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Abstract: While there is a large body of literature on oil uncertainty-equity prices and/or
returns nexus, an associated important question of how oil market uncertainty affects
stock market bubbles remains unanswered. In this paper, we first use the Multi-Scale
Log-Periodic Power Law Singularity Confidence Indicator (MS-LPPLS-CI) approach to
detect both positive and negative bubbles in the short-, medium- and long-term stock
markets of the G7 countries. While detecting major crashes and booms in the seven stock
markets over the monthly period of February 1973 to May 2020, we also observe similar
timing of strong (positive and negative) LPPLS-CIs across the G7, suggesting synchronized
boom-bust cycles. Given this, we next apply dynamic heterogeneous coefficients panel
databased regressions to analyze the predictive impact of a model-free robust metric of
oil price uncertainty on the bubbles indicators. After controlling for the impacts of output
growth, inflation, and monetary policy, we find that oil price uncertainty predicts a decrease
in all the time scales and countries of the positive bubbles and increases strongly in the
medium term for five countries (and weakly the short-term) negative LPPLS-CIs. The
aggregate findings continue to hold with the inclusion of investor sentiment indicators.
Our results have important implications for both investors and policymakers, as the higher
(lower) oil price uncertainty can lead to a crash (recovery) in a bullish (bearish) market.

Keywords: multi-scale bubbles; oil price uncertainty; panel data regressions; G7 stock markets

JEL Classification: C22; C32; C33; G15; Q02

1. Introduction
As pointed out by (Bernanke, 1983) and (Pindyck, 1991), investment under uncertainty

and real options implies that high oil price uncertainty creates cyclical fluctuations in
investment by lowering the firms’ incentive for current investment. This, in turn, affects
cash flows generated by a firm and the discount rate used to calculate stock prices and,
hence, negatively impacts stock prices and/or stock returns (Swaray & Salisu, 2018; Chen &
Demirer, 2022). Moreover, since stock prices are the sum of discounted cash flows, including
dividends, oil price uncertainty can adversely affect stock prices by decreasing the overall
profit that a firm generally uses to pay dividends, with this resulting from the fact that
firms need to bear additional costs to avoid risk associated with oil price uncertainty
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(Demirer et al., 2015). The theoretical prediction that oil price uncertainty negatively drives
international stock prices and or/returns via the investment and dividends channels has
been widely empirically evaluated (see, for example, Sadorsky, 1999; Basher & Sadorsky,
2006; Masih et al., 2011; Alsalman, 2016; Diaz et al., 2016; Bass, 2017; Benavides et al., 2019;
Rahman, 2021).

While existing studies tend to agree that oil uncertainty would adversely impact
equity prices and/or returns, an important question would be how it affects stock market
bubbles, i.e., its boom-bust cycles. Intuitively, if stock prices are accelerating away from
their fundamental value, higher (lower) oil uncertainty is likely to lead to a burst of the
bubble (further growth) in the market. While the decline in stock prices would continue in
the wake of higher oil uncertainty, a rally could be witnessed when oil price uncertainty
declines. Moreover, (Zhang & Wong, 2023) pointed out that oil price uncertainty negatively
impacts stock liquidity, which, in turn, is central to the efficient functioning of trade
and investor confidence in the financial markets. Naturally, deteriorating (improving)
investment confidence following higher (lower) oil uncertainty could also lead to a collapse
(recovery) of the stock market (see Scherbina & Schlusche, 2014) for detailed discussions of
the theoretical models based on investor disagreement, feedback trading, and biased self-
attribution, used to relate investor sentiment or confidence to bubbles). Understandably,
with tremendous fluctuations in oil prices witnessed since the Global Financial Crisis,
what we propose to investigate in this paper is pertinent from the perspective of not only
investors but also policymakers, as bubbles are known to historically not only impact
economic activity (Reinhart & Rogoff, 2009; Jordà et al., 2015) but impact welfare also
(Narayan et al., 2016).

Against this backdrop, we aim to analyze the effect of a robust metric of oil uncertainty
on stock market bubbles of the G7 countries (i.e., Canada, France, Germany, Italy, Japan, the
United Kingdom (UK), and the United States (US)) over the monthly period of February
1973 to May 2020 in a panel data setting. The choice of the G7 is not only driven by the
availability of data that allows us to cover nearly five decades of extreme movements in
the stock markets of these developed economies but also due to the fact that the G7 bloc
accounts for nearly two-thirds of global net wealth and nearly half of world output, and
hence, dynamics of bubbles in these stock markets are likely to have worldwide spillover
effects and impact the sustainability of the global financial system (Das et al., 2019). At
the same time, the decision to rely on panel data regressions is motivated by the high
degree of synchronization of the indicators of the bubbles of these countries, which we
discuss in detail below. But even though we conduct the estimation in a panel setting, we
allow for heterogeneous responses of bubbles to oil uncertainty (and other controls) by
utilizing the Random Coefficients (RC) approach of (Swamy, 1970) to derive both overall
and country-specific results.

As far as detecting bubbles, we not only use the Log-Periodic Power Law Singularity
(LPPLS) model, originally developed by (Johansen et al., 1999, 2000; Sornette, 2003) for
both positive (upward accelerating price followed by a crash) and negative (downward
accelerating price followed by a rally) bubbles, but we also apply the Multi-Scale LPPLS
Confidence Indicators (MS-LPPLS-CI) of (Demirer et al., 2019) to characterize positive and
negative bubbles at different time scales, i.e., short-, medium- and long-term, corresponding
to estimation windows associated with trading activities over one to three months, three
months to a year, and one year to two years, respectively. Note that the identification of
both positive and negative multi-scale bubbles is not possible based on other existing wide
array of statistical tests (see Balcilar et al., 2016; Sornette et al., 2018) for detailed reviews),
which points to the suitability and added value of our applied methodology. In fact, we
consider this as important because it would allow us to gauge the possible asymmetric
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effect of oil uncertainty on the equity market bubbles of the G7, given that crash and
recovery at different horizons can carry different information for market participants as
suggested by the Heterogeneous Market Hypothesis (HMH; Müller et al., 1997).

To the best of our knowledge, this is the first paper to analyze the effect of oil uncer-
tainty on six indicators of multi-scale positive and negative bubbles in the G7 countries
based on a heterogeneous coefficients panel data model. In the process, we add to the
literature on oil price uncertainty and stock returns by now considering the effect of the
former on the boom-bust cycles of the latter. In addition, our paper also aims to provide
a new predictor to an already large set of factors identified as drivers of bubbles (see
Sornette et al., 2018) for a detailed review), with us also controlling for some of the promi-
nent variables in our analyses. The remainder of the paper is organized as follows: Section 2
discusses the data and the basics of the econometric model. Section 3 presents the empirical
findings involving the detection of bubbles, as well as the effects of investor sentiment
on the six LPPLS-CIs of bubbles in the panel of G7 countries. Finally, Section 4 concludes
the paper.

2. Data and Econometric Model
2.1. Data

We first obtain weekly bubble indicators, derived based on the natural logarithmic
values of the daily dividend-price ratio of the seven countries, using the dividend and
the stock price index series in their local currencies, obtained from Refinitiv Datastream.
Appendix A of the paper outlines the mathematical details of how the MS-LPPLS-CIs
are obtained and closely follows the presentation of Demirer et al. (2019). The generated
bubbles indicators cover the weekly period of the first week of January 1973 to the fourth
week of May 2020. Since our controls, following Caraiani et al. (2023), namely, the macroe-
conomic variables, besides the indicator of oil uncertainty, are at a monthly frequency,
to obtain a monthly value for each of the multi-scale confidence indicators, we take the
average for each of the scales weekly values that fall within a given month.

The evolution of the MS-LPPLS-CIs can be used to detect crashes and rallies in real-
time. To this end, we plot the short-, medium-, and long-term indicators (green, purple,
and red lines) while we show the log price-to-dividend ratio as a black line in Figure 1a. A
larger LPPLS-CI value for a particular scale shows that the LPPLS signature is present for
many of the fitting windows to which we calibrated the model, making it a more reliable
bubble indicator. The key message conveyed by Figure 1a is that there are many peaks in
the LPPLS-CIs preceding substantial shifts in the log price-to-dividend ratio.

We note that the bubble indicators across the G7 countries, in general, display peaks in
the periods corresponding to crashes and recoveries before and around the collapse of the
Bretton Woods system in 1973, the “Black Monday” episode in 1987, the Asian Financial
Crisis of 1997, the Dot-com bubble burst from 2000 to 2002, the Global Financial Crisis of
2007 to 2008, the European sovereign debt crisis from 2009 to 2012, the “Brexit” in 2016,
and to some extent during the COVID-19 episode. In other words, the MS-LPPLS-CIs are
capable of providing leading information on all the major episodes of booms and busts
witnessed globally from 1973 to 2020.

In general, smaller crashes or rallies can best be recovered using shorter time scales,
while longer time scales help to detect larger crashes or rallies, with the short-term LPPLS-
CIs preceding the medium-term ones and the latter leading the long-run indicators, i.e.,
maturation of the bubble heading towards instability is present across several distinct
time-scales. More importantly, we observe a similar timing of the strong (positive as well
as negative) MS-LPPLS-CI values in the cross-section of G7 countries, in line with the
intuition that boom and bust cycles of the seven developed equity markets often occur in
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tandem, motivating the need to use a panel-based approach to analyze the impact of oil
price uncertainty on stock market bubbles.
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Figure 1. (a) Monthly Multi-Scale LPPLS-CIs of the G7 Countries; (b) Model-Free Estimate of Oil
Price Uncertainty.

Next, we turn our attention to the main predictor, i.e., oil price uncertainty, depicted in
Figure 1b. One must realize that uncertainty is a latent variable and needs to be measured.
Given this, the majority of the studies mentioned in the introduction rely on univariate or
bivariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models ap-
plied to the oil price returns to derive metrics of oil price uncertainty to relate to stock price
and/or returns. In other words, GARCH-based oil price uncertainty is fully determined by
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changes in the level of oil price, and as a result, it is impossible to disentangle uncertainty
about the oil price and changes in the oil price level (Jo, 2014). Given this, (Rahman, 2021)
proposes a new measure of oil price uncertainty by utilizing Stochastic Volatility (SV) in
a Structural Vector Autoregressive (SVAR) model (involving oil and stock prices and a
monetary policy instrument). In this model, oil price uncertainty is the conditional variance
of the oil price change forecast error, and thus, it evolves independently of any change in
the oil price level.1 Despite the innovativeness of this approach over GARCH-based models
in measuring oil price uncertainty, the metric is not free from the structure of any specific
theoretical model. Given these empirical issues in constructing an appropriate metric of oil
price uncertainty, (Nguyen et al., 2021) have proposed a novel construction of the oil price
uncertainty index that is unconditional on a model.2 These authors develop a measure
of oil price uncertainty as the one-period-ahead forecast error variance of a forecasting
regression with SV in the residual terms. The novelty of this construction approach lies
in its flexibility in including a large number of additional information that is important in
explaining fluctuations in oil prices, namely, exchange rate, oil production, global economic
condition, and co-movement in the fuel market. In this sense, the index is able to capture
uncertainty in oil prices rather than volatility as measured by both GARCH and SV models.

According to Figure 1b, heightened oil price uncertainty coincides with the first and
second oil crises of 1973 and 1979. These events are also associated with substantial positive
and negative stock market bubbles across all G7 countries, as evident from Figure 1a.
Following the oil crises of the 1970s, oil uncertainty peaked again during the first half of
1986, coinciding with a prolonged period of positive stock market bubbles across all G7
countries and at short- medium- and long-term time scales. A strong bull market overdue
for a correction since 1982, exacerbated by heightened oil uncertainty, culminated in the
Black Monday stock market crash of October 1987.

Iraq’s invasion of Kuwait in 1990 had significant ramifications for global stock markets,
leading to increased uncertainty and bearish sentiment. The invasion led to a sharp spike
in oil prices and consequently increased inflation and reduced economic growth, typically
negative for stock market performance. As with many geopolitical crises, investors pull
out riskier assets like equities and move towards safer assets such as gold and government
bonds. This effect shows up as positive asset bubbles, most notably in Germany and the US.

The next episode of heightened oil market uncertainty started towards the end of 1998,
with substantial positive stock market bubbles across all countries, but most pronounced
for the US. The positive bubble indicators for the US remained high up to 2002, reflecting
both the impact of the East-Asian crisis and the Dot-Com Bubble on global stock markets.

Our model-free estimate of oil price uncertainty indicates another spike towards the
end of 2008, further negatively contributing to the Global Financial Crisis.

As is further evident from Figure 1b, the COVID-19 pandemic, which emerged at the
end of 2019 and became a global health crisis in 2020, had profound effects on the global
economy and various industries, with the oil and gas industries most severely impacted
through a collapse in demand, storage issues and a price war between major oil producers
in the OPEC+ group. The pandemic also accelerated discussions about the future of oil
and the potential for a more rapid transition to renewable energy sources—leading to a
significant increase of uncertainty in the oil market, driven by not only immediate demand-
side shocks but also longer-term considerations about the future of energy consumption.
Although most countries in the sample register some positive bubble effects, positive
bubbles are most noticeable in the case of the US.

Regarding the macroeconomic control variables included in the analysis, we use
month-on-month growth of industrial production, month-on-month Consumer Price Index
(CPI)-based inflation rate, and change in the interest rate, with all transformations to the
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data ensuring stationarity of the variables under consideration, as per the unit root testing
approach of (Im et al., 2003). As far as the interest rate variable is concerned, we use the
three-month money market interest rates, merged with the Shadow Short Rate (SSR) of
the individual countries (of course, from 1999 onwards France, Germany, and Italy have
the same values), from the time the latter became available. Industrial production, CPI,
and the money market interest rates are all sourced from the Main Economic Indicators
(MEI) database of the Organization for Economic Co-operation and Development (OECD).3

Specifically speaking, barring the US data, which begins in November 1985, the SSRs of the
remaining six countries are available from January 1995.4

Ultimately, based on data availability and transformations to ensure stationarity, our
panel databased regression covers monthly data from February 1973 to May 2020. Though
the model-free measure of oil price uncertainty starts in February 1975 and ends in May
2020, in line with the extant literature on oil uncertainty and stock price, we also use
GARCH-based measure of the former in our estimations, which in turn, based on the West
Texas Intermediate (WTI) oil price log-returns can be computed from February 1973, with
the data on oil price derived from the Global Financial Data5. This is important for us,
as it not only allows us to go two years back in time to relate oil price uncertainty with
the bubbles associated with the collapse of the Bretton Woods system but also provides a
robustness check.

2.2. Econometric Framework

To capture the predictive effect of oil price uncertainty on equity market bubbles at
various time scales, we specify the following dynamic panel data model:

eq_bubblej
i,t = β0i + β1,ieq_bubblej

i,t−1 + β2,iopui,t−1 + βkiZi,t−1 + εi,t (1)

where eq_bubblej
i,t =

{
lt_negi,t, mt_negi,t, st_negi,t,lt_posi,t, mt_posi,t, st_posi,t

}
, j = 1, 2, .., 6

represents negative and positive equity market bubbles at short, medium and long-run
time scales, which correspond to estimation windows associated with trading activities
over one to three months, three months to a year, and one year to two years, respec-
tively (see, Appendix A for further details); opuit−1 is the one-period lagged oil price
uncertainty, which involves either the metric developed by (Nguyen et al., 2021) or the
GARCH-based one; while Zit−1 is the set of lagged macroeconomic control variables, with
Z′

i,t−1 =
{

ip_growthi,t−1, in f li,t−1, ir_di f f i,t−1

}
, comprising industrial production growth,

CPI inflation, and changes in interest rates. The β’s in Equation (1) capture the cross-section-
specific (country-level) parameters associated with the predictors, which also involves the
lagged MS-LPPLS-CIs of the G7 in an attempt to capture the persistence of these indicators.
The idiosyncratic error term εi,t is distributed with mean zero and variance σii,t I I. The model
is estimated using the Random Coefficients (RC) approach, as discussed in Appendix B
following (Van Eyden et al., 2023).

3. Empirical Findings
In this section, the Random Coefficient (Swamy, 1970) estimation results for Equation

(1) for all countries combined, as well as the country-specific results of the effect of oil price
uncertainty on equity market bubbles, are reported.

We model the lagged impact of oil price uncertainty on equity market bubbles to
capture the notion of predictive impact and avoid any possible concerns of endogeneity.6

The impact of lagged opu on negative and positive equity market bubbles across the three
time scales is presented in Table 1.
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Table 1. Random coefficient estimation predictive results for negative and positive equity bubbles
due to a model-free estimate of oil price uncertainty: February 1975 to May 2020.

(1) (2) (3) (4) (5) (6)

lt_neg mt_neg st_neg lt_pos mt_pos st_pos

l.lt_neg 0.670 ***
(20.42)

l.mt_neg 0.416 ***
(15.00)

l.st_neg 0.248 ***
(8.24)

l.lt_pos 0.775 ***
(46.76)

l.mt_pos 0.580 ***
(17.25)

l.st_pos 0.320 ***
(15.34)

l.opu 0.00330 0.00951 *** 0.00169 * −0.0132 *** −0.0126 *** −0.00748 ***
(1.23) (4.02) (1.70) (−7.05) (−6.04) (−5.30)

l.ip_growth −0.186 *** 0.00925 −0.0530 0.0507 ** 0.117 −0.0196
(−2.97) (0.17) (−0.96) (2.02) (1.46) (−0.37)

l.infl 0.239 −0.0584 0.261 *** −0.417 −1.270 *** −0.756 ***
(0.97) (−0.36) (3.09) (−0.85) (−3.89) (−6.68)

l.ir_diff −0.0000363 −0.000632 0.00160 *** −0.00194 −0.00285 −0.00250 *
(−0.03) (−1.28) (2.77) (−1.28) (−1.41) (−1.75)

constant 0.000109 −0.00262 0.00323 *** 0.0154 *** 0.0182 *** 0.0148 ***
(0.06) (−1.59) (4.37) (6.08) (8.84) (12.46)

# observations 3808 3808 3808 3808 3808 3808
# groups 7 7 7 7 7 7

Test for par constancy, χ2 91.33 60.06 53.88 38.81 76.37 35.10
d.o.f 36 36 36 36 36 36
Prob. 0.0000 0.0072 0.0281 0.3440 0.0001 0.5114

Note: l (one-month lag); Oil price uncertainty (opu); industrial production growth (ip_growth); consumer price
index inflation (infl); interest rate difference (ir_diff ); long-term negative bubble (lt_neg); medium-term negative
bubble (mt_neg); short-term negative bubble (st_neg); long-term positive bubble (lt_pos); medium-term positive
bubble (mt_pos); short-term positive bubble (st_pos); # signifies number; For the null hypothesis and test statistic
formulation for the test for parameter constancy (Poi, 2003), refer to Appendix B, Equations (A12) and (A13);
t-statistics (based on bootstrapped robust standard errors) in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01.

From Table 1, it is evident that, in line with the observations made in Figure 1, with
relatively longer time scales capturing stronger crashes or rallies, the persistence, which is
always statistically significant at the 1% level, increases as we move from the short- to the
long-term positive and negative LPPLS-CIs. More importantly, as per our intuition outlined
in the introduction, lagged oil price uncertainty exerts a positive and negative impact on the
negative and positive MS-LPPLS-CIs, respectively.7 While the effect is statistically significant
at the 1% level across all the time scales of the positive bubbles, significance (at 10% and 1%,
respectively) is observed for the cases of the short- and medium-term negative bubbles.8

In sum, lagged higher oil price uncertainty is likely to cause a burst in the stock
market relatively more strongly, as depicted by the higher absolute value of the regression
coefficient related to oil price uncertainty when it is in its bullish phase rather than further
collapse in its bearish state. This evidence of asymmetry in terms of the strength and
significance of the effect of oil price uncertainty provides us with a strong justification
for decomposing bubbles into their positive and negative counterparts. This result is
possibly an indication that market agents tend to react less to (oil price uncertainty) news,
in particular during deep stock market downturns, as captured by the long-term negative
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LPPLS-CI, as sentiments are already low (Çepni et al., 2023), especially given that they
might have foreseen the situation with short- and medium-term indicators leading long-
horizon bubbles, as shown in Figure 1.

As far as the effects from the other controls are concerned, they are somewhat sporadic,
especially for output growth and changes in interest rates. For instance, in line with
economic sense, higher growth in industrial production reduces the negative long-term-
LPPLS-CI and increases the positive medium-term-LPPLS-CI in a statistically significant
manner. Higher inflation can be considered bad news and is found to significantly increase
the negative short- and long-term MS-LPPLS-CIs, whereas the effect is the opposite, in a
statistically significant fashion, for all the scales of the positive LPPLS-CIs.

Finally, the lagged interest rate tends to increase and reduce, at conventional statisti-
cally significant levels, the short-term negative and positive bubbles indicators, respectively,
in line with what is expected. But, a weak counter-intuitive negative effect is detected for
the negative medium-term LPPLS-CI. All in all, inflation, like oil uncertainty, tends to carry
quite a strong influence on the MS-LPPLS-CIs, especially in the context of positive bubbles.

We next turn to country-specific results for the sample of the G7 economies to under-
stand the drivers of the overall results, with the tests of parameter constancy, barring the
cases of short- and long-term positive LPPLS-CIs, suggesting statistically different slope
parameters of the predictors, i.e., heterogeneous impacts. Table 2 presents the results for
the impact of lagged opu on negative and positive equity market bubbles at the short-,
medium-, and long-term scales.

Table 2. Random coefficient estimation predictive results for the country-specific impact of a model-
free estimate of oil price uncertainty on negative and positive equity market bubbles: February 1975
to May 2020.

(1) (2) (3) (4) (5) (6)

lt_neg mt_neg st_neg lt_pos mt_pos st_pos

Canada l.opu 0.0006 0.0034 0.0013 −0.0152 *** −0.0151 *** −0.0096 ***
(02.12) (0.85) (0.54) (−3.06) (−2.98) (−2.88)

France l.opu 0.0104 ** 0.0103 *** 0.0023 −0.0107 ** −0.0113 ** −0.0073 **
(2.44) (3.46) (0.99) (−2.20) (−2.25) (−2.18)

Germany l.opu 0.0031 0.0159 *** 0.0016 −0.0329 *** −0.0140 *** −0.0082 **
(0.85) (3.95) (0.71) (−3.22) (−2.79) (−2.54)

Italy l.opu 0.0072 0.0120 *** 0.0005 −0.0076 *** −0.0119 ** −0.0047
(1.56) (4.00) (0.20) (−1.65) (−2.37) (−1.44)

Japan l.opu 0.0077 * 0.0218 *** 0.0026 −0.0114 *** −0.0092 * −0.0062 **
(1.66) (3.00) (1.10) (−2.44) (−1.83) (−1.87)

United
Kingdom l.opu −0.0017 0.0102 *** 0.0024 −0.0145 *** −0.0114 ** −0.00104

***
(−0.33) (2.78) (1.03) (−2.96) (−2.26) (−3.16)

United
States l.opu −0.0041 0.0018 0.011 −0.0192 *** −0.0155 *** −0.0056 *

(−0.83) (0.48) (0.51) (−3.73) (−3.06) (−1.72)
Note: l (one-month lag); Oil price uncertainty (opu); long-term negative bubble (lt_neg); medium-term negative
bubble (mt_neg); short-term negative bubble (st_neg); long-term positive bubble (lt_pos); medium-term positive
bubble (mt_pos); short-term positive bubble (st_pos) t-statistics in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01.

Consistent with the overall strong results in Table 1 for positive MS-LPPLS-CIs, we
find that barring the case of the short-term positive bubbles indicator of Italy, oil price un-
certainty tends to predict a decline of the positive MS-LPPLS-CIs in a statistically significant
manner in all other twenty instances. Comparatively, as shown in Table 1, the country-
specific effects for the negative MS-LPPLS-CIs are weak, with the overall strong effect for
the medium-term being driven by France, Germany, Italy, Japan, and the UK. Interestingly,
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while the overall effect is insignificant for the positive long-term-LPPLS-CI, significance is
observed for France and Japan, with counter-intuitive insignificant effects observed for the
UK and the US (likely to have nullified the aggregate influence). At the same time, while
weak predictive content is shown to be carried by lagged oil uncertainty for the short-term
negative LPPLS-CI, there is no evidence of significance at the country level under this
case. The reason behind this is technical, with the software (STATA, Version 18, in this
case) not allowing for producing bootstrapped standard errors for the country-specific
parameter estimates, unlike that in the overall case. In fact, if we do not bootstrap the
standard errors for the results in Table 1, the response of the short-term negative LPPLS-CI
to opu is no longer significant at the 10% level. More importantly, the other predictive
effects from opu, i.e., on all three time scales of the positive bubbles indicators and on
the medium-term negative LPPLS-CI, continue to be significant at the 1% level.9 In sum,
our results tend to confirm that higher values of lagged oil price uncertainty are likely to
have a strong negative impact on the positive MS-LPPLS-CIs, i.e., cause a crash across all
of the G7 markets and, hence, the aggregate. For the negative medium-term LPPLS-CI
involving the whole of the G7, the relatively strong positive influence is due to five out of
the seven markets.

In order to validate the model-free measure of oil price uncertainty used by us, we
present in Table 3 the overall predictive results for the bubbles of G7 countries obtained now
based on the GARCH-based measure of oil returns volatility. As can be seen, compared to
Table 1, the lagged effects are weaker, with statistical significance detected only under the
medium-term positive and short-term negative LPPLS-CIs, with the sign being counter-
intuitive (negative) in the latter case. Clearly, this set of results justifies the need to utilize
a robust metric of an otherwise latent variable when drawing appropriate inferences of
prediction involving stock market bubbles of the G7 based on oil price uncertainty.

Table 3. Random coefficient estimation predictive results for negative and positive equity bubbles
due to a conditional volatility estimate of oil price uncertainty: February 1973 to May 2020.

(1) (2) (3) (4) (5) (6)

lt_neg mt_neg st_neg lt_pos mt_pos st_pos

l.lt_neg 0.658 ***
(21.04)

l.mt_neg 0.464 ***
(14.23)

l.st_neg 0.244 ***
(8.37)

l.lt_pos 0.778 ***
(46.81)

l.mt_pos 0.581 ***
(17.26)

l.st_pos 0.319 ***
(16.57)

l.GARCH_opu 0.0000020 0.00000013 −0.0000012 ** −0.0000025 −0.0000058 *** −0.00000030
(1.14) (0.15) (−2.11) (−1.40) (−4.00) (−0.13)

l.ip_growth −0.214 *** −0.0376 −0.0658 0.154 *** 0.184 ** 0.0543
(−2.79) (−0.57) (−1.15) (2.63) (2.44) (1.55)

l.infl 0.315 0.183 0.369 *** −0.255 −0.966 *** −0.539 ***
(1.06) (0.85) (4.57) (−0.63) (−3.36) (−5.63)

l.ir_diff 0.00132 0.000345 0.00224 *** −0.00175 −0.00228 −0.00277 **
(0.95) (0.90) (5.49) (−1.43) (−1.49) (−2.32)

constant 0.00238 *** 0.00400 *** 0.00469 *** 0.00590 *** 0.00959 *** 0.00940 ***
(4.04) (6.88) (15.76) (4.58) (10.11) (22.20)
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Table 3. Cont.

(1) (2) (3) (4) (5) (6)

# observations 3997 3997 3997 3997 3997 3997
# groups 7 7 7 7 7 7

Test for par
constancy, χ2 92.92 69.05 51.01 40.95 76.11 38.81

d.o.f 36 36 36 36 36 36
Prob. 0.0000 0.0008 0.0499 0.2621 0.0001 0.3440

Note: l (one-month lag); GARCH model-based oil price uncertainty (GARCH_opu); industrial production growth
(ip_growth); consumer price index inflation (infl); interest rate difference (ir_diff ); long-term negative bubble (lt_neg);
medium-term negative bubble (mt_neg); short-term negative bubble (st_neg); long-term positive bubble (lt_pos);
medium-term positive bubble (mt_pos); short-term positive bubble (st_pos) t-statistics (based on bootstrapped
robust standard errors) in parentheses; ** p < 0.05, *** p < 0.01.

Finally, realizing the role of behavioral factors in driving stock market bubbles of the G7
(Pan, 2020; Van Eyden et al., 2023), we have reported in Table 4 the results from an extended
version of the model given by Equation (1), where we have now additionally included
lagged standardized seasonally-adjusted survey-based business confidence indicator (bci)
and consumer confidence indicator (cci) as predictors, with both these variables obtained
from the MEI database of the OECD.

Table 4. Random Coefficient estimation predictive results for negative and positive equity bubbles
due to a model-free estimate of oil price uncertainty with investor sentiment indicators: February
1975 to May 2020.

(1) (2) (3) (4) (5) (6)

lt_neg mt_neg st_neg lt_pos mt_pos st_pos

l.lt_neg 0.614 ***
(10.38)

l.mt_neg 0.406 ***
(11.51)

l.st_neg 0.243 ***
(7.08)

l.lt_pos 0.769 ***
(42.92)

l.mt_pos 0.569 ***
(15.71)

l.st_pos 0.308 ***
(11.11)

l.opu 0.00492 0.0109 *** 0.00230 ** −0.0140 *** −0.0124 *** −0.00729 ***
(1.44) (5.65) (2.03) (−3.81) (−3.56) (−2.81)

l.ip_growth −0.127 ** 0.0382 −0.0223 0.0112 0.0715 −0.0310
(−2.09) (0.75) (−0.55) (0.31) (0.84) (−0.46)

l.infl 0.196 −0.0967 0.360 *** −0.284 −1.081 *** −0.949 ***
(1.09) (−0.29) (4.12) (−0.58) (−3.13) (−5.52)

l.ir_diff −0.000122 −0.00186 ** 0.00106 ** −0.00163 −0.000374 −0.000492
(−0.08) (−2.10) (2.08) (−0.88) (−0.14) (−0.19)

l.cci −0.00113 * −0.000467 −0.000131 0.000551 0.000873 −0.00000175
(−1.89) (−1.33) (−0.37) (0.70) (1.19) (−0.00)

l.bci 0.000185 0.000392 0.0000964 0.000216 −0.000727 −0.000215
(0.71) (1.59) (0.31) (0.37) (−1.14) (−0.45)

constant 0.0942 ** 0.00393 0.00605 −0.0611 0.00332 0.0367
(2.00) (0.16) (0.31) (−1.08) (0.10) (1.36)
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Table 4. Cont.

(1) (2) (3) (4) (5) (6)

# observations 3377 3377 3377 3377 3377 3377
# groups 7 7 7 7 7 7

Test for par
constancy, χ2 139.33 65.54 67.28 55.70 84.07 56.31

d.o.f 48 48 48 48 48 48
Prob. 0.0000 0.0469 0.0345 0.2077 0.0010 0.1920

Note: l (one-month lag); Oil price uncertainty (opu); industrial production growth (ip_growth); consumer price
index inflation (infl); interest rate difference (ir_diff ); consumer confidence indicator (cci), business confidence
indicator (bci); long-term negative bubble (lt_neg); medium-term negative bubble (mt_neg); short-term negative
bubble (st_neg); long-term positive bubble (lt_pos); medium-term positive bubble (mt_pos); short-term positive
bubble (st_pos) t-statistics (based on bootstrapped robust standard errors) in parentheses; * p < 0.10, ** p < 0.05,
*** p < 0.01.

Our results of Table 1, i.e., oil uncertainty tends to negatively impact positive MS-
LPPLS-CIs relatively strongly, statistically and economically, than the corresponding posi-
tive effects on the negative bubbles indicators continue to hold robustly under the extended
model. The fact that the sentiment indicators, barring the negative effect (as higher values
depict better sentiments) of the lagged cci for the long-term negative bubbles, are hardly
significant is possibly an indication that oil price uncertainty affects the stock markets not
only via investment and dividends channels but also through a behavioral route.

In general, we highlight the importance of oil price uncertainty, when measured
accurately, in predicting positive bubbles across various time scales and medium-term
negative bubbles, in particular for the G7 stock markets.

4. Conclusions
The primary objective of our paper is to analyze for the first time the predictive impact

of a model-free robust measure of oil price uncertainty on equity market bubbles of the G7
countries. In the first step, we detect positive and negative bubbles in the short-, medium-
and long-run for these advanced equity markets using the Multi-Scale Log-Periodic Power
Law Singularity Confidence Indicator (MS-LPLLS-CI) approach. Our findings reveal major
crashes and booms in the seven stock markets over the monthly period of February 1973
to May 2020. We also observe similar timing of strong (positive and negative) LPPLS
indicator values across time scales for the G7 countries, suggesting commonality in the
boom-bust cycles of these equity markets. In other words, diversification of investor
portfolios across these developed stock markets is not a possibility for the market agents
over investment horizons during both booms and crashes. In the second step, due to
the detected evidence of synchronicity in the bubble indicators across the G7, we use a
dynamic panel data-based heterogeneous coefficients regression model to study the overall
and country-specific impact of oil price uncertainty. After controlling for the impacts of
output growth, inflation, and monetary policy, we find that oil price uncertainty predicts
a decrease across all time scales for the positive LPPLS-CI and increases the next period
negative LPPLS-CIs primarily at the medium- and weakly at the short-term scale for the
G7 countries considered all together. At the country level, predictability of the positive
MS-LPPLS-CIs by oil price uncertainty is observed for all the G7 stock markets, while the
effect on the medium-run negative LPPLS-CIs is recorded for five countries. The aggregate
findings continue to hold when we include investor sentiment indicators, but when oil
price uncertainty is captured by a conditional measure of volatility, our results weaken
considerably and, hence, highlight the need to appropriately model the latent variable of
uncertainty in oil price movements.
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With oil price uncertainty showing up as having strong negative effects on posi-
tive bubbles compared to other traditional macroeconomic and financial indicators, it is
recommended that investors and policymakers should be careful when the level of oil
uncertainty tends to rise at the time the stock markets are booming because this could imply
an imminent crash. At the same time, when stock prices are facing relatively less severe
bearish regimes, higher oil price uncertainty can lead to deep equity market downturns.
Accordingly, policymakers should monitor rising oil price uncertainty closely and imple-
ment expansionary monetary and fiscal policies to ensure the revival of the equity market
(André et al., 2023), as directly controlling oil price uncertainty is likely to be difficult due
to it being driven by oil market-specific shocks and geopolitical events (Qian et al., 2022).

As part of future research, in light of the large literature on the relationship between
oil price or returns and stock price or returns (see Degiannakis et al., 2018), and (Smyth &
Narayan, 2018) for comprehensive reviews), it would be interesting to consider the effect
of oil prices on stock market bubbles. But realizing that oil prices are driven by various
shocks namely, oil-supply, global economic activity, oil-specific consumption demand
and inventory demand (Kilian, 2009; Baumeister & Hamilton, 2019), having different
directional impacts on stock prices (Kilian & Park, 2009), we will need to decompose oil
price movements due to these innovations to detect the impact on bubbles in possibly a
time series-based structural SVAR model, which will also allow us to distinguish between
opposing effects of higher oil prices on stock markets for oil-exporting and importing
countries (Wang et al., 2013).10 At the same time, our current analysis can also be extended
to emerging economies.11
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Appendix A. Estimating the Multi-Scale Log-Periodic Power Law
Singularity (LPPLS) Model

(Filimonov & Sornette, 2013) developed a stable and robust calibration scheme for the
following LPPLS model given by:

ln E[p(t)] = A + B(tc − t)m + C(tc − t)mcos
(
ωln(tc − t)m − ϕ

)
(A1)

where parameter tc represents the critical time (the date of the termination of the bubble); A
is the expected log value of the observed time series, i.e., the stock price-dividend ratio, at
time tc; B is the amplitude of the power law acceleration; and C is the relative magnitude of
the log-periodic oscillations. The exponent of the power law growth is given by m, while ω

and ϕ represent the frequency of the log-periodic oscillations and a phase shift parameter,
respectively

We make use of this stable and robust calibration scheme, and following Filimonov
and Sornette (2013), reformulate Equation (A1) to reduce the complexity of the calibration

https://pypi.org/project/lppls/
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process by eliminating the nonlinear parameter ϕ and expanding the linear parameter C to
C1 = Ccos ϕ and C2 = Ccos ϕ.

The new formulation can be written as

ln E[p(t)] = A + B( f ) + C1(g) + C2(h) (A2)

where
f = (tc − t)m

g = (tc − t)mcos[ωln (tC − t)]

h = (tc − t)msin[ωln(tc − t)]

To estimate the three nonlinear parameters: {tc, m, ω}, and 4 linear parameters:
{A, B, C1, C2}, we fit Equation (A2) to the log of the price-dividend ratio. This is done by
using L2 norm to obtain the following sum of squared residuals:

F(tc, m, ω, A, B, C1, C2) =
N

∑
i=1

[
ln p(τi)− A − B( fi)− C1(gi)− C2(hi)

]2
(A3)

Since the estimation of the three nonlinear parameters depends on the four linear
parameters, we obtain the following cost function:

F(tc, m, ω) = min
A,B,C1,C2

F(tc, m, ω, A, B, C1, C2) = F
(
tc, m, ω, Â, B̂, Ĉ1, Ĉ2

)
(A4)

Solving the optimization problem allows for the estimation of the four linear parameters:

{Â, B̂, Ĉ1, Ĉ2} = arg min
A,B,C1,C2

F(tc, m, ω, A, B, C1, C2) (A5)

which can be done analytically by solving the following matrix equation:
N ∑ fi ∑ gi ∑ hi

∑ fi ∑ f 2
i ∑ figi ∑ fihi

∑ gi ∑ figi ∑ g2
i ∑ gihi

∑ hi ∑ fihi ∑ gihi ∑ h2
i




Â
B̂
Ĉ1

Ĉ2

 =


∑ ln pi

∑ fi lnpi

∑ gi lnpi

∑ hi lnpi

 (A6)

Next, the three nonlinear parameters can be determined by solving the following
nonlinear optimization problem:

{t̂c, m̂, ω̂} = arg min
tc ,m,ω

F(tc, m, ω) (A7)

We use the Sequential Least Squares Programming (SLSQP) search algorithm (Kraft,
1988) to find the best estimation of the three nonlinear parameters {tc, m, ω}.

The LPPLS confidence indicator, introduced by Sornette et al. (2015), is used to
measure the sensitivity of bubble patterns in each country’s log price-dividend ratio time
series. The larger the LPPLS confidence indicator (CI), the more reliable the LPPLS bubble
pattern and vice versa. It is calculated by calibrating the LPPLS model to shrinking time
windows by shifting the initial observation t1 forward in time toward the final observation
t2 with a step dt. For each LPPLS model fit, the estimated parameters are filtered against
established thresholds, and the qualified fits are taken as a fraction of the total number of
positive or negative fits. A positive fit has estimated B < 0, and a negative fit has estimated
B > 0.
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Following the work of (Demirer et al., 2019), we incorporate bubbles of varying
multiple time scales into this analysis. We sample the time series in steps of 5 trading
days. We create the nested windows [t1, t2] and iterate through each window in steps of
2 trading days. In this manner, we obtain a weekly resolution from which we construct the
following indicators:

• Short-term bubble: A number ∈ [0, 1] which denotes the fraction of qualified fits
for estimation windows of length dt := t2 − t1 ∈ [30 : 90] trading days per t2. This
indicator comprises of (90 − 30)/2 = 30 fits.

• Medium-term bubble: A number ∈ [0, 1] which denotes the fraction of qualified fits
for estimation windows of length dt := t2 − t1 ∈ [30 : 90] trading days per t2. This
indicator comprises of (300 − 90)/2 = 105 fits.

• Long-term bubble: A number ∈ [0, 1] which denotes the fraction of qualified fits
for estimation windows of length dt := t2 − t1 ∈ [30 : 90] trading days per t2. This
indicator comprises of (745 − 300)/2 = 223 fits.

• Filter conditions: After calibrating the model, the following filter conditions are
applied to determine which fits are qualified:

m ∈ [0.01, 0.99]

ω ∈ [2, 15]

tc ∈ [max(t2 − 60, t2 − 0.5(t2 − t1)), min(252, t2 + 0.5(t2 − t1))]

O > 2.5

D > 0.5

where, O = ω
2π ln

(
tc−t1
tc−t2

)
is the number of oscillations, and D = m|B|

ω|C| captures the
damping parameter required to ensure that the crash hazard rate, h(t), is non-negative.

Appendix B. Random Coefficients (RC) Estimation
Traditional fixed- and random-effects models incorporate panel-specific heterogeneity

by including a set of nuisance parameters that provide each panel with its own constant
term. However, in these models, all panels share common slope parameters – a restriction
that is often less desirable as changes in independent variables may exert a heterogeneous
impact on the dependent variable in question. Random—coefficients (RC) models (Swamy,
1970) are more general, allowing each panel to have a vector of randomly drawn slopes
from a distribution common to all panels. According to Poi (2003), the implementation of
the RC estimator ensures the best linear unbiased predictors of the panel-specific draws
from this distribution.

Consider a general random-coefficients model, with y being the dependent variable
and X being the predictor, of the form:

yi = Xiβi + εi (A8)

In the case of RC, each panel-specific βi is related to an underlying common parameter
vector β:

βi = β + vi (A9)

where E{vi} = 0, E
{

viv′i
}
= Σ, E

{
viv′j

}
= 0 for j ̸= i, and E

{
viϵ

′
j

}
= 0 for all i and j.

Equations (A8) and (A9) may be combined to get:

yi = Xi(β + vi) + εi= Xiβ + ui
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with ui ≡ Xivi + εi. Furthermore:

E
{

uiu′
i
}
= E

{
(Xivi + εi)(Xivi + εi)

′
}
= XiΣX′

i + σii I≡ Πi

The P panels can be represented in stack format:

y = Xβ + u (A10)

where:

Π ≡ E
{

uiu′
i
}
=


Π1 0
0 Π2

· · · 0
· · · 0

...
...

0 0

. . .
...

· · · ΠP


Estimating the parameters in Equation (A9) is a standard problem, which can be

solved with generalized least squares (GLS):

β̂ =
(

X′Π−1X
)−1

X′Π−1y=
(
∑i X′

i Π
−1
i Xi

)−1
∑i X′

i Π
−1
i yi= ∑i Wibi (A11)

where Wi is the Generalized Least Squares (GLS) weight and bi =
(
X′

i Xi
)−1X′

i y. The
resulting β̂ for the overall (national) result is, therefore, a weighted average of the state-
specific OLS estimates. For more details on β̂ variance specification and GLS weight, refer
to Poi (2003).

To obtain the state-specific β̂i vectors, Judge et al. (1985) suggest that if attention is
restricted to the class of estimators

{
β*

i
}

for which E
{

β*
i

∣∣βi
}
= βi, then the state-specific

OLS estimator bi is appropriate. Following Greene’s (1997) suggested method of obtaining
the variance of β̂i, it follows that β̂ is both consistent and efficient, and although inefficient,
bi is also a consistent estimator of β.

Poi (2003) also suggests a test to determine whether the country-specific βis are
significantly different from one another. The null hypothesis is stated as:

H0 : β1 = β2 = · · · = βP (A12)

and the test statistic is defined as:

T ≡ ∑P
t=1

(
bi − β†

)′{
σ̂−1

ii (XiXi)
}(

bi − β†
)

(A13)

where β† =
{

∑P
t=1 σ̂−1

ii (XiXi)
}−1

∑P
t=1 σ̂−1

ii (XiXi)bi.

The test statistic T is distributed as χ2 with k(P − 1) degrees of freedom.
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Appendix C. Additional Results
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Figure A1. Impulse response functions from a panel vector autoregressive model for negative and
positive equity bubbles due to a one-unit shock to the model-free estimate of oil price uncertainty
identified using Cholesky decomposition: February 1975 to May 2020. Note: The PVAR models of the
G7 comprise of the variables in the following order: Oil price uncertainty (opu); industrial production
growth (ip_growth); consumer price index inflation (infl); interest rate difference (ir_diff ); long-term
negative bubble (lt_neg) or medium-term negative bubble (mt_neg) or short-term negative bubble
(st_neg) or long-term positive bubble (lt_pos) or medium-term positive bubble (mt_pos) or short-term
positive bubble (st_pos), with the blue line showing the mean responses to a one unit shock to opu,
along with the 95% confidence bands (red dotted lines).
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Table A1. Random coefficient estimation of contemporaneous effects for negative and positive equity
bubbles due to a model-free estimate of oil price uncertainty: February 1975 to May 2020.

(1) (2) (3) (4) (5) (6)

lt_neg mt_neg st_neg lt_pos mt_pos st_pos

l.lt_neg 0.678 ***
(20.54)

l.mt_neg 0.413 ***
(14.79)

l.st_neg 0.248 ***
(8.42)

l.lt_pos 0.775 ***
(46.19)

l.mt_pos 0.582 ***
(17.55)

l.st_pos 0.323 ***
(16.82)

oilunc 0.00549 0.00847 *** 0.00246 * −0.0140 *** −0.0106 *** −0.00514 ***
(1.46) (4.08) (1.84) (−7.05) (−7.25) (−3.69)

ip_growth −0.244 ** −0.164 *** 0.0436 −0.0445 0.122 *** 0.141 *
(−2.42) (−8.29) (1.61) (−0.42) (3.26) (1.89)

infl 0.418 ** −0.285 *** 0.0369 −0.861 * −0.696 *** −0.0167
(2.16) (−4.19) (0.36) (−1.86) (−3.35) (−0.09)

ir_diff 0.000924 −0.000903 0.000470 0.000316 −0.000104 −0.00355 ***
(0.91) (−0.73) (0.64) (0.32) (−0.06) (−3.09)

constant −0.00155 −0.00161 0.00290 *** 0.0164 *** 0.0162 *** 0.0123 ***
(−0.61) (−1.21) (3.08) (6.39) (11.16) (11.29)

# observations 3808 3808 3808 3808 3808 3808
# groups 7 7 7 7 7 7

Test for par constancy,χ2 112.70 60.96 54.60 44.60 66.14 35.38
d.o.f 36 36 36 36 36 36
Prob. 0.0000 0.0058 0.0241 0.1538 0.0016 0.4978

Note: l (one-month lag); Oil price uncertainty (opu); industrial production growth (ip_growth); consumer price
index inflation (infl); interest rate difference (ir_diff ); long-term negative bubble (lt_neg); medium-term negative
bubble (mt_neg); short-term negative bubble (st_neg); long-term positive bubble (lt_pos); medium-term positive
bubble (mt_pos); short-term positive bubble (st_pos); t-statistics (based on bootstrapped robust standard errors) in
parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A2. Random coefficient estimation predictive results for negative and positive equity bubbles
due to nominal oil price returns: February 1973 to May 2020.

(1) (2) (3) (4) (5) (6)

lt_neg mt_neg st_neg lt_pos mt_pos st_pos

l.lt_neg 0.658 ***
(21.21)

l.mt_neg 0.463 ***
(13.80)

l.st_neg 0.244 ***
(8.41)

l.lt_pos 0.779 ***
(47.09)

l.mt_pos 0.582 ***
(17.40)

l.st_pos 0.321 ***
(16.47)
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Table A2. Cont.

(1) (2) (3) (4) (5) (6)

l.oil_returns −0.000106 −0.0000317 −0.00000734 −0.0000668 −0.00000533 −0.0000428
(−1.62) (−1.09) (−0.28) (−1.49) (−0.12) (−0.76)

l.ip_growth −0.179 ** −0.0234 −0.0655 0.172 *** 0.167 ** 0.0565
(−2.08) (−0.37) (−1.04) (3.16) (2.40) (1.58)

l.cpi_growth 0.371 0.226 0.387 *** −0.178 −0.951 *** −0.522 ***
(1.19) (1.05) (4.53) (−0.42) (−2.94) (−3.85)

l.ir_diff 0.00151 0.000351 0.00224 *** −0.00156 −0.00213 −0.00265 **
(1.13) (0.93) (5.63) (−1.31) (−1.44) (−2.24)

constant 0.00257 *** 0.00398 *** 0.00454 *** 0.00555 *** 0.00893 *** 0.00934 ***
(4.40) (7.44) (13.25) (4.71) (9.84) (26.01)

# observations 3997 3997 3997 3997 3997 3997
# groups 7 7 7 7 7 7

Test for par constancy,χ2 102.76 70.23 533.72 40.66 76.26 35.94
d.o.f 36 36 36 36 36 36
Prob. 0.0000 0.0006 0.0290 0.2727 0.0001 0.4716

Note: l (one-month lag); Oil price returns (oil_returns); industrial production growth (ip_growth); consumer price
index inflation (infl); interest rate difference (ir_diff ); long-term negative bubble (lt_neg); medium-term negative
bubble (mt_neg); short-term negative bubble (st_neg); long-term positive bubble (lt_pos); medium-term positive
bubble (mt_pos); short-term positive bubble (st_pos) t-statistics (based on bootstrapped robust standard errors) in
parentheses; ** p < 0.05, *** p < 0.01.

Table A3. BRICS sample: Random coefficient estimation predictive results for negative and positive
equity bubbles due to a model-free estimate of oil price uncertainty: February 1999 to May 2020.

(1) (2) (3) (4) (5) (6)

lt_neg mt_neg st_neg lt_pos mt_pos st_pos

l.lt_neg 0.521 ***
(7.75)

l.mt_neg 0.450 ***
(9.18)

l.st_neg 0.230 ***
(5.56)

l.lt_pos 0.702 ***
(23.08)

l.mt_pos 0.502 ***
(15.96)

l.st_pos 0.245 ***
(4.95)

l.oilunc 0.0000485 0.00224 0.00158 −0.00280 −0.00145 −0.00165
(0.01) (0.82) (0.67) (−1.04) (−0.46) (−0.40)

l.ip_growth −0.00940 0.0155 −0.0799 ** 0.0531 0.0433 0.0973 **
(−0.78) (0.73) (−2.06) (1.35) (1.05) (2.25)

l.infl 0.0426 −0.108 −0.0883 0.0438 −0.231 −0.0682
(0.37) (−0.75) (−0.64) (0.27) (−0.71) (−0.42)

l.ir_diff −0.00398 0.00134 * 0.00180 * 0.00570 0.00241 0.00177
(−1.27) (1.67) (1.69) (0.94) (0.97) (1.01)

constant 0.00155 0.00206 0.00472 * 0.00616 ** 0.0105 *** 0.0108 ***
(0.42) (0.74) (1.81) (2.37) (3.17) (2.73)

# observations 1264 1264 1264 1264 1264 1264
# groups 5 5 5 5 5 5

Test for par constancy 55.74 38.12 31.15 32.97 25.21 27.61
d.o.f 24 24 24 24 24 24
Prob. 0.0002 0.0337 0.1494 0.1047 0.3943 0.2767

Note: l (one-month lag); Oil price uncertainty (opu); industrial production growth (ip_growth); consumer price
index inflation (infl); interest rate difference (ir_diff ); long-term negative bubble (lt_neg); medium-term negative
bubble (mt_neg); short-term negative bubble (st_neg); long-term positive bubble (lt_pos); medium-term positive
bubble (mt_pos); short-term positive bubble (st_pos) t-statistics (based on bootstrapped robust standard errors) in
parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A4. BRICS sample: Random coefficient estimation predictive results for the country-specific
impact of a model-free estimate of oil price uncertainty on negative and positive equity market
bubbles: February 1999 to May 2020.

(1) (2) (3) (4) (5) (6)

lt_neg mt_neg st_neg lt_pos mt_pos st_pos

Brazil l.opu 0.0023 0.0042 −0.0005 −0.0085 0.0037 −0.0023
(0.59) (0.66) (−0.09) (−0.80) (0.18) (−0.30)

Russia l.opu −0.0028 0.0031 0.0016 0.0033 0.0020 −0.0088
(−0.60) (0.47) (0.31) (0.60) (0.18) (−1.19)

India l.opu −0.0014 0.0008 0.0036 −0.00006 −0.0047 −0.0023
(−0.26) (0.09) (0.68) (−0.01) (−0.31) (−0.30)

China l.opu −0.0093 * −0.0099 −0.0003 −0.0015 0.0035 0.0082
(−1.90) (−0.99) (−0.06) (−0.12) (0.25) (1.12)

South Africa l.opu 0.0108 ** 0.0078 * 0.0040 −0.0154 −0.0129 −0.0032
(2.49) (1.63) (0.77) (−0.82) (−0.90) (−0.44)

Note: l (one-month lag); Oil price uncertainty (opu); long-term negative bubble (lt_neg); medium-term negative
bubble (mt_neg); short-term negative bubble (st_neg); long-term positive bubble (lt_pos); medium-term positive
bubble (mt_pos); short-term positive bubble (st_pos) t-statistics in parentheses; * p < 0.10, ** p < 0.05.

Notes
1 Using this framework, Rahman (2021) provides evidence that increased oil price uncertainty has a negative effect on (real) stock

returns of the US.
2 The data for the oil uncertainty index can be obtained from the website of Dr. Bao H. Nguyen at: https://sites.google.com/site/

nguyenhoaibao/datasets/oil-market-uncertainty?authuser=0 (accessed on 23 August 2023).
3 https://www.oecd.org/sdd/oecdmaineconomicindicatorsmei.htm (accessed on 23 August 2023).
4 The SSRs are derived from the website of Dr. Leo Krippner: https://www.ljkmfa.com/ (accessed on 23 August 2023) Note that

the SSR estimates used in this paper are derived from the works of Krippner (2013, 2015) due to their coverage involving the G7,
besides being considered an improvement over those obtained by Wu and Xia (2016) (for the Euro area, the UK and the US), as
discussed in detail by Krippner (2020). The SSR is based on models of the term structure, which essentially removes the effect
that the option to invest in physical currency (at an interest rate of zero) has on yield curves, resulting in a hypothetical “shadow
yield curve" that would exist if the physical currency were not available. The “shadow policy rate” generated in this manner,
therefore, provides a measure of the monetary policy stance after the actual policy rate reaches zero. The main advantage of the
SSR is that it is not constrained by the Zero Lower Bound (ZLB), and thus allows us to combine the data from the ZLB period
with that of the non-ZLB era and, in turn to use it as the common metric of monetary policy stance across the conventional and
unconventional monetary policy episodes.

5 https://globalfinancialdata.com/ (accessed on 17 September 2023).
6 Note that the application of the Hausman (1978) test suggested that oil price uncertainty and the control variables are exogenous

to the specification, with complete details of these results available upon request from negative and positive equity market bubbles
across the three time scales presented in Table 1. The authors. Hence, in Table A1 in Appendix C, we depict the contemporaneous
effects of all the predictors.

7 These results in terms of the sign are also confirmed, along with delayed significant effects, in Figure A1 in Appendix C, via
impulse response functions, following an oil price uncertainty shock, identified using Cholesky decomposition, on six Panel VAR
(PVAR) models with variables ordered as follows: opu, ip_growth, infl, ir_diff, and a specific MS-LPPLS-CI for the G7.

8 These findings are consistent for contemporaneous opu, as reported in Table A1.
9 All non-bootstrapped results are available from the authors upon request.

10 This line of reasoning is perhaps confirmed by our finding of insignificant predictive impacts of replacing oil price uncertainty in
our model in Equation (1) with nominal WTI oil price returns on the MS-LPPLS-CIs, as reported in Table A2 in Appendix C.
As initial analysis, we related the daily measure of crash risk, as given by the Chicago Board Options Exchange (CBOE)’s S&P
500 skewness index, with lagged oil-supply and demand as well as financial shocks based on a SVAR decomposition by Ready
(2018), and found that skewness is only negatively impacted (with a coefficient of −75.915) in a statistically significant manner
(at the 5% level), i.e., the crash risk increases due to financial uncertainty over 2 January 1990 to 9 February 2024. This result
was again confirmed when we used the lagged corporate earnings shock of Miescu and Mumtaz (2024), which is a proxy for
positive financial shock, to obtain a statistically significant (at the 1% level) positive (with a coefficient of 0.311) relationship with
skewness, i.e., increases in corporate earnings which signals reduction in financial uncertainty, reduces crash risk by increasing
the skewness, over the period of 18 January 1990 to 16 October 2019.

https://sites.google.com/site/nguyenhoaibao/datasets/oil-market-uncertainty?authuser=0
https://sites.google.com/site/nguyenhoaibao/datasets/oil-market-uncertainty?authuser=0
https://www.oecd.org/sdd/oecdmaineconomicindicatorsmei.htm
https://www.ljkmfa.com/
https://globalfinancialdata.com/
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11 As a preliminary analysis, results are presented in Tables A3 and A4 in Appendix C of the paper for the BRICS (Brazil, Russia,
India, China and South Africa) countries. Table A3 contains the combined results, while Table A4 contains the country-specific
results, focusing on the impact of lagged oil price uncertainty on positive and negative stock market bubbles at the short- medium-
and long-term scales. As can be seen, unlike the case for the G7 countries, which presents with overall strong results for positive
MS-LPPLS-CIs, we find no causal impact of oil price uncertainty on stock market bubbles in the short, medium or long term.
Country-specific effects for the negative MS-LPPLS-CIs are also weak in the case of the BRICS countries, with only South Africa
presenting a significant negative impact of lagged oil price uncertainty on negative stock market bubbles in the long and medium
terms. The differences may be attributed to several economic, structural and institutional differences between the G7 and BRICS
countries. BRICS countries, such as Russia and Brazil, are resource-dependent economies with a significant reliance on oil and
commodity exports. This may make their stock markets more directly tied to oil price levels rather than uncertainty. Investors in
these markets may have adjusted expectations to frequent oil price fluctuations, reducing the sensitivity of bubbles to uncertainty.
G7 countries, on the other hand, are generally more diversified and less reliant on oil exports. Instead, oil price uncertainty
acts as a broader economic risk factor, influencing investor behaviour and contributing to speculative bubbles in stock markets.
Additionally, BRICS stock markets are less mature, while G7 markets are more institutionalized and more responsive to economic
uncertainties. Oil price uncertainty can amplify risk aversion and speculation, fuelling bubbles.
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