45% lower RMSE, MAE, and MAPE values respectively, than those of DBN, which
is performing better than GRU. This can be verified by examining the bar chart comparing
errors in Figure 13. Similarly, LeNet performs better than GRU for all metrics. Their hybrid
LeNet-GRU outperforms LeNet with around 8%, 18%, and 14% lower RMSE, MAE, and
MAPE, respectively, as shown in Figure 14. Lastly, our best-performing LeNet-Highway
hybrid model beats LeNet with lower RMSE, MAE, and MAPE of around 11%, 10%, and
23% respectively, as shown in Figure 15.

Figure 10. RMSE of the Applied Deep Models.
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Figure 11. MAE of the Applied Deep Models.

Figure 12. MAPE of the Applied Deep Models.

While our results demonstrate the superior forecasting performance of the proposed
hybrid DL models, we acknowledge that combining different architectures may lead to higher
computational costs, potentially limiting their real-time application. This challenge can be ad-
dressed by leveraging techniques such as model optimization and parallel processing to reduce
computational overhead without significantly compromising performance. However, there
must be a trade-off between the model’s complexity and forecasting performance. Given these
considerations, the primary focus of this study is to enhance forecasting accuracy, ensuring
that the models effectively capture the complex, non-linear dynamics of financial markets.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Error Values

DBN

GRU

DBN-GRU Hybrid

Prediction Performance of DBN, GRU and their Sequential Hybrid Model
RMSE
MAE
MAPE

Figure 13. Comparison of Error Values of DBN, GRU and their Hybrid Model.
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Figure 14. Comparison of Error Values of LeNet, GRU and their Hybrid Model.
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Figure 15. Comparison of Error Values of LeNet, Highway Network and their Hybrid Model.

5. Time Series Cross Validation
Cross validation is a method to assess the generalizability of a model’s learning to

a new dataset. For prediction models, it is applied to estimate that how accurately the
forecasting model is going to predict in real time (Donate et al., 2013). Time Series Cross
Validation (TSCV) is used in ML to assess the generalizability of a prediction model for
new or unseen data. It is different from the k-fold cross validation in terms of data splitting.
The k-fold method is not suitable for time series validation as it randomly splits the data
into testing and training sets without maintaining order of the training and testing subsets
(Zhou, 2021). However, the order of data samples matters for sequential data as is the case
for stock data. Test samples must be preceded by consecutive training samples and this
order is to be maintained for all folds of the validation technique. The prediction model
is trained on the training samples and tested on the validation samples and the process
is repeated for a given number of folds and sizes of the validation data. This way, the
predictive performance of the model is assessed across time.

In this study, we have used TSCV for analyzing the predictive ability of our best
prediction model, LeNet-Highway. The model has been cross validated by comparing the
results in terms of RMSE, MAE, and MAPE for different mixes of number of folds (k = 10,
20) and size of validation data (100, 10, 1) (Zhou, 2021). We get the results of cross validation
comparable with the prediction performance of the LeNet-Highway and its component
models, LeNet and Highway, for 10 folds and 100 validation samples. The results of
this combination are presented in Table 7 and its results confirm the generalizability of
our proposed model LeNet-Highway. The cross validation of our proposed model also
postulates that future returns can be predicted based on their previous values. Historical
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data of the stock market provides patterns for the predictability of future performance of
the market as established by many studies in the existing literature (Gajamannage et al.,
2023; Gupta et al., 2022; Huang et al., 2023; Ma & Yan, 2022; Rezaei et al., 2021). However,
this is in contradiction to the hypotheses of efficient markets (Fama, 1970) and random
walk (Godfrey et al., 1964).

Table 7. Results of Time Series Cross Validation for k = 10 and validation_samples = 100.

Models RMSE MAE MAPE

LeNet 0.0049 0.0038 1.24%

Highway 0.0067 0.0037 1.48%

LeNet-Highway 0.004 0.0028 0.97%

TSCV for 10 folds

0.0039
0.0051
0.0064
0.0099
0.0032
0.0021
0.0037
0.0049
0.0053
0.0026

0.0027
0.0044
0.0059
0.0090
0.0023
0.0014
0.0028
0.0036
0.0041
0.0021

1.35%
3.77%
4.83%
2.58%
0.71%
0.33%
0.76%
0.52%
0.59%
3.00%

Average across all folds 0.0047 0.0038 1.84%

6. SHapley Additive exPlanation (SHAP) for Explaining the
Model’s Predictions

DL models are also referred to as ’black-box’ models as they cannot explain how they
produce certain forecasts. Their predictions are not explainable unless they have been
verified with some customized tools. Such tools offer interpretability that helps build trust
in the model’s predictions. Moreover, it helps in detecting biases, if any, in the data or the
model. SHAP is one such tool, based on Shapley values, which use game theory to credit
each variable for the predictions of the model.

SHapley Additive exPlanation (SHAP) is an Explainable Artificial Intelligence (XAI)
technique for understanding the intricate choices made by deep models. It has been
proposed by Lundberg and Lee (2017) that explains individual predictions. By giving each
variable an interpretable value and providing information on how each contributes to the
model’s predictions individually, SHAP overcomes the opacity that deep models have
by design. It provides a thorough and easy to understand analysis of the significance of
every input variable for forecasting the target variable. Practitioners and researchers can
better understand the significant variables influencing a model’s output with the aid of this
factor-wise attribution.

In this research, we have implemented SHAP to explain the forecasts of our best
prediction model LeNet-Highway. First, a background summary is produced by applying
K-means clustering to the training dataset. We use 25 clusters of our data samples using
K-means. The model’s predictions and a background summary derived from k-mean
clustering are used in the design of a SHAP explainer known as ‘Kernel Explainer’, which
measures the SHAP values for each variable. These values provide information about the
role that variable plays in the model’s ability to predict outcomes based on a particular
sample. We generate a force plot and a summary plot using these shap values to know the
contribution of variables in the model’s predictions. For a variable and a sample, each point
on the summary plot represents a shapley value. The feature determines the position on the
y-axis, while the shapley value determines the position on the x-axis. The variable’s value
is represented by color, ranging from low to high. In the summary plot, the y-axis direction
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of the jittered overlapped points helps us understand the distribution of the Shapley values
for each variable. The variables are listed in descending order of significance.

As shown in Figure 16, the summary plot orders variables based on their importance
in predicting the S&P 500 return. This plot summarizes the top ten important variables
for predicting the S&P 500 using our proposed LeNet-Highway hybrid model. The most
significant variables of our dataset include seven macroeconomic indicators and three
TIs. It shows that VIX is our prediction model’s most important input variable. Indeed,
the higher percentage change values in VIX result in lower stock return values. Thus, a
significant negative relationship exists between VIX and S&P 500 returns (Campisi et al.,
2023; Sarwar, 2012). This finding aligns with previous studies, such as Adeloye et al. (2024);
Campisi et al. (2023); Sarwar (2012), which suggest that stock market volatility and market
performance are negatively associated, and increased volatility significantly diminishes
market outcomes in the long run. The change in volatility is followed by the contemporary
factors of FSI and US EPU, the second and third most important predictors of S&P 500
returns. This is well-supported by the literature, which establishes the significant predictive
power of contemporaneous uncertainty factors like EPU for market returns and volatility
(Aye et al., 2018; Brogaard & Detzel, 2015). Interestingly, EPU, as a risk factor, has been
shown to predict future returns in financial markets and may be compensated with a
risk premium (Pastor & Veronesi, 2013; Phan et al., 2018). It is important to note that
the four contemporary macroeconomic indicators—percentage changes in US EPU, FSI,
GPRD and US SSR—are important variables for predicting the S&P 500 return. Similarly,
the global FSI has been identified as the most significant predictor in equity markets by
Liang et al. (2023), while contractionary monetary policy, as reflected in SSR, has been
found to decrease stock returns (Tokmakcioglu & Ozcelebi, 2020). However, there are also
some contradictions, and the impact of uncertainty factors such as EPU is not significant
for some equity markets (Li et al., 2016; Mensi et al., 2014). In addition, the direction
and strength of the association between EPU and stock markets appear to depend on
market conditions, like credit constraints (Carrière-Swallow & Céspedes, 2013). These
mixed findings underline the complex and heterogeneous role of contemporary uncertainty
factors in predicting stock market returns across different regions and economic conditions.
Besides, oil and gold returns are also included in the list of important explanatory variables.
Moreover, the summary plot shows that aroonOsc, ADX, and MACD returns are significant
TIs for US market forecasts. We find support for many studies that establish the importance
of these indicators in capturing market trends and momentum (Kamara et al., 2022; Ma &
Yan, 2022; Stein, 2022).

Figure 16. SHAP Summary Plot for LeNet-Highway.
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In addition, a force plot visually shows how each variable in a model influences an
individual forecast. It highlights the contribution of each variable, pushing the prediction
higher (positive value) or lower (negative value) relative to the baseline prediction. At
the point where the data sample is actually predicted, these forces balance each other.
In the force plot shown in Figure 17, the baseline value is set to be 0.35, and the most
important variable is VIX that is in line with the results of the summary plot. Higher values
of variables (in red) force the predicted return to lower side while the lower values of
variables (in blue) force it to the higher side. For instance, higher values of change in VIX
lower the expected return, and lower values of change in oil increase the expected return
(Aye et al., 2018; Brogaard & Detzel, 2015). It is important to note that these values are
given for a specific sample.

Figure 17. Force Plot for LeNet-Highway.

7. Conclusions and Future Work
In this study, we adopted a data-driven approach to forecast the stock market by

integrating several macroeconomic and TIs as predictors. We combined convolutional and
recurrent neural networks to develop three novel deep hybrid models: DBN-GRU, LeNet-
GRU, and LeNet-Highway. Using CNN variants (LeNet and DBN) for feature extraction
and recurrent NNs (GRU and Highway) for prediction, we sequentially combined these
deep models to examine the predictive power of macroeconomic and technical indicators
for the US stock market. Our findings reveal that the US stock market is indeed predictable,
with the LeNet-Highway hybrid model emerging as the most accurate prediction model of
S&P 500 returns, delivering the lowest RMSE, MAE, and MAPE values among all models
tested. This model outperforms the second-best LeNet model by 11%, 10%, and 23% in
RMSE, MAE, and MAPE, respectively.

Significantly, our analysis indicates that both LeNet and DBN are effective at extracting
relevant features, confirming the superior feature extraction capability of CNNs in this
context. Importantly, all three hybrid models demonstrated lower prediction errors than
their component models, underscoring the enhanced predictive power of combining CNNs
with recurrent networks. This synergy leverages the feature extraction strength of CNNs
alongside the sequential pattern-capturing ability of RNNs, leading to improved forecasts
of S&P 500 returns. Furthermore, SHAP values provided insight into the model’s inter-
pretability, identifying VIX, FSI, and US EPU as the most influential factors in predicting
S&P 500 returns.

These findings emphasize the predictive importance of macroeconomic indicators
over TIs in forecasting stock returns. The robustness of our best-performing model was
confirmed through time series cross-validation, affirming its generalizability on unseen
datasets. This study highlights the critical role of advanced DL frameworks in enhanc-
ing stock market prediction accuracy. Accurate market predictions are crucial for stock
market stakeholders, as they enable more informed investment decisions, effective risk
management, and strategic asset allocation. Enhanced predictive accuracy provides fi-
nancial analysts, portfolio managers, and institutional investors with insights that can
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optimize returns, anticipate market shifts, and maintain a competitive edge in the dynamic
financial landscape.

Our study has several limitations that present opportunities for future research. While
this study focuses on the US stock market, it can be extended to other countries’ markets
to enable cross-market comparisons. However, data for country-specific EPUs is often
available only at a monthly frequency, which may impact prediction granularity. Future
studies could also incorporate additional factors, such as foreign exchange rates, cryp-
tocurrency prices, and other relevant variables, to assess their influence on stock market
prediction accuracy. Moreover, indicators like the Twitter-based Economic Uncertainty
(TEU) could be examined for their predictive potential. Besides, testing alternative DL
models beyond GRU, Highway Networks, DBN, and LeNet may offer further insights
into the stock market’s data learning capabilities and predictive performance. However,
it should be pointed out that the proposed hybrid models do not address Unobserved
Heterogeneity (UH), which refers to variations in data caused by unobserved factors. These
unmeasured factors may impact the accuracy and reliability of predictions (Hamed et al.,
2022). Thus, future research could explore methods like latent variable models or hybrid
approaches combining statistical techniques with DL to better account for UH.
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CNN Convolutional Neural Network
DBN Deep Belief Network
DL Deep Learning
EMA Exponential Moving Average
EPU Economic Policy Uncertainty
FSI Financial Stress Index
GEPU Global Economic Policy Uncertainty
GFC Global Financial Crisis
GFSI Global Financial Stress Index
GPRD Daily Geopolitical Risk
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GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
MACD Moving Average Convergence Divergence
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MFI Money Flow Index
ML Machine Learning
NNs Neural Networks
RBM Restricted Boltzman Machine
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RSI Relative Strength Index
S&P Standard and Poor’s
SMA Simple Moving Average
SSR Shadow Short Rate
TIs Technical Indicators
US United States
WMA Weighted Moving Average
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