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Abstract: This paper investigates the presence of spatial spillovers in firms’ productive (in)efficiency.
For this purpose, a spatial stochastic frontier model is specified and estimated, accounting for spatial
dependence and persistent and transient (in)efficiency. This approach is applied to a panel dataset
from 2014 to 2019 of Portuguese wineries. Apart from the traditional input and output quantities used
in the estimation of a production function, the novelty of this study is the inclusion of information on
the firms’ exact location, which allows incorporating the neighboring dependence in the productive
efficiency analysis. Empirical findings show that despite the Portuguese wineries’ technological
positive dependence on spatial closeness for both inputs and outputs, the geographic closeness is not
strong enough to provide overall productive efficiency gains.

Keywords: location; spatial econometric analysis; panel data; wineries; transient and persistent
efficiency

JEL Classification: C23; D22; L25; L66

1. Introduction

During the last four decades, the globalization of supply chains and free international
trade provided the basic conditions for strong competition among firms, industries, and
regional economic systems. However, despite the open global economic environment,
local and agglomeration externalities are also deemed critical to competitive advantage
(Porter 2000). Therefore, to survive and to be competitive, firms should be innovative
and improve their efficiency over time (persistent) to achieve the benchmark, or catch-
up effect, as well as to have time-varying (transient) efficiency in the use of productive
resources, with geography and location playing important roles (Martínez-Victoria et al.
2019). The benchmark of business performance, measured by the relationship between
inputs and outputs, calls for the analysis of firms’ productive efficiency1, a topic that has
been receiving great attention from scholars, namely with the development of stochastic
frontier analysis (SFA), which was first introduced by Aigner et al. (1977) and Meeusen
and Van den Meeusen and Broeck (1977). SFA models have been applied with different
specifications and assuming distinct distribution and temporal behavior assumptions of
the error component, which is interpreted as being the inefficiency term (e.g., Kumbhakar
et al. 2015; Greene 2008).

Benefiting from the availability of panel data and the potential to incorporate firm-
level heterogeneity in the econometric analysis, in the last decade, the SFA methodology
proposed the decomposition of the productive (in)efficiency level between a transient (time-
varying or short-term) component, reflecting how managers employ the inputs compared
to the best practice, and a persistent (long-term) component (i.e., structural changes that
occur over time, similar to all firms) (Kumbhakar et al. 2014; Alem 2018; Haini 2020). This
separation allows for analyzing how (if at all) managerial decisions, regulation processes,
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and industry-wide policies translate into efficiency gains, thereby providing key insights
into the development of strategies toward firms and industry competitiveness.

Moreover, firms’ activities are interdependent on neighboring productive activities
due to regional clustering factors such as externalities, input-output networks, research
and development entities, ease of knowledge and spin-off transfer, promotion of imitation,
and technological innovation (Martínez-Victoria et al. 2019; Pede et al. 2018). Thus, the
behavior and performance of firms are likely to correlate with their geographical distance,
calling for the use of spatial models. Policies based on findings from non-spatial models
may risk resulting in suboptimal policy outcomes with consequences for the productive
efficiency (Kutlu and Nair-Reichert 2019).

Although the neighboring dependency factors can impact firm efficiency, spatial
spillovers have been scarcely included in the efficiency analysis in the efficiency litera-
ture (Haini 2020). To address this drawback, the spatial SFA model, based on panel data
and considering both geographical location and firm heterogeneity, seems to be particu-
larly appropriate, since it allows for controlling transient factors (Vidoli et al. 2016) and
productivity and technological spillovers (Zhao et al. 2020). Thus, the analysis of the
neighboring effect of firms’ geographical locations on their levels of productive efficiency
occurs simultaneously, either with the decomposition of these into structural or long-term
characteristics (persistent efficiency) and managerial failures or short-term characteristics
(transient efficiency). The assumption of heterogeneity in firms (random firm effects) as
well as events outside a firm’s control (statistical noise) continues to be a topic that de-
serves further research, namely when applied to industries where the spatial component
is relevant. This is particularly pertinent for robustness and validation of the approach,
as well as to support decision making by managers and other stakeholders. This paper is
framed and developed in this perspective using a panel dataset of Portuguese wineries.

The wine industry seems to be a good example of an internationally competitive
industry where production efficiency is contingent on the geographical location, specifically
in the case of the so-called Old World countries, namely France, Italy, Spain, and Portugal,
in which wine has strong connections with regional and national cultural heritage (Ugaglia
et al. 2019). These interrelations are conveyed, for instance, in communication loops
between neighboring producers, regarding their production and marketing decisions
and practices, the use of new technologies, and the flow of knowledge, which stress the
importance of a firm location.

Moreover, globalization paved the way for significant changes in the wine industry
worldwide. New World countries, such as the US, Australia, Argentina, Chile, and South
Africa, entered the market 40 years ago, benefiting from the availability of inputs and
economies of scale, which determined an increase in their market share and a “catch up”
process (Morrison and Rabellotti 2017). This threatened the industry’s dominance by the
traditional countries (Cusmano et al. 2010), who faced rising challenges due to increased
competition, changes in consumer behavior, and growing environmental and public health
concerns. Therefore, to tackle such challenges and maintain and reinforce competitiveness,
traditional producers seek to maximize their resources (productive efficiency) and to
develop collective innovative regional strategies and know-how sharing to gain a collective
added value advantage through spillover effects (Rebelo and Caldas 2013).

Currently, research in the wine industry has shown that spatial spillovers are likely to
be present (Outreville 2016) and influence firms’ performance (Vidoli et al. 2016). Addition-
ally, it has been shown that existing geographical clusters influence productive efficiency
(Bravo-Ureta et al. 2020), but it remains unclear how firms are affected (efficiency) by spa-
tial spillovers and particularly how these spillovers occur over time (short- and long-run
efficiencies). Thus, this paper can provide useful insights into decision making by firm
managers, interprofessional organizations, and public entities not only to improve compet-
itiveness through the adoption of the technology’s best practice in the wine industry, but
also as a benchmark for other industries, namely agro-food, where the spatial component
is an important issue.



Economies 2021, 9, 116 3 of 20

To the best of our knowledge, this is the first time that the productive efficiency of
wineries has been computed using a model that benefits from a panel dataset and considers
the spatial effects, disaggregating transient, and persistent efficiency. The remainder of the
paper includes Section 2, which lays out the theoretical and applied framework; Section 3,
which provides an overview of the Portuguese wine industry and data used; Section 4,
which presents and discusses the econometric results; and Section 5, which provides the
concluding remarks.

2. Methodology

Measuring firms’ productive efficiency is critical to design the best entrepreneurial
strategies and to define policy measures that induce spatial spillovers to generate overall
productive efficiency and competitiveness gains. This requires the computation of the pro-
ductive efficiency in a stochastic environment. To address these issues, the SFA framework
has been used. This approach is based on the assumption that there is a reachable efficient
production, which therefore implies the specification2 of a production function (Kumb-
hakar et al. 2015) and a panel data SFA model specification that captures firm heterogeneity
in the same industry. This is attained by the following production function:

yit = α + x′itβ + εit, i = 1, . . . , N; t = 1, . . . , T
εit = vit − ui

(1)

where yit is the output for the firm i in the year t and x′it denotes a vector of the inputs.
The β stands for the vector of the technological parameters associated with each input.
The composed error term εit is then the sum of an idiosyncratic disturbance vit (which is
the typical measurement and statistical error), and ui is the term that represents a firm’s
productive inefficiency, with vit and ui assumed to be independents, each of which is
identically distributed (IID).

The SFA usually relies on the two-step maximum likelihood (ML) method, where
first the parameters are estimated for the model, and then the inefficiency component is
measured through the mean of the conditional distribution, depending on the inefficiency
component and the assumptions of the conditional distribution (e.g., Kumbhakar et al.
2018). The estimation of the firms’ productive (technical) efficiency (TE) is usually obtained
by the Jondrow et al. (1982) method.

Over the last decade, benefiting from panel data availability, research in the SFA field
has evolved toward the decomposition of the inefficiency term. Following the development
of new assumptions of the regression error term and estimation techniques, the panel data
SFA models have been aggregated into four time generations (Kumbhakar et al. 2014): (1)
models in which inefficiency is time- and unit-invariant (Battese and Coelli 1988; Pitt and
Lee 1981); (2) models that allow for time-varying inefficiency (Battese and Coelli 1992;
Kumbhakar 1990); (3) models that specify unit-specific effects and time-varying inefficiency
(Battese and Coelli 1995; Greene 2005); and (4) models that separate unit-specific effects
and time-varying inefficiency into persistent and transient inefficiency (Kumbhakar et al.
2014; Kumbhakar and Heshmati 1995). Regarding the latest generation, the focus is
on the decomposition of the inefficiency term into short-term (transient) and long-run
(persistent) (Kumbhakar et al. 2015; Colombi et al. 2011) (i.e., into the firm’s internal
strategic inefficiency and managerial weaknesses on one hand, and into the systematic and
intrinsically inefficient aspects of production (such as firm location, supply-chain access, or
clustering effects) on the other).

Supported by Kumbhakar et al. (2014), the SFA model with a four-error component
for panel data is specified as

yit = α0 + f (xitβ) + µi + vit − τi − uit (2)
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vit ∼ N
(
0, σ2

v
)

ui ∼ N+
(
0, σ2

u
)

τi ∼ N+
(
0, σ2

τ

)
where µi identifies the random effects, vit is statistical noise, and τi and uit are the persistent
(PTE) and transient (TTE) inefficiency terms, respectively. Thus, the point estimates of
productive inefficiency are given by

PTE = exp(−τ̂i)
TTE = exp(−ûit)

(3)

in which τ̂i and ûit are estimated through the Jondrow et al. (1982) method.
Regarding the spatial effects, an overview of the panel data spatial econometric

models can be found in Astuti et al. (2020). Briefly, the Spatial Autoregressive Model (SAR)
specifies the existence of spatial effects in the dependent variable, while the Spatial Error
Model (SEM) specifies their existence in the error term. Additionally, the Spatial Durbin
Model (SDM) allows identifying spatial effects in the dependent variable as well as in
the regressors. Thus, to ascertain the role of geographical location or spatial proximity
throughout the whole production technology (i.e., output and inputs), the SDM (which
nests both the SAR and SEM models) is the appropriate model (Astuti et al. 2020; Haini
2020), with

yit = ρWijyit + xitβ + θWijxjtβ + εit (4)

where W stands for the spatial weighted matrix (n ∗ n), which is included in the model,
interacting with both the output and inputs.

The Spatial Stochastic Frontier Analysis (SSFA) approach emerged in the last decade
and aims to merge the SFA methodology within the spatial econometrics framework
(Barrios and Lavado 2010; Areal et al. 2012; Fusco and Vidoli 2013). Depending on the
distributional assumptions for both the inefficiency term and the spatially weighted matrix
(SAR, SEM, or SDM specifications), any existing specification can be adapted to the SSFA
methodology. Historically, Druska and Horrace (2004) applied SSFA first using the SEM
structure and estimating the model by the method of moments. Similarly, Fusco and Vidoli
(2013) also used the SEM structure, although they estimated the model by the maximum
likelihood methods. Authors such as Glass et al. (2016) and Tsukamoto (2019) introduced
and applied SSFA with an SAR structure. Recently, Glass and Kenjegalieva (2019) and
Haini (2020) considered the SDM specification, which can be generically defined as

yit = α0 + ρWijyit + xitβ + θWijxjtβ + µi + vit − τi − uit (5)

which is the combination of Equation (4) with the error term consisting of a four-component
error as in Equation (2). This specification can be estimated through a multi-step procedure
as in the work of Kumbhakar et al. (2014) or through a more efficient simulated maximum
likelihood estimation (MLE) method, as in the work of Filippini and Greene (2015) and
Colombi et al. (2014). The multi-step procedure involves easier computation and provides
consistent estimates, which justify the extensive use in the literature (e.g., Agasisti and
Gralka 2019; Acosta and Santos-Montero 2019), as is the case for this paper.

In the context of the wine industry, former research suggests that the geographic
location and spatial dependence are likely to be present in both the input and output factors
(Pokharel 2018). Vidoli et al. (2016) stated that specific technological patterns ought to be
influenced by an intangible factor, which can be interpreted as the local business climate,
concluding that spatial proximity does not necessarily generate knowledge spillovers.
Outreville (2016) found spatial spillovers in the wine industry and that the location can
determine the level of efficiency of wine firms. Additionally, Canello and Vidoli (2020)
observed the existence of geographical clusters. Bravo-Ureta et al. (2020), focusing on
grape growers, showed that the geographic location influences productive efficiency.
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Efficiency analysis in the wine industry3 is limited to few contributions, relying on the
Data Envelopment Approach, a non-parametrical method (Aparicio et al. 2020; Marta-Costa
et al. 2017; Tóth and Gá 2014; Urso et al. 2018) and in the SFA methodology (Bravo-Ureta
et al. 2020; Conradie et al. 2006; Kallas and Lambarra 2010; Moreira et al. 2011; Vidoli et al.
2016). In the SFA branch, the literature has been demonstrating that there are constant
returns to scale (Moreira et al. 2011), and factors such as size, labor, and capital intensity
affect a firm’s ability to reach its maximum potential production (efficiency). Kallas and
Lambarra (2010) focused on how the decision to enter or exit the industry is related to a
firm’s efficiency, using the total turnover as the output and labor, the cost of raw materials,
and employed capital as the inputs. Vidoli et al. (2016) referenced that heterogeneity
(inefficiency) in performance may occur due to intangible local factors, hinting at spatial
dependence between firms.

In addition, research within the SSFA framework in the wine industry is quite scarce,
with a few articles developing and applying such a methodology. Fusco and Vidoli (2013)
were pioneers in developing a specification that allows the spatial heterogeneity to be
correlated with the error (inefficiency) term. Vidoli et al. (2016) used this specification
with a dataset of Italian wine (grape) producers to evaluate the role of intangible factors
influencing efficiency. Canello and Vidoli (2020) employed a geographically weighted panel
SFA with Italian farms to identify geographical clusters and their responses to institutional
shocks. This shortage highlights the need for further research in the line of this paper,
which enforces a new application of the SSFA method with the SDM specification in the
wine industry.

3. Research Setting
3.1. The Portuguese Wine Industry

In light of the adaptation and reaction to the catch up process triggered by the late-
comers (Morrison and Rabellotti 2017) (i.e., the New Wine Countries (NWC)), in the group
of traditional European or Old Wine Countries (OWCs), Portugal arises as an interesting
case to study since it includes most of the characteristics of a traditional OWC, namely
demarcating production by regions according to the characteristics of the terroir (Hogg
and Rebelo 2018), also being a relevant and competitive player in the international market.
Portugal is one of the larger wine producers and exporters in the EU, being fifth in 2019
(Instituto da Vinha e do Vinho 2019) with an average annual growth of wine exports
from 2000 to 2016 of 3% (Macedo et al. 2019), which enhanced the competitiveness of the
Portuguese wine industry in the international market.

Despite Portugal’s ancient wine tradition and heritage, particularly with Port wine,
which has been exported for more than two centuries (Guedes and Rebelo 2019), the de-
velopment of the Portuguese wine industry is relatively new, mainly driven by Portugal’s
entry into the European Union (in 1986). Before that, the industry was characterized by
small producers, which had few competitive structures and did not engage in exporting
activities. Thus, the Portuguese wine industry lagged behind its international competitors
(Lains 2018). After joining the EU, a set of initiatives toward the promotion of Portuguese
wines were carried out by interprofessional associations and public policies, benefiting
from the openness of new international markets. This allowed wineries (especially those of
a larger size) to enter these markets with different types of wine, brands, and origins, thus
building a collective reputation for the Portuguese wines. Consequently, the industry accel-
erated both horizontal and vertical integration (Macedo et al. 2019) and innovation (Rebelo
and Muhr 2012; Rebelo and Caldas 2013), which increased international competitiveness,
supported by technological progress and improving productive efficiency.

Benefiting from spillover effects, spinoffs, cooperation, and joint promotion in third
markets (out of the European Union), the market structure that emerged is typical of
monopolistic competition, prevailing small- and medium-sized enterprises (SMEs), vertical
(e.g., vintage, grand reserve, and reserve) and horizontal (e.g., wine appellation of origin or
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color) product differentiation and freedom to enter and exit the market (Hogg and Rebelo
2018; Macedo et al. 2019).

Official data from the Banco de Portugal4 (Portuguese central bank) shows that in 2019,
there were 966 licensed wineries in the country. Moreover, the industry is predominantly
composed of small family-owned firms (99.69% of firms can be classified as SMEs), as
is typical of a monopolistic competitive structure. Older firms (over 20 years of activity)
account for 80.93% of the total industry turnover, which shows the challenging environment
for new entrants to obtain market share. Portugal’s wine industry is characterized by strong
historical ties, heterogeneity regarding firm size, public regulation out of the firm manager’s
control, and geographic diversity, illustrated by its 12 demarcated wine regions (Figure 1).
These are scattered throughout the country, and each has a restricted regulatory framework
for grape production and wine typology to sell, which may constrain spatial spillovers
even between neighboring wineries.
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It is within this context that Equation (5) seems to fit the production technology of
Portuguese wineries well, being well expressed by the Spatial Stochastic Frontier Model
(SFSDM). Therefore, the specification of the SFSDM model used in this paper is defined by

yit = α0 + η1t + η2t2 + ρWijyit + xitβ + θWijxjtβ + µi + vit − τi − uit (6)

Like in Equation (5), α0 is the constant, and η1t + η2t2 reflects the time trend5 to
capture the technological progress in the regression. The parameters ρ and θ assess the
spatially weighted influence of both the dependent variable and the exogenous inputs of
the production function. Moreover, µi denotes random effects, vit is the statistical noise,
and τi and uit are the persistent and transient inefficiency terms, respectively. Wij identifies
the spatial weighted matrix, which measures the distances between firms by applying
the inverse distance weighting (IDW) method. To calculate a value for any unmeasured
location, IDW takes into consideration two factors: the search radius and the inverse
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distance weight power value. The computed values closest to the estimated location have
more of an effect on the predicted value and therefore greater weights than those that are
remoter.

3.2. Data

To compute the productive efficiency, technological homogeneity needs to be assumed.
To fulfill this theoretical condition, the research only considers firms that are included in the
group6 that produces and sells wine (wineries, from the vinification of their own produced
grapes or buying from other grape growers).

Regarding the specification of the production function of the wine industry, the output
is typically measured by the production of grapes (Vidoli et al. 2016; Outreville 2016) or
turnover (Martínez-Victoria et al. 2019). Typically, SFA research uses labor and capital
(Vidoli et al. 2016; Canello and Vidoli 2020) as inputs or financial indicators such as the
value of fixed assets, labor costs, material costs, and investments (Martínez-Victoria et al.
2019).

Following the Portuguese accounting nomenclature, we considered the total annual
turnover as the output, while the inputs were (1) the number of employees as a proxy for
the labor input; (2) the value of the fixed assets’ depreciation and amortizations as a proxy
for the capital input; (3) the cost of raw materials, which includes the cost of grapes, bottles,
and other materials included in the final product; and (4) the cost of supplies and services,
which includes goods and services provided by suppliers required for the firm’s production
such as fuel, electricity, annual repairing of fixed assets, marketing, and communication
costs.

The data source was the annual official fiscal reports (Informação Empresarial Sim-
plificada (IES)) of firms included in the 11,021 NACE codes (statistical classification of
economic activities of the EU), provided by Informa Dun & Bradsheet. A random sample of
304 firms was achieved, which offered a representation of nearly 30% of the firms licensed.
The period covered from 2014 to 2019, which was the longest time series with the available
data for all variables, resulting in a final sample of 1824 observations. All variables were at
constant prices, with 2015 being the base year (the deflator of the GDP was retrieved from
the World Development Indicators database and used to deflate the variables). To linearize
the values, natural logarithms were taken for all considered variables in subsequent analy-
sis and estimations. Table 1 displays the descriptive statistics of the output turnover and
inputs used in the estimation of Equation (5).

Table 1. Descriptive statistics.

Variable Unit Definition Mean Std. Dev. Min Max

Turnover 103 Euro Value of total sales 2751.97 9995.55 0.14 137,477.94
Employees Number Number of paid employees in the current year 14.59 39.71 1 638

Depreciations 103 Euro
Value of capital depreciations and

amortizations 144.97 364.03 0.04 5209.47

CRM 103 Euro Cost of raw materials 1488.94 4706.26 0.02 41,618.24
CSS 103 Euro Cost of supplies and services 548.67 2529.97 0.94 40,125.88

The mean turnover (output) was EUR 2751.971, with a standard deviation of EUR
9995.552 (a variation coefficient of 363%), which confirmed the high industry heterogeneity
characteristic of monopolistic competitive structures.

The geographical distribution of firms and size measured by the employees variable
(Figure 2) shows a dispersed location of firms across the country, representing the spatial
heterogeneity of the industry. The Douro and Porto, Lisboa, and Alentejo regions host the
highest number of and larger firms (in terms of the number of employees).
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Even though it appears to be a tendency for larger firms to agglomerate near their
competitors, it is not easy to identify regional clusters. Since in the Portuguese wine
industry larger firms tend to outperform smaller firms (Faria et al. 2020), this might induce
profitable firms tending to be located in the same regions. However, the dispersion of
smaller firms throughout the territory does not provide any particular pattern regarding the
link between performance and location. To assess the existence of spatial autocorrelation
for the annual turnover, Figure 3 highlights a scatterplot for Moran’s I7. This index reflects
a positive—albeit small—spatial correlation for the mean of the annual turnover of the
sample. Thus, only the computation and comparison of efficiency scores between firms
can provide insights on the role of a firm’s location in productive performance.
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4. Results and Discussion

Based on the likelihood ratio (LR) test, the translog production function fit the data
better than the Cobb–Douglas production function.8 Thus, we proceeded with the spec-
ification of a translog production function, which allowed us to relax the assumption of
constant input elasticities. Subsequently, the presence of panel effects was tested against
the pooled regression through the Breusch and Pagan (1980) Lagrange multiplier (LM) test,
presenting a value of (Chi2(1) = 853.70 ***), which allowed us to conclude that the panel
effects were present and the panel data models ought to be estimated. Moreover, given the
assumptions for the inefficiency term, the use of fixed effects could provide biased results,
as it would determine a correlation between the fixed effect term and the idiosyncratic
error term (Haini 2020). Thus, to ensure that the assumptions regarding inefficiency held,
the random effects arose as the most suitable estimation.

Given this, the random effect model was estimated through MLE9, which signaled
the absence of spatial autocorrelation in the error term, whereas the Moran’s I value for
the global spatial correlation in the RE model (−0.2358) suggests that there was a random
spatial process (i.e., an unidentifiable pattern in the firms’ spatial distribution).

Additionally, the LM test for the presence of spatial autocorrelation in the spatial
lagged dependent variable suggests it might have occurred through an AR(1) process
(i.e., the values of production of neighboring firms in the previous period influenced the
current production of a firm). Moreover, the LM test pointed to the presence of spatial
autocorrelation, confirming that generically, neighboring firms’ production influenced a
firm’s current production level. Following this benchmark result, the SAR model was
estimated accordingly to assess the existence of spatial effects in the dependent variable.
The significance of rho, associated with the lagged dependent variable (turnover), shows
that the AR(1) process identified was of low statistical significance, even though it could
not be ignored for robust estimations.

Regarding the presence of spatial effects in the regressors, the SEM model was esti-
mated. The results were significant at the 5% level for lambda (i.e., allowing confirmation
of the presence of spatial effects on the vector of the regressors).

The estimation results of the RE, SAR, and SEM models allowed for identifying spatial
autocorrelation of the lagged dependent variable, as well as spatial autocorrelation in the
regressors, which called for the estimation of the Spatial Durbin Model (SDM). In this
model, the statistical significance of θ confirmed the presence of spatial dependence on the
input factors. However, the non-significance of ρ suggests that the previously identified au-
tocorrelation in the dependent variable was not strong enough to be statistically significant
in this specification in line with the SAR results.

Finally, based on the results of the previous models, and to assess a firm’s produc-
tive efficiency and its decomposition in transient and persistent components, the Spatial
Stochastic Frontier Durbin Model (SSFDM) was used for estimation.

Table 2 displays the model estimation results of the RE (for benchmark), SAR, SEM,
SDM, and finally the SSFDM, which is the model of greatest interest in this research.
Generically, the significance of the parameters of the translog function improved from the
RE specification to the SAR and SEM specifications, which suggests that capturing the
spatial effects improved the level of explanation of the estimations.
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Table 2. Estimation results.

Model 1 Model 2 Model 3 Model 4 Model 5

Variable RE SAR SEM SDM SSFDM

Coeff. Coeff. Coeff. Coeff. Coeff. Spatial Lag

LnEmployees 0.0842 *
(0.0491)

0.0534
(0.0330)

0.0551 *
(0.0330)

0.0623 *
(0.0357)

0.0647 **
(0.0330)

−0.0045
(0.0121)

LnDepreciations 0.1793 ***
(0.0367)

0.1075 ***
(0.0261)

0.1081 ***
(0.0260)

0.1050 ***
(0.0281)

0.1020 ***
(0.0259)

0.0129
(0.0085)

LnCSS 0.6191 ***
(0.0494)

0.4847 ***
(0.0329)

0.4839 ***
(0.0329)

0.4964 ***
(0.0355)

0.4800 ***
(0.0328)

−0.0071 **
(0.0034)

LnCRM 0.3211 ***
(0.0284)

0.4932 ***
(0.0177)

0.4930 ***
(0.0177)

0.4940 ***
(0.0193)

0.4995 ***
(0.0178)

0.0033
(0.0044)

LnEmployeesx

LnDepreciations
0.2041 ***
(0.0379)

0.1162 ***
(0.0377)

0.1159 ***
(0.0377)

0.1098 ***
(0.0405)

0.1268 ***
(0.0374)

0.0087
(0.0092)

LnEmployeesxLnCSS −0.3184 ***
(0.0659)

−0.3472 ***
(0.0577)

−0.3478 ***
(0.0576)

−0.3517 ***
(0.0619)

−0.3511 ***
(0.0571)

−0.0241 *
(0.0137)

LnEmployeesxCRM 0.1069 ***
(0.0300)

0.1145 ***
(0.0289)

0.1157 ***
(0.0289)

0.1595 ***
(0.0308)

0.1271 ***
(0.0286)

−0.0009
(0.0087)

LnDepreciationsxLnCSS −0.0574 **
(0.0261)

−0.1318 ***
(0.0248)

−0.1310 ***
(0.0248)

−0.1018 ***
(0.0271)

−0.1063 ***
(0.0250)

0.0045
(0.0049)

LnDepreciationsxLnCRM 0.0284 **
(0.0120)

0.0535 ***
(0.0129)

0.0531 ***
(0.0129)

0.0349 **
(0.0140)

0.0370 ***
(0.0129)

−0.0079 **
(0.0034)

LnCSSxLnCRM 0.1051 ***
(0.0198)

0.1185 ***
(0.0200)

0.1182 ***
(0.0200)

0.1301 ***
(0.0216)

0.1348 ***
(0.0200)

0.0103 **
(0.0051)

T −0.0013
(0.084)

0.0099
(0.0115)

0.0099
(0.0115)

0.0004
(0.0099)

−0.0013
(0.009)

0.0008
(0.0024)

T2 −0.0220 ***
(0.0078)

−0.01193
(0.0115)

−0.0120
(0.0119)

−0.0154
(0.0135)

−0.0081
(0.0125)

−0.0012
(0.0013)

LnEmployees † −0.1723 ***
(0.0486)

−0.0561
(0.0427)

−0.0558
(0.0426)

−0.1135 **
(0.0459)

−0.0710 *
(0.0424)

0.0063
(0.0117)

LnDepreciations † −0.0009
(0.0110)

0.0393 ***
(0.0110)

0.0396 ***
(0.0110)

0.0378 ***
(0.0118)

0.0320 ***
(0.0109)

0.0022
(0.0034)

LnCSS † 0.0964 ***
(0.0293)

0.0761 ***
(0.0274)

0.0755 ***
(0.0274)

0.0645 **
(0.0297)

0.0549 **
(0.0275)

0.0015
(0.0052)

LnCRM † −0.0309 ***
(0.0077)

−0.0342 ***
(0.0071)

−0.0343 ***
(0.0071)

−0.0401 ***
(0.0076)

−0.0339 ***
(0.0070)

0.0004
(0.0019)

ρ - 0.0004 **
(0.0002) - 0.0002

(0.0007) −0.0002 (0.0011)

λ - - 0.0003 **
(0.0002) -

θ
0.6228 ***
(0.0103)

µi - - - 0.7924
vit - - - - 0.5890

Log Likelihood Function −1344.8401 −1593.4149 −1592.4286 −1722.5970 −1572.9469
R2 0.8784 0.8899 0.8662 0.8716 0.8684

Wald 12,921.04 *** 14,573.71 *** 14,576.85 *** 12,153.01 *** 14,878.32 ***
F 646.05 *** 728.69 *** 728.8425 *** 379.7814 *** 464.9472 ***

AIC 0.4670 0.4186 0.4184 0.5138 0.5131
BIC 0.5021 0.4459 0.4458 0.5676 0.5807
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Table 2. Cont.

Model 1 Model 2 Model 3 Model 4 Model 5

Variable RE SAR SEM SDM SSFDM

Coeff. Coeff. Coeff. Coeff. Coeff. Spatial Lag

Moran’s I −0.2358 −0.0241
LM Lag 698.0772 *** 491.1592 *** 0.0647
LM SAC 777.3232 *** 843.6141 *** 0.7040

Note: ρ is the parameter associated with the spatial components in both the SAR and SDM specifications, and λ denotes the spatial weighted
parameter in the error term in the SEM specification. Robust standard errors are reported in brackets. Model 5 includes coefficients for the
spatial lag variables. ***, ** and * denote significance at the 1%, 5% and 10% levels, respectively. † Typically, two main specifications are
used: the Cobb-Douglas (CD) and translog production functions (TL). The TL offers more flexibility than the CD, which is usually easier to
estimate and works well when elasticities are constant over the sample (Pavelescu 2011).

The non-significance of the parameters of the time trend (t and t2) in the econometric
spatial models shows that there was no presence of technological progress or regression
along the period under analysis. Moreover, based on the significance of the parameters ρ
(0.0004 **), λ (0.0002 **), and θ (0.6228 ***), it is possible to conclude that there were spatial
effects in both the SAR, SEM, and SDM specifications, specifically in the regressors and
the error term, which could not be neglected, even if they were of small magnitudes. This
means that the production technology of the Portuguese wine industry displays traces of
spatial dependence (i.e., the geographic locations of firms can induce spillover effects that
affect their production technology). This can be sustained by the fact that the production of
wine is particularly influenced by local grape production and competitors’ agglomerations,
both in supplies and services and in raw materials.

The non-significance in the spatial component in the SSFDM specification suggests
that the spatial dependence effects identified in the SAR, SEM, and SDM specifications were
transferred to the inefficiency term, which means that the firm location and agglomeration
might have impacted the productive efficiency estimates.

Since the coefficients of the SSFDM identified essentially marginal effects (Haini 2020;
Pham et al. 2019), the results show that supplies and services and the cost of raw materials
displayed the higher marginal effects, which implies that the production function depended
mostly on the supply conditions and the firm’s ability to transform and commercialize
wines. This result seemed to be influenced by limitations on the supply of grapes due to
regulations inherent to each demarcated region across the industry, which constituted the
main raw material in the production process. However, the sum of the input elasticities at
the sample mean (1.1462) was higher than one, which indicated increasing returns to scale
and, consequently, the presence of scale economies in the Portuguese wine industry, as the
previous literature also identified (Faria et al. 2020; Behmiri et al. 2019).

The spatially weighted regressors showed that there were spatial spillovers in the
supplies and services input, thus enhancing its importance toward efficiency. However, the
negative sign suggests that agglomeration affected the overall production level, suggesting
limitations in access to the supply chain.

To assess the impact of space on productive efficiency, Table 3 includes statistical
information (average, standard error, and median) on the transient, persistent, and overall
(productive) efficiency provided by the SSFDM model both weighted and not weighted
with the spatial effects.
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Table 3. Productive efficiency scores.

Transient Efficiency Persistent Efficiency Overall Efficiency

Spatial Weighted
Average 0.6725 0.7459 0.5136

Std. Error 0.1378 0.1219 0.1523
Median 0.6918 0.7718 0.5301

Spatial Non-Weighted
Average 0.7793 0.7513 0.5880

Std. Error 0.0924 0.1195 0.1196
Median 0.7925 0.7735 0.6083

Average Difference −0.1069 −0.0054 −0.07441

Note: The average difference is the difference between the average of the spatial weighted and non-weighted estimates.

Generically, in the SSFA, transient efficiency, which refers to the short-term or man-
agerial efficiency, spanned from as low as 25.71% (for the least efficient firm) to as high as
87.65% (the most efficient firm), with a variation coefficient of 20%. This means that, on
average, firms could improve the short-term efficiency by nearly 33%, which called for the
implementation of managerial strategies to strengthen and promote productivity gains
(i.e., better use of inputs in comparison with the observed best practice represented by the
stochastic frontier production).

Persistent efficiency (i.e., long-term efficiency) varied from 69.12% to 98.96%, with a
variation coefficient of 16%. Consequently, firms could, on average, improve their long-
term efficiency by nearly 25%. This may reflect that long-term inefficiencies are more likely
to be caused by external factors influencing firms’ abilities, such as regulatory measures,
lacking strong networks, or innovative regional clusters.

The wide range of variations (especially in transient efficiency) reflected appropriately
the heterogeneity in the Portuguese wine industry, where a large number of SMEs coexist
and compete with a few large firms. Considering the short time span and the rejection
of technical progress, the average efficiency scores remained relatively stable over time,
hinting that the dynamics of the industry did not change substantially in this period.

The overall efficiency score had a mean of 51.36% (ranging from as low as 9.08% to
80.89%), with a variation coefficient of 24%, which stresses the need for a large number
of firms to improve their use of inputs and establish compatible short- and long-term
strategies that can lead to lower dispersion between capabilities and actual production.
In terms of overall efficiency, it can be said that firms can (with the observed used inputs)
increase their turnover by 49.64% if all of them adopt the best practices for implementing
new technology.

Regarding geographic location, as mentioned above, the Moran’s I value indicated
that there was a random space in a winery’s behavior, allowing us to infer that there
were no systematic spatial clusters in the production efficiency indicators, although the
spatial relationship may have occurred. These are especially interesting results, as it
defies what one could expect from a traditional wine country with centuries of producing
experience. The non-existence of clear agglomeration patterns could therefore be explained
since, despite its ancient history in production, the development, openness to international
markets, and competitive environment of the Portuguese wine industry was only pursued
in the last four decades (following Portugal’s entrance into the EU) (Lains 2018). Therefore,
for a better understanding of the results, the three SFSDM productive efficiency indices
were charted, providing the maps shown in Figure 4.
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A map overview allowed for checking that there was heterogeneous dissemination of
scores across the country, highlighting regions in which firms could achieve higher levels
of efficiency and regions in which the firms’ abilities were capped. Based on the spatial in-
terpolation, which represents score values for every point throughout mainland Portugal’s
extent, spatial dependence through the transitional areas (shaded values represent spatial
dependence) was illustrated, confirming that neighboring relations influenced the ability of
firms to reach their maximum potential (or the inverse in the case of low-efficiency regions).
This finding confirms that wineries tend to operate in similar ways within each region,
dragging nearby competitors to higher (or lower) levels of efficiency. This behavior is in
line with the significance of spatially weighted regressors of supplies and services and
the cost of raw materials, which means that competition in the access to (and conditions
of) suppliers can influence inputs’ pricing, availability, and quality, leading to gaps in a
winery’s productive efficiency.

Although lacking a systematic behavior pattern of location, it is possible to observe that
firms located near more efficient competitors benefited from regional clustering, boosting
their ability to reach higher efficiency rates and confirming the existence of spillover effects
in some wine regions, such as Porto and Douro (particularly Port wine), Lisboa, Tejo, and
Alentejo. On the other hand, firms located in low-density wine regions, such as Beira
Interior or Setúbal and Palmela, with lower entrepreneurial sophistication (as Figure 2
suggests) struggled with regional clustering, since the availability of resources was limited.
These findings confirm what is observed in traditional wine-producing countries, with
different levels of wine regions clustering (i.e., from informal to innovative clusters (Migone
and Howlett 2010)).

Additionally, to check the impact (either positive or negative) in the efficiency indi-
cators from the space component, Equation (5) was re-estimated without the weighted
variables related to space as a regular stochastic frontier model (non-weighted). Table 3
(above) includes the efficiency measures of this model as well as the difference of averages
in comparison with the spatial weighted model. Complementary to this, Figure 5 displays
the histograms of the frequencies of both overall efficiency scores, allowing an overview of
possible differences due to the inclusion of the spatial effect in the model.
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The results show that the spatial spillovers had, on average, a negative impact on
wineries’ productive efficiency. On average, the spatial component had a negative impact
of 7.44% on the overall efficiency score. Moreover, the Kolmogorov–Smirnov test, with a
value of 0.4997 and a significance level of 1%, confirmed the rejection of the equality of
frequency distributions, enhancing the differences between both scores. Together, these
findings allow us to argue that in the Portuguese wine industry, firms have not yet reached
an innovative level where the firms’ management skills and institutional organizations can
transfer knowledge and experience between wineries with positive productive efficiency
gains, lacking innovative clusters, in line with the findings of Rebelo and Caldas (2013),
and having negative consequences on the inputs of productivity and competitiveness.

Figure 6 demonstrates the linkage between the overall efficiency differences and labor
productivity (ratio between the gross added value and employees). It shows that the
regions where the difference was positive (i.e., where there were negative spatial effects in
productive efficiency) roughly mimicked the geographical distribution of low-productivity
areas, while regions with a negative difference (i.e., positive spatial effects) corresponded to
high-productivity geographic locations. This inference is corroborated by a negative value
(−0.0967) and statistically significant Spearman’s rank correlation between the differences
in the efficiency scores and labor productivity.

Moreover, the Spearman’s rank correlation of the differences in efficiency and firm
size (employees) showed a negative and significant correlation at the 1% level (−0.0674),
which supports the argument that larger, highly productive firms can benefit from spatial
effects, but conversely, smaller, less-productive firms struggle with the influence of location,
which is in line with the findings of Vidoli et al. (2016).

These findings support that only in high labor productivity regions are the spatial
spillovers positive, while in the lower productivity regions, the neighboring effects are
negative. Again, this hints that to reach higher levels of efficiency, firms can benefit from
knowledge sharing and R&D cooperation, which will translate into greater productivity
and competitiveness (Lorenzo et al. 2018), as occurs in innovative clusters.

In summation, the SAR, SEM, and SDM models confirmed the existence of spatial
closeness relationships between wineries, as suggested in the work of Canello and Vidoli
2020. However, there was a random behavior and not a standardized pattern of clustering,
which revealed the lack of regional clustering or the presence of mainly informal clusters,
in line with the works of Rebelo and Caldas (2013) and Hogg and Rebelo’s (2018) findings.
Moreover, there is a link between location and efficiency (Bravo-Ureta et al. 2020; Outreville
2016), since the spatial neighboring effects were included in the SFSDM with the firms’
productive efficiency change.
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5. Conclusions

In competitive market structures, companies are conditioned by the ability to manage
the internal production organization, considering the impact of the external economic,
institutional, and spatial environment both at the domestic and international levels. The
analysis of these issues in terms of business performance calls for the computation of
productive efficiency indices based on the SFA model. Specifically, the estimation of SFA
panel data models allows for decomposing the productive efficiency into two components:
(1) transient efficiency, resulting from entrepreneurial management decisions, and (2)
persistent efficiency, ensuing from the environmental context within which firms operate.
In industries closely linked to geographic location such as agri-foods, which includes
wine-producing, the level of efficiency and therefore the competitiveness of the business
depends on the firm’s location, as this paper points out.

The results of this study underline the existence of spatial closeness relationships
between wineries, albeit with a random behavior, not a standardized pattern of clustering,
which reveals the lack of regional clustering or the presence of mainly informal clusters.
Moreover, there is a link between the location and efficiency, with the scores of wineries’
productive efficiency being affected. Specifically, the spatial spillover effects on productive
efficiency are mostly negative, accounting for a 7.44 p.p. decrease in the overall productive
efficiency. This means that the pull-down effects of the spatial spillovers were larger than
the push-up effects, meaning that firms located near high-performance competitors did
not benefit from generalized positive externalities deriving from innovation as well as
easier access to the supply chain. These findings are in line with the fact that for historical,
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cultural, social, and economic reasons (Lains 2018), the Portuguese wine industry has not
yet succeeded in deploying a business plan able to benefit from the synergies of all the
wine regions. Positive externalities on productive efficiency were only verified in regions
where there was already a concentration of high-productivity firms. This finding reflects
the different maturity stages or economic development of the 12 Portuguese demarcated
wine regions, mostly composed of a neophyte wine industrial base, which paved the way
for the deployment of regional clusters.

The conclusions of this paper are in line with previous contributions, such as those
of Vidoli et al. (2016), confirming the need for knowledge sharing and the development
of formal networks in each wine region to foster the best practices in the whole industry
(therefore improving overall efficiency). In addition, firms might choose their location to
seek available resources (Outreville 2016), which was confirmed by this paper, since firms
located in low-productivity regions struggle to reach higher levels of efficiency, and those
that are located near high-productivity competitors can benefit from knowledge spillovers
and access to suppliers, which results in enhanced managerial capabilities. Overall, we
confirmed that the effect of the geographic location has a higher impact on SMEs (Vidoli
et al. 2016).

This paper hints at the need to design specific spatial policies for each wine region
in which all competitive advantages should be exploited, and on the other hand, the
individual limitations should be mitigated, as suggested by Canello and Vidoli (2020), for
the Italian wine industry. Furthermore, the relatively new competitive environment of
the Portuguese wine industry calls for the development of policies that support collective
added value for the industry as a means to reach competitive and industry-wide efficiency
gains. These policies include measures such as the creation of research, development, and
innovation platforms, logistic platforms, training of human resources with the appropriate
skills, collective promotion in both internal and external markets, as well as creating
conditions for the development of new supply chains and trade channels in these regions.
All of this is translated into operational innovative clusters (Rebelo and Caldas 2013),
aiming to (1) increase the size of firms and the number of critical actors, (2) introduce and
spread a real culture of continuous innovations in the different phases of the wine chain,
anticipating or provoking changes in market demand, and (3) amplify the cooperation
and the networks between the different cluster players for a generalized and improved
diffusion of knowledge and skills.

At the firm level, the majority of managers need to be aware that their winery’s pro-
ductive (transient) efficiency can increase significantly, which should imply the adoption of
a benchmarking strategy that will be able to support decisions that contribute to improving
the internal organization of the production process (improvement in the combination of
inputs and output), marketing, control of the supply chain, and increasing in size. Si-
multaneously, the wineries should be active stakeholders in the creation of innovative
clusters.

This research opens large avenues for future research in this topic, such as taking into
consideration the assumptions of the dynamic nature of production technology and the
introduction of new SF models accounting for possible endogeneity in the inputs. Addi-
tionally, since the weighted distance matrix is invariant, future research could benefit from
using different distance measures, such as financial distance, to capture firm competitive
dynamics.
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Notes
1 According to Kopp (1981), productive efficiency is defined as the ability of firms to produce a specified output at the minimum

cost. Based on this definition, productive efficiency can be decomposed into two components: (1) technical efficiency, reflecting
the physical efficiency of the input-output transformation, and (2) the allocative efficiency, reflecting the deviation from the
optimal input allocation given their prices. Since this study estimates a production function, the productive efficiency corresponds
to the technical efficiency, and therefore, both terms are used indistinctly throughout the paper.

2 Typically, two main specifications are used: the Cobb–Douglas (CD) and translog production functions (TL). The TL offers
more flexibility than the CD, which is usually easier to estimate and works well when elasticities are constant over the sample
(Pavelescu 2011).

3 In these studies, the division between firms that only produce and sell grapes (grape growers) and those whose main activity is
the production and marketing of wine (wineries) is not always clear for whether or not they produce their own grapes. As is
supported in the theoretical properties of production sets (Mas-Colell et al. 1995), this research focuses only on wineries to assure
technology homogeneity.

4 “Quadros do setor” database, assessed in 1 December 2020, which can be found in https://www.bportugal.pt/QS/qsweb/
Dashboards. This is a legal registration which considers firms constituted. Since some of them are not in activity, the number of
wineries with accounting information is annually lower.

5 Since we are in the presence of a short time span where the input and output real prices remained stable, neutral technological
progress is assumed (Oosthuizen and Conradie 2018).

6 According to the level of integration within the wine supply chain, there are three groups of firms: (1) grape growers, who
produce and sell grapes; (2) merchants, who sell wine but are not producers; and (3) wineries that produce and sell wine. This
research only includes the third group.

7 Moran’s I (Upton and Fingleton 1985) is a statistical measure that signals spatial autocorrelation among neighboring observations.
This statistic can be applied to a specific variable (usually the dependent variable) or to the error term. If the value is statistically
non-significant (equal to zero), there is no spatial autocorrelation between observations. If it is positive and statistically significant,
it shows autocorrelation between observations in the same category (i.e., there is clustering in high values and low values). If it is
negative and statistically significant, the autocorrelation is negative, meaning that there is spatial dispersion (high values repel
high values and low values repel low values).

8 The result [LR Chi2(16) = 235.79 ***] points to the rejection of the null hypothesis (all second order parameters together are equal
to zero), and thus the translog is preferred.

9 The presence of time effects is assessed through the inclusion of the “t” variable in the production function. In the first step, an
RE regression that also included time dummies was estimated. However, multicollinearity with the constant error term was
identified, and the reported model dropped such a hypothesis.
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