Correspondence Heuristic and Filter-Empowerment Heuristic: Investigating the Reversed Gender Achievement Gap in a Sample of Secondary School Students in Saudi Arabia within the Framework of Educational and Learning Capital
Abstract
:1. Introduction
2. Reversed Equity Gaps and the Advancement of the Correspondence Heuristic into a Filter-Empowerment Heuristic
2.1. The Correspondence Heuristic
2.2. The Reversed Gender Gap
2.3. The Filter-Empowerment Heuristic
3. Correspondence Heuristic and Filter-Empowerment Heuristic Applied to the Reversed Gender Achievement Gap in the Kingdom of Saudi Arabia
4. Educational and Learning Capital
5. Current Study
6. Method
6.1. Participants
6.2. Procedure
6.3. Measures
6.3.1. Educational Capital
6.3.2. Learning Capital
6.3.3. Academic Achievement
6.3.4. Gender
6.4. Plan of Analysis
7. Results
8. Discussion
9. Limitations and Future Research
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziegler, A.; Kuo, C.-C.; Eu, S.-P.; Gläser-Zikuda, M.; Nuñez, M.; Yu, H.-P.; Harder, B. Equity gaps in education: Nine points toward more transparency. Educ. Sci. 2021, 11, 711. [Google Scholar] [CrossRef]
- Leithwood, K. Review of evidence about equitable school leadership. Educ. Sci. 2021, 11, 377. [Google Scholar] [CrossRef]
- Ainscow, M.; Dyson, A.; Goldrick, S.; West, M. Developing Equitable Education Systems; Routledge: Abingdon, UK, 2011. [Google Scholar]
- Welch, A.; Connell, R.; Mockler, N.; Sriprakash, A.; Proctor, H.; Hayes, D.; Foley, D.; Vickers, M.; Bagnall, N.; Burns, K.; et al. Education, Change and Society, 4th ed.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Klasen, S. Low schooling for girls, slower growth for all? Cross-country evidence on the effect of gender inequality in education on economic development. World Bank Econ. Rev. 2002, 16, 345–373. [Google Scholar] [CrossRef] [Green Version]
- Meinck, S.; Brese, F. Trends in gender gaps: Using 20 years of evidence from TIMSS. Largescale Assess. Educ. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. Education for All Global Monitoring Report 2015: Gender Summary. Available online: http://unesdoc.unesco.org/images/0023/002348/234809E.pdf (accessed on 12 August 2022).
- Carlin, B.A.; Gelb, B.D.; Belinne, J.K.; Ramchand, L. Bridging the gender gap in confidence. Bus. Horiz. 2018, 61, 765–774. [Google Scholar] [CrossRef]
- Van der Pas, D.J.; Aaldering, L. Gender differences in political media coverage: A meta-analysis. J. Commun. 2020, 70, 114–143. [Google Scholar] [CrossRef]
- Badura, K.L.; Grijalva, E.; Newman, D.A.; Yan, T.T.; Jeon, G. Gender and leadership emergence: A meta-analysis and explanatory model. Pers. Psychol. 2018, 71, 335–367. [Google Scholar] [CrossRef]
- Reilly, D.; Neumann, D.L.; Andrews, G. Sex differences in mathematics and science achievement: A meta-analysis of national assessment of educational progress assessments. J. Educ. Psychol. 2015, 107, 645–662. [Google Scholar] [CrossRef] [Green Version]
- Shan, W.; Keller, J.; Joseph, D. Are men better negotiators everywhere? A meta-analysis of how gender differences in negotiation performance vary across cultures. J. Organ. Behav. 2019, 40, 651–675. [Google Scholar] [CrossRef]
- Bronfenbrenner, U. The Ecology of Human Development: Experiments by Nature and Design; Harvard University Press: Cambridge, UK, 1979. [Google Scholar]
- Bronfenbrenner, U. Ecological Systems Theory; Jessica Kingsley Publishers: London, UK, 1992. [Google Scholar]
- González-Pérez, S.; Mateos de Cabo, R.; Sáinz, M. Girls in STEM: Is it a female role-model thing? Front. Psychol. 2020, 11, 2204. [Google Scholar] [CrossRef]
- Wood, W.; Eagly, A.H. A cross-cultural analysis of the behavior of women and men: Implications for the origins of sex differences. Psychol. Bull. 2002, 128, 699–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellemers, N. Gender stereotypes. Annu. Rev. Psychol. 2018, 69, 275–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kräft, C. It’s a man’s world? Gender spillover effects on performance in a male-dominated industry. Front. Sociol. 2021, 6, 147. [Google Scholar] [CrossRef] [PubMed]
- Appel, D.C.; Mansouri, M. System dynamics modeling of thei STEM education and outreach career pipeline. IEEE Trans. Technol. Soc. 2022, 3, 143–153. [Google Scholar] [CrossRef]
- Wang, M.-T.; Degol, J. Staying engaged: Knowledge and research needs in student engagement. Child Dev. Perspect. 2014, 8, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Ceci, S.J.; Ginther, D.K.; Kahn, S.; Williams, W.M. Women in academic science: A changing landscape. Psychol. Sci. Public Interest 2014, 15, 75–141. [Google Scholar] [CrossRef] [Green Version]
- Mulvey, K.L.; Mathews, C.J.; Knox, J.; Joy, A.; Cerda-Smith, J. The role of inclusion, discrimination, and belonging for adolescent science, technology, engineering and math engagement in and out of school. J. Res. Sci. Teach. 2022, 59, 1447–1464. [Google Scholar] [CrossRef]
- Robinson, J.P.; Lubienski, S.T. The development of gender achievement gaps in mathematics and reading during elementary and middle school: Examining direct cognitive assessments and teacher ratings. Am. Educ. Res. J. 2011, 48, 268–302. [Google Scholar] [CrossRef] [Green Version]
- Tiedemann, J. Parents’ gender stereotypes and teachers’ beliefs as predictors of children’s concept of their mathematical ability in elementary school. J. Educ. Psychol. 2000, 92, 144–151. [Google Scholar] [CrossRef]
- Valla, J.M.; Ceci, S.J. Can sex differences in science be tied to the long reach of prenatal hormones? Brain organization theory, digit ratio (2D/4D), and sex differences in preference and cognition. Perspect. Psychol. Sci. 2011, 6, 134–146. [Google Scholar] [CrossRef]
- Wang, M.-T.; Degol, J.L. Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educ. Psychol. Rev. 2017, 29, 119–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, A.; Welzel, C. Islam and patriarchy: How robust is Muslim support for patriarchal values? Int. Rev. Sociol. 2011, 21, 249–276. [Google Scholar] [CrossRef]
- Andersen, S.; Ertac, S.; Gneezy, U.; List, J.A.; Maximiano, S. Gender, competitiveness, and socialization at a young age: Evidence from a matrilineal and a patriarchal society. Rev. Econ. Stat. 2013, 95, 1438–1443. [Google Scholar] [CrossRef] [Green Version]
- Valla, J.M.; Ceci, S.J. Breadth-based models of women’s underrepresentation in STEM fields: An integrative commentary on Schmidt (2011) and Nye et al. (2012). Perspect. Psychol. Sci. 2014, 9, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Kuhnen, C.M.; Chiao, J.Y. Genetic determinants of financial risk taking. PLoS ONE 2009, 4, e4362. [Google Scholar] [CrossRef]
- Cheryan, S.; Ziegler, S.A.; Montoya, A.K.; Jiang, L. Why are some STEM fields more gender balanced than others? Psychol. Bull. 2017, 143, 1155. [Google Scholar] [CrossRef]
- Su, R.; Rounds, J. All STEM fields are not created equal: People and things interests explain gender disparities across STEM fields. Front. Psychol. 2015, 6, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Development Programme. Human Development Report 2021/2022: Uncertain Times, Unsettled Lives: Shaping Our Future in a Transforming World; United Nations Development Programme: New York, NY, USA, 2022. [Google Scholar]
- DeRose, L.F.; Huarcaya, G.; Salazar-Arango, A. Father absence and the reverse gender gap in Latin American education. J. Fam. Issues 2018, 39, 3508–3534. [Google Scholar] [CrossRef]
- Eckermann, E. The history of well-being and the global progress of women. In The Pursuit of Human Well-Being; Estes, R., Sirgy, M., Eds.; Springer Cham: New York, NY, USA, 2017; pp. 609–637. [Google Scholar]
- Kerr, B.; McKay, R. Smart Girls in the 21st Century; SCB Distributors: Los Angeles, CA, USA, 2020. [Google Scholar]
- Riggio, H.R. Sex and Gender: A Biopsychological Approach; Routledge: Oxfordshire, UK, 2020. [Google Scholar]
- Stock, P. Better Than Rubies: A History of Women’s Education; G.P. Putnam & Sons: New York, NY, USA, 1978. [Google Scholar]
- World Economic Forum. Global Gender Gap Report. Available online: https://www.weforum.org/reports/global-gender-gap-report-2022/ (accessed on 15 August 2022).
- Quenzel, G.; Hurrelmann, K. The growing gender gap in education. Int. J. Adolesc. Youth 2013, 18, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Van Bavel, J.; Schwartz, C.R.; Esteve, A. The reversal of the gender gap in education and its consequences for family life. Annu. Rev. Sociol. 2018, 44, 341–360. [Google Scholar] [CrossRef]
- Baten, J.; de Haas, M.; Kempter, E.; Meier zu Selhausen, F. Educational gender inequality in Sub-Saharan Africa: A long-term perspective. Popul. Dev. Rev. 2021, 47, 813–849. [Google Scholar] [CrossRef]
- Koca, G.Ş. The classification of world countries in terms of global gender gap with using cluster analysis. Women’s Stud. Int. Forum 2022, 92, 102592. [Google Scholar] [CrossRef]
- Van der Vleuten, L. Mind the gap! The influence of family systems on the gender education gap in developing countries, 1950–2005. Econ. Hist. Dev. Reg. 2016, 31, 47–81. [Google Scholar] [CrossRef]
- Kahn, S.; Ginther, D. Women and science, technology, engineering, and mathematics (STEM): Are differences in education ad careers due to stereotypes, interests, or family. In The Oxford Handbook of Women and the Economy; Averett, S.L., Argys, L.M., Hoffman, S.D., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 766–798. [Google Scholar]
- Card, D.; Payne, A.A. High school choices and the gender gap in STEM. Econ. Inq. 2020, 59, 9–28. [Google Scholar] [CrossRef]
- Ganley, C.M.; George, C.E.; Cimpian, J.R.; Makowski, M.B. Gender equity in college majors: Looking beyond the STEM/non-STEM dichotomy for answers regarding female participation. Am. Educ. Res. J. 2018, 55, 453–487. [Google Scholar] [CrossRef]
- Stotsky, J.G.; Shibuya, S.; Kolovich, L.; Kebhaj, S. Trends in Gender Equality and Women’s Advancement; IMF: Washington, DC, USA, 2016. [Google Scholar]
- Hernandez-Arenaz, I.; Iriberri, N. A Review of Gender Differences in Negotiation; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Säve-Söderbergh, J. Gender gaps in salary negotiations: Salary requests and starting salaries in the field. J. Econ. Behav. Organ. 2019, 161, 35–51. [Google Scholar] [CrossRef]
- Bossavie, L.; Kanninen, O. What Explains the Gender Gap Reversal in Educational Attainment? World Bank Policy Research Working Paper No. 8303. 2018. Available online: https://ssrn.com/abstract=3104303 (accessed on 3 September 2022).
- Fortin, N.; Oreopoulos, P.; Phipps, S. Leaving boys behind: Gender disparities in high academic achievement. J. Hum. Resour. 2015, 50, 549–579. [Google Scholar] [CrossRef]
- Goldin, C.; Katz, L.F.; Kuziemko, I. The homecoming of American college women: The reversal of the college gender gap. J. Econ. Perspect. 2006, 20, 133–156. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.W.; Ramchand, D.S. Closing the gender and socio-economic gaps in educational attainment: A need to refocus. J. Int. Dev. 2016, 28, 953–973. [Google Scholar] [CrossRef]
- Minasyan, A.; Zenker, J.; Klasen, S.; Vollmer, S. Educational gender gaps and economic growth: A systematic review and meta-regression analysis. World Dev. 2019, 122, 199–217. [Google Scholar] [CrossRef] [Green Version]
- Guiso, L.; Monte, F.; Sapienza, P.; Zingales, L. Culture, gender, and math. Science 2008, 320, 1164–1165. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.G.; Qayyam, A. Dynamics in educational outcomes by gender: Evidence from Pakistan. J. Econ. Libr. 2017, 4, 172–186. [Google Scholar]
- Niederle, M.; Vesterlund, L. Explaining the gender gap in Math test scores: The role of competition. J. Econ. Perspect. 2010, 24, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Legewie, J.; DiPrete, T.A. School context and the gender gap in educational achievement. Am. Sociol. Rev. 2012, 77, 463–485. [Google Scholar] [CrossRef] [Green Version]
- Akabayashi, H.; Nozaki, K.; Yukawa, S.; Li, W. Gender differences in educational outcomes and the effect of family background: A comparative perspective from East Asia. Chin. J. Sociol. 2020, 6, 315–335. [Google Scholar] [CrossRef]
- Fan, X.; Fang, H.; Markussen, S. Mothers’ employment and children’s educational gender gap. In Working Paper. w21183; National Bureau of Economic Research: Cambridge, MA, USA, 2015. [Google Scholar]
- Zander, L.; Höhne, E.; Harms, S.; Pfost, M.; Hornsey, M.J. When grades are high but self-efficacy is low: Unpacking the confidence gap between girls and boys in mathematics. Front. Psychol. 2020, 11, 552355. [Google Scholar] [CrossRef]
- Bian, L.; Leslie, S.-J.; Cimpian, A. Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science 2017, 355, 389–391. [Google Scholar] [CrossRef]
- Leslie, S.-J.; Cimpian, A.; Meyer, M.; Freeland, E. Expectations of brilliance underlie gender distributions across academic disciplines. Science 2015, 347, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Miščević, N. United nations development programme, human development report 2020. The next frontier human development and the anthropocene. Croat. J. Philos. 2020, 21, 231–235. [Google Scholar]
- Knoema. Saudi Arabien—Global Gender Gap Index [Saudi Arabia—Global Gender Gap Index]. Available online: https://knoema.de/atlas/Saudi-Arabien/topics/Weltrankings/Weltrankings/Global-gender-gap-index#:~:text=In%202021%2C%20global%20gender%20gap,average%20annual%20rate%20of%200.87%25 (accessed on 3 September 2022).
- Ziegler, A.; Stoeger, H. Bildungs- und lernkapital. Ein ressourcenorientierter ansatz [Educational and learning capital. A resource-based approach]. J. Für Begabtenförderung 2013, 13, 4–13. [Google Scholar]
- Ziegler, A.; Baker, J. Talent development as adaptation: The role of educational and learning capital. In Exceptionality in East Asia: Explorations in the Actiotope Model of Giftedness; Phillipson, S., Stoeger, H., Ziegler, A., Eds.; Routledge: Oxfordshire, UK, 2013; pp. 18–39. [Google Scholar]
- Ziegler, A.; Chandler, K.L.; Vialle, W.; Stoeger, H. Exogenous and endogenous learning resources in the actiotope model of giftedness and its significance for gifted education. J. Educ. Gift. 2017, 40, 310–333. [Google Scholar] [CrossRef]
- Ziegler, A.; Debatin, T.; Stoeger, H. Learning resources and talent development from a systemic point of view. Ann. N. Y. Acad. Sci. 2019, 1445, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Vialle, W. Supporting giftedness in families: A resources perspective. J. Educ. Gift. 2017, 40, 372–393. [Google Scholar] [CrossRef]
- Ziegler, A. The actiotope model of giftedness. In Conceptions of Giftedness; Sternberg, R., Davidson, J., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 411–436. [Google Scholar]
- Ismail, S.A.A.; Alghawi, M.A.; AlSuwaidi, K.A.; Ziegler, A. Gifted education in Arab countries: Analyses from a learning-resource perspective. Cogent Educ. 2022, 9, 2115620. [Google Scholar] [CrossRef]
- Alfaiz, F.S.; Alfaid, A.A.; Aljughaiman, A.M. Current status of gifted education in Saudi Arabia. Cogent Educ. 2022, 9, 2064585. [Google Scholar] [CrossRef]
- Stemmer, L. Frauen in Spitzenpositionen in MINT: Theoretische Analysen und Empirische Untersuchung Eines Ressourcenorientierten Erklärungsansatzes der Leaky Pipeline [Women in Top STEM Positions: Theoretical Analyses and Empirical Investigation of a Resource-Based Explanatory Approach to the Leaky Pipeline]. Ph.D. Thesis, Friedrich-Alexander-University Erlangen-Nuremberg, Bavaria, Germany, 2020. Unpublished. [Google Scholar]
- Zhao, X. The Influence of the Learning Environment on Gifted Students in China. Ph.D. Thesis, Friedrich-Alexander-University Erlangen-Nuremberg, Bavaria, Germany, 2021. [Google Scholar]
- Unified National Platform GOV. SA. Education and Training. Available online: https://www.my.gov.sa/wps/portal/snp/aboutksa/EducationInKSA/!ut/p/z1/jZDLDoIwEEW_hi0zlYeNu4JRI2ohimI3Bg0WEqAGUH5fgm5MfM1uJudMbi4IiECU8S2TcZOpMs67fS_sgxcscOaYhFMnZBgEE2tD7bWBUxt2PTD3qUkYEs4Ny8HAXQ45W28JogXiHx8_DMPfvnhF-IrYHbIZuwsvHHQ_nsC3iD3wJcMchMzV8dEHK48GlSCq5JxUSaVfq-6cNs2lHmmoYdu2ulRK5ol-UoWG75RU1Q1EryRcijDCzC92tGZ3HguYNA!!/dz/d5/L0lDUmlTUSEhL3dHa0FKRnNBLzROV3FpQSEhL2Vu/ (accessed on 30 October 2022).
- Faraj, A. Global Education Systems; Massira Press: Amman, Jordan, 2005. [Google Scholar]
- Aljughaiman, A.M.; Grigorenko, E.L. Growing up under pressure. J. Educ. Gift. 2013, 36, 307–322. [Google Scholar] [CrossRef] [Green Version]
- ICEE. The Ministry of Education. Available online: http://icee.sa/about-the-ministry/ministry-of-education/index.html (accessed on 30 October 2022).
- Marsh, H.W.; Abduljabbar, A.S.; Parker, P.D.; Morin, A.J.S.; Abdelfattah, F.; Nagengast, B. The big-fish-little-pond effect in mathematics: A cross-cultural comparison of U.S. and Saudi Arabian TIMSS responses. J. Cross-Cult. Psychol. 2014, 45, 777–804. [Google Scholar] [CrossRef]
- Ziegler, A.; Stoeger, H. Gifted Identification Kit 4–6 for the United Arab Emirates; Hamdan Award for Distinguished Academic Performance: Dubai, United Arab Emirates, 2016. [Google Scholar]
- Vladut, A.; Liu, Q.; Leana-Tascilar, M.; Vialle, W.; Ziegler, A. A cross-cultural validation study of the questionnaire of educational and learning capital (QELC) in China, Germany, and Turkey. Psychol. Test Assess. Model. 2013, 55, 462–478. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef]
- Hayes, A. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2017. [Google Scholar]
- Hair, J.; Hult, G.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equations Modeling (PLS-SEM), 2nd ed.; SAGE: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Toren, N. The temporal dimension of gender inequality in academia. High. Educ. 1993, 25, 439–455. [Google Scholar] [CrossRef]
- Berendes, K.; Becker, M.; Jacoby, J.; Flunger, B.; Nagengast, B.; Trautwein, U. Individuelle entwicklungsverläufe beim lesen: Macht das geschlecht den unterschied? [Individual devleopmental paths in reading: Does gender make a difference?]. Z. Für Entwickl. Pädagogische Psychol. 2018, 50, 192–208. [Google Scholar] [CrossRef]
- Kempe, C.; Eriksson-Gustavsson, A.L.; Samuelsson, S. Are there any matthew effects in literacy and cognitive development? Scand. J. Educ. Res. 2011, 55, 181–196. [Google Scholar] [CrossRef]
- Stanovich, K.E. Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Read. Res. Q. 1986, 21, 360–407. [Google Scholar] [CrossRef]
- Ashour, S. The reverse gender divide in the United Arab Emirates. J. Appl. Res. High. Educ. 2020, 12, 1079–1094. [Google Scholar] [CrossRef]
- Ghasemi, E.; Burley, H. Gender, affect, and math: A cross-national meta-analysis of trends in international mathematics and science study 2015 outcomes. Large-Scale Assess. Educ. 2019, 7, 10. [Google Scholar] [CrossRef]
- Else-Quest, N.M.; Hyde, J.S.; Linn, M.C. Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychol. Bull. 2010, 136, 103–127. [Google Scholar] [CrossRef]
Type of Exogenous Resource | Definition | Type of Endogenous Resource | Definition |
---|---|---|---|
Economic educational capital | Economic educational capital is every kind of wealth, possession, money, or valuable that can be invested in the initiation and maintenance of educational and learning processes. (p. 27) | Organismic learning capital | Organismic learning capital consists of the physiological and constitutional resources of a person. (p. 29) |
Cultural educational capital | Cultural educational capital includes value systems, thinking patterns, models, and the like that can facilitate—or hinder—the attainment of learning and educational goals. (p. 27) | Telic learning capital | Telic learning capital comprises the totality of a person’s anticipated goal states that offer possibilities for satisfying their needs. (p. 30) |
Social educational capital | Social educational capital includes all persons and social institutions that can directly or indirectly contribute to the success of learning and educational processes. (p. 28) | Actional learning capital | Actional learning capital means the action repertoire of a person—the totality of actions a person is capable of performing. (p. 30) |
Infrastructural educational capital | Infrastructural educational capital relates to materially implemented possibilities for action that permit learning and education to take place. (p. 28) | Episodic learning capital | Episodic learning capital concerns the simultaneous goal- and situation-relevant action patterns that are accessible to a person. (p. 31) |
Didactic educational capital | Didactic educational capital means the assembled know-how involved in the design and improvement of educational and learning processes. (p. 29) | Attentional learning capital | Attentional learning capital denotes the quantitative and qualitative attentional resources that a person can apply to learning. (p. 31) |
Variables | M | SD | Range | Skewness |
---|---|---|---|---|
Academic achievement | 89.20 | 9.86 | 49–100 | –0.99 |
Educational capital | 4.61 | 0.78 | 1.40–6.00 | –0.67 |
Learning capital | 4.68 | 0.80 | 1.05–6.00 | –0.72 |
Variable | 1 | 2 | 3 |
---|---|---|---|
1. Academic achievement | - | ||
2. Female gender | 0.11 | - | |
3. Educational capital | 0.30 | 0.09 | - |
4. Learning capital | 0.34 | 0.13 | 0.75 |
Variable | Girls | Boys | t | p | Cohen’s d | ||
---|---|---|---|---|---|---|---|
M | SD | M | SD | ||||
Academic achievement | 90.07 | 9.37 | 87.83 | 10.44 | 5.49 | <0.001 | 0.226 |
Educational capital | 4.67 | 0.75 | 4.53 | 0.82 | 4.29 | <0.001 | 0.178 |
Learning capital | 4.76 | 0.75 | 4.54 | 0.85 | 6.58 | <0.001 | 0.274 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoeger, H.; Almulhim, N.; Ziegler, A. Correspondence Heuristic and Filter-Empowerment Heuristic: Investigating the Reversed Gender Achievement Gap in a Sample of Secondary School Students in Saudi Arabia within the Framework of Educational and Learning Capital. Educ. Sci. 2022, 12, 811. https://doi.org/10.3390/educsci12110811
Stoeger H, Almulhim N, Ziegler A. Correspondence Heuristic and Filter-Empowerment Heuristic: Investigating the Reversed Gender Achievement Gap in a Sample of Secondary School Students in Saudi Arabia within the Framework of Educational and Learning Capital. Education Sciences. 2022; 12(11):811. https://doi.org/10.3390/educsci12110811
Chicago/Turabian StyleStoeger, Heidrun, Norah Almulhim, and Albert Ziegler. 2022. "Correspondence Heuristic and Filter-Empowerment Heuristic: Investigating the Reversed Gender Achievement Gap in a Sample of Secondary School Students in Saudi Arabia within the Framework of Educational and Learning Capital" Education Sciences 12, no. 11: 811. https://doi.org/10.3390/educsci12110811
APA StyleStoeger, H., Almulhim, N., & Ziegler, A. (2022). Correspondence Heuristic and Filter-Empowerment Heuristic: Investigating the Reversed Gender Achievement Gap in a Sample of Secondary School Students in Saudi Arabia within the Framework of Educational and Learning Capital. Education Sciences, 12(11), 811. https://doi.org/10.3390/educsci12110811